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On the existence of nonnegative radial solutions

for p-Laplacian elliptic systems

by Daqing Jiang (Changchun) and Huizhao Liu (Harbin)

Abstract. The existence of nonnegative radial solutions for some systems of m
(m ≥ 1) quasilinear elliptic equations is proved by a simple application of a fixed point
theorem in cones.

1. Introduction and main result. This paper can be regarded as a
continuation of both [2] and [1]. We study the existence of nonnegative radial
solutions to the system of m quasilinear elliptic equations

(1.1) ∆pu + h(r)f(u) = 0, 0 < A < r < B,

with one of the following three sets of boundary conditions:

(1.2)a

(1.2)b

(1.2)c

u = 0 on r = A, and r = B,

u = 0 on r = A,
∂u

∂r
= 0 on r = B,

∂u

∂r
= 0 on r = A, u = 0 on r = B,

where {x ∈ R
n : A < r < B} is an annulus, r :=

√
x2

1 + . . . + x2
n,

n ≥ 1, and ∆pu := (div |∇u1|
p−2∇u1, . . . ,div |∇um|p−2∇um), h(r)f(u) :=

(h1(r)f1(u), . . . , hm(r)fm(u)), m ≥ 1, p > 1.

Throughout this paper, we make the following hypotheses:

(H1) q(t) = (q1(t), . . . , qm(t)), qj(t) := Lp[w(t)]p(n−1)/(p−1)hj(w(t)),
j = 1, . . . ,m, is a nonnegative measurable m-dimensional vector function
defined on [0, 1] and satisfies respectively
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0 <

1/2\
0

G
( 1/2\

s

qj(t) dt
)

ds +

1\
1/2

G
( s\

1/2

qj(t) dt
)

ds < ∞(1.3)a

or

0 <

1\
0

G
( 1\

s

qj(t) dt
)
ds < ∞(1.3)b

or

0 <

1\
0

G
( s\

0

qj(t) dt
)
ds < ∞(1.3)c

for j = 1, . . . ,m, where G(z) := |z|1/(p−1) sgn z is the inverse function to
g(y) := |y|p−2y for y, z ∈ R, and r = w(t) is the inverse function to

(1.4) t = v(r) :=
1

L

r\
A

ds

s(n−1)/(p−1)
, L :=

B\
A

ds

s(n−1)/(p−1)
.

(H2) f(u) = (f1(u), . . . , fm(u)) is a nonnegative continuous m-dimen-
sional vector function defined on R

m
+ , where R+ = [0,∞), and satisfying

either

(i) f0 = 0 and f∞ = ∞ (superlinear), or
(ii) f0 = ∞ and f∞ = 0 (sublinear), where

f0 := lim
|u|↓0

f(u)

|u|p−1
, f∞ := lim

|u|↑∞

f(u)

|u|p−1
.

Here and henceforth, we denote the norm of u ∈ R
m by |u| := max{|uj | :

j = 1, . . . ,m} and we write z > y (resp. z ≥ y) if z − y ∈ R̃
m
+ (resp.

z− y ∈ R
m
+ ), where R̃+ = (0,∞). Further, we say that a vector y is positive

(resp. nonnegative) if y > 0 (y ≥ 0).
The hypothesis (H1) allows q(t) ≡ 0 on some subintervals of [0, 1] and

allows a singularity at t = 0 and t = 1. For example,

qj(t) = t−αj (1 − t)−βj (|cos 2πt| + cos 2πt), j = 1, . . . ,m,

satisfies (1.3)a provided αj , βj ∈ (0, p).
If u = u(r) is a nonnegative radial solution to the problem (1.1)–(1.2),

then it satisfies the problem

(1.5) [rn−1g(u′(r))]′ + rn−1h(r)f(u(r)) = 0, A < r < B,

with respectively

(1.6)a u(A) = u(B) = 0

or

(1.6)b u(A) = u′(B) = 0
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or

(1.6)c u′(A) = u(B) = 0,

where [rn−1g(u′(r))]′ = ([rn−1g(u′
1(r))]

′, . . . , [rn−1g(u′
m(r))]′) and g(s) =

|s|p−2s for s ∈ R.

Let us introduce the change of variables r = w(t) and y(t) := u(w(t)),
where w(t) is determined by (H1). Then the problem (1.5)–(1.6) can be
written as

(1.7) [g(y′(t))]′ + q(t)f(y(t)) = 0, 0 < t < 1,

with respectively

(1.8)a y(0) = y(1) = 0

or

(1.8)b y(0) = y′(1) = 0

or

(1.8)c y′(0) = y(1) = 0,

where [g(y′(t))]′ = ([g(y′
1(t))]

′, . . . , [g(y′
m(t))]′). Conversely, if y(t) is a non-

negative solution to the problem (1.7)–(1.8), then u(r) := y(v(r)) is a non-
negative radial solution to the problem (1.1)–(1.2), where the function v(r)
is defined by (1.4). Therefore, we concentrate on the problem (1.7)–(1.8) in
the sequel.

We say that a function y(t) = (y1(t), . . . , ym(t)) is a nonnegative solution

to the problem (1.7)–(1.8) if it satisfies the following conditions:

(i) y(t) ∈ C([0, 1]; Rm
+ ) ∩ C1((0, 1); Rm),

(ii) y′(t) is locally absolutely continuous in (0, 1), or in (0, 1], or in [0, 1),

(iii) [g(y′(t))]′ = −q(t)f(y(t)) for a.e. t∈ [0, 1] and y(0) = y(1) or y(0)=
y′(1) or y′(0) = y(1) = 0.

It is clear that y(t) ≡ 0 is a trivial solution to the problem (1.7)–(1.8)
when f(0) = 0. Because of the physical background of the problem above,
we are mainly interested in nontrivial nonnegative solutions.

The main purpose of this paper is to extend and improve the existence
results of both [1] and [2]. The paper [1] only deals with the case of m = 1,
p = 2, and [2] only with the case when m = p = 2 and f(u) is sublinear (i.e.
f0 = ∞, f∞ = 0). In [2], some of the conditions on f(u) are superfluous.
For brevity, we do not cite other references.

The principal result of this paper is

Theorem 1. Let (H1) and (H2) hold. Then the problem (1.7)–(1.8) has

a nontrivial nonnegative solution y(t), i.e., the problem (1.1)–(1.2) has at
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least one nontrivial nonnegative radial solution on the annulus {x ∈ R
n :

A < r < B}.

The proof will be based on an application of the following fixed point
theorem due to Krasnosel’skĭı (which is quoted from [1]):

Theorem 2. Let E be a Banach space, and let K ⊂ E be a cone in E.

Assume Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

Φ : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) ‖Φy‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω2, or

(ii) ‖Φy‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω2 \ Ω1).

2. Some preliminary results. We only consider the problem (1.7)–
(1.8)a in this section, since the problems (1.7)–(1.8)b and (1.7)–(1.8)c can be
studied in a similar way. To prove the existence of solutions to (1.7)–(1.8)a ,
we consider the boundary value problem

(2.1)a

{
[g(w′(t))]′ = −q(t)f(y(t)), 0 < t < 1,
w(0) = w(1) = 0

for any y ∈ Ka, where Ka is the cone in E given by

Ka := {y ∈ E : yj is concave on [0, 1]

with yj(0) = yj(1) = 0, j = 1, . . . ,m},

while E is the Banach space of continuous m-dimensional vector functions
defined on [0, 1] with the norm

‖y‖ := max{‖yj‖ : j = 1, . . . ,m}, ‖yj‖ := max{|yj(t)| : 0 ≤ t ≤ 1}.

It follows that, for any y ∈ Ka, we have

(2.2) yj(t) ≥ ‖yj‖t(1 − t) on [0, 1], j = 1, . . . ,m.

Lemma 1. For each fixed y ∈ Ka, the boundary value problem (2.1)a has

a unique solution w ∈ Ka.

P r o o f. It is easy to prove the uniqueness. To prove the existence of
solutions, we define

(2.3) w(t) = (Φay)(t) = ((Φay)1(t), . . . , (Φay)m(t))
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where

(2.4) (Φay)j(t)) :=





t\
0

G
( σj\

s

qj(r)fj(y(r)) dr
)
ds, 0 ≤ t ≤ σj ,

1\
t

G
( s\

σj

qj(r)fj(y(r)) dr
)
ds, σj ≤ t ≤ 1,

for y ∈ Ka, j = 1, . . . ,m, where σj is a solution of the equation

z
(j)
0 (τ) :=

τ\
0

G
( τ\

s

qj(r)fj(y(r)) dr
)
ds(2.5)

=

1\
τ

G
( s\

τ

qj(r)fj(y(r)) dr
)
ds := z

(j)
1 (τ), 0 ≤ τ ≤ 1.

Obviously, for each j ∈ {1, . . . ,m} the above equation has a solution

σj ∈ (0, 1), since z
(j)
0 (τ) is a nondecreasing continuous function defined on

[0, 1] with z
(j)
0 (0) = 0 and z

(j)
1 (τ) is a nonincreasing continuous function

defined on [0, 1] with z
(j)
1 (1) = 0. Furthermore, if σj , δj ∈ (0, 1), δj > σj ,

are two solutions, then

qj(t)fj(y(t)) ≡ 0 for almost all t ∈ [σj , δj ],

which implies that wj(t) = (Φay)j(t) ≡ wj(σj) on [σj , δj ]. This shows that
w is well defined, and so is Φ.

From the definition of w and Φ for y ∈ Ka we have (j = 1, . . . ,m)

(i) w = Φy ∈ Ka, ‖wj‖ = wj(σj),

(ii) w′
j(t) =





G
(σj\

t

qj(r)fj(y(r)) dr
)
≥ 0, 0 < t ≤ σj ,

−G
( t\

σj

qj(r)fj(y(r)) dr
)
≤ 0, σj ≤ t < 1,

(iii) [g(w′
j(t))]

′ = −qj(t)fj(y(t)) a.e. in (0, 1), and wj(0) = wj(1).

This shows that w(t) is a solution to (2.1)a and a concave function defined
on [0, 1]. Now the lemma is proved.

By Lemma 1, we get

Lemma 2. Let P (t) be a solution to problem (2.1)a with f ≡ 1. Then

Pj(t) ≤ Pj(σ
∗
j ) (j = 1, . . . ,m) where σ∗

j is a solution of the equation

τ\
0

G
( τ\

s

qj(r) dr
)
ds =

1\
τ

G
( s\

τ

qj(r) dr
)
ds, j = 1, . . . ,m.
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Lemma 3. Let w(t) be a solution to problem (2.1)a with fj(y) ≤ Mp (j =
1, . . . ,m). Then w(t) ≤ MP (t), i.e., (Φy)(t) ≤ MP (t).

P r o o f. Let z(t)=w(t)−MP (t). If the lemma were not true, there would
exist a j ∈ {1, . . . ,m} and an interval (t1, t2) ⊂ (0, 1) such that zj(t) > 0 in
(t1, t2) and zj(t1) = zj(t2) = 0. Notice that

[g(w′
j(t))]

′ = −qj(t)fj(y(t)) ≥ −Mpqj(t) = [g(MP ′
j(t)]

′ a.e. in (t1, t2),

i.e., z′j(t) > 0 in (t1, t2). This implies that 0 = zj(t1) < zj(t2) = 0, which is
a contradiction. The lemma is proved.

Lemma 4. For any bounded and closed D ⊂ Ka, the set Φ(D) is equicon-

tinuous on [0, 1].

P r o o f. Let Mp = sup{fj(y) : y ∈ D, j = 1, . . . ,m}. For any ε > 0,
from the continuity of P (t) on [0, 1] and P (0) = P (1) = 0, it follows that
there is a δ1 ∈ (0, 1/4) such that

Pj(t) < ε/(2M) for t ∈ [0, 2δ1] ∪ [1 − 2δ1, 1], j = 1, . . . ,m.

By Lemma 3,

(Φy)j(t) ≤ MPj(t) < ε/2 for t ∈ [0, 2δ1] ∪ [1 − 2δ1, 1], j = 1, . . . ,m.

Let j ∈ {1, . . . ,m} be fixed. If (Φy)j(σj) < ε, then for any t1, t2 ∈ [0, 1],

|(Φy)j(t1) − (Φy)j(t2)| ≤ |(Φy)j(σj) − (Φy)j(0)| < ε.

If (Φy)j(σj) ≥ ε, then σj ∈ [2δ1, 1 − 2δ1] and hence for t ∈ [δ1, 1 − δ1],

|(Φy)′j(t)| =
∣∣∣G

( σj\
t

qj(r)fj(y(r)) dr
)∣∣∣ ≤ MG

( 1−δ1\
δ1

qj(r) dr
)
≤ L.

Put δ2 = ε/L. Then for t1, t2 ∈ [δ1, 1 − δ1] with |t1 − t2| < δ2 we have

|(Φw)j(t1) − (Φw)j(t2)| ≤ L|t1 − t2| < ε.

Set δ = min{δ1, δ2}. Then for t1, t2 ∈ [0, 1] with |t1 − t2| < δ it follows that

|(Φw)j(t1) − (Φw)j(t2)| < ε.

This shows that Φ(D) is equicontinuous on [0, 1].

Lemma 5. The mapping Φ restricted to Ka is continuous.

P r o o f. Assume that {y{k}}∞k=0 ⊂ Ka and y{k}(t) converges to y{0}(t)
uniformly on [0, 1]. By Lemmas 3 and 4, {Φy{k}(t)}∞k=1 is uniformly bounded
and equicontinuous on [0, 1]. By the Arzelà–Ascoli Theorem, there exist
uniformly convergent subsequences in {Φy{k}(t)}∞k=1. Let {Φy{k(i)}(t)}∞i=1

be a subsequence which converges to v(t) = (v1(t), . . . , vm(t)) uniformly
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on [0, 1] and {σ{k(i)}}∞i=1 converges to σ = (σ1, . . . , σm). Then there exists
an H > 0 such that

‖y{k(i)}‖ ≤ H,

and hence there exists an M > 0 such that fj(y
{k(i)}) ≤ Mp, j = 1, . . . ,m.

By Lemma 3 it follows that

‖Φy{k(i)}‖ ≤ M‖P‖.

Inserting y{k(i)} and σ{k(i)} = (σ
{k(i)}
1 , . . . , σ

{k(i)}
m ) into (2.4), (2.5) and then

letting i → ∞, for j = 1, . . . ,m we obtain

vj(t) =





t\
0

G
( σj\

s

qj(r)fj(y
(0)(r)) dr

)
ds, 0 ≤ t ≤ σj ,

1\
t

G
( s\

σj

qj(r)fj(y
(0)(r)) dr

)
ds, σj ≤ t ≤ 1,

and

vj(σj) =

σj\
0

G
( σj\

s

qj(r)fj(y
(0)(r)) dr

)
ds

=

1\
σj

G
( s\

σj

qj(r)fj(y
(0)(r)) dr

)
ds.

Here we have applied the Lebesgue Dominated Convergence Theorem, since
fj(y

{k(i)}) ≤ Mp for every j = 1, . . . ,m. From the definition of Φ, we
know that v(t) = (Φy{0})(t) on [0, 1]. This shows that each subsequence
of {Φy{k}(t)}∞k=1 uniformly converges to (Φy{0})(t) on [0, 1]. Therefore the

sequence {Φy{k}(t)}∞k=1 itself uniformly converges to (Φy{0})(t) on [0, 1].
This means that Φ is continuous at y{0} ∈ Ka. Therefore Φ is continuous
on Ka, since y{0} ∈ Ka is arbitrary.

Combining Lemmas 1–5 we have

Lemma 6. Φ : Ka → Ka is completely continuous.

3.Proof of Theorem 1. We begin by proving the existence of nontrivial
nonnegative solutions to the problem (1.7)–(1.8)a .

First suppose that f0 = 0 and f∞ = ∞. By the assumption (H2)(i), we
can choose a ̺1 > 0 such that

(3.1) fj(u) ≤ (ε|u|)p−1 whenever 0 ≤ |u| ≤ ̺1, j = 1, . . . ,m,

where ε > 0 satisfies the condition
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(3.2) 0 < ε

1/2\
0

G
( 1/2\

s

qj(t) dt
)
ds

+ ε

1\
1/2

G
( s\

1/2

qj(t) dt
)
ds < 1, j = 1, . . . ,m.

Thus, if y ∈ Ka with ‖y‖ = ̺1, then it follows from (3.1) and (3.2) that

‖wj‖ =

σj\
0

G
( σj\

s

qj(t)fj(y(t)) dt
)
ds =

1\
σj

G
( 1\

σj

qj(t)fj(y(t)) dt
)
ds

≤ ε‖y‖
[ 1/2\

0

G
( 1/2\

s

qj(t) dt
)
ds +

1\
1/2

G
( s\

1/2

qj(t) dt
)
ds

]

< ‖y‖ whenever either σj ≥ 1/2 or σj ≤ 1/2, j = 1, . . . ,m,

i.e.

‖Φay‖ < ‖y‖ ∀y ∈ Ka ∩ ∂Ω1,

where Ω1 := {y ∈ E : ‖y‖ < ̺1} and Φa and Ka are defined as in Section 2.
From (1.3)a, we know that there exists a δ ∈ (0, 1/4) such that

(3.3) min
{ 1/2\

δ

G
( 1/2\

s

qj(t) dt
)
ds

+

1−δ\
1/2

G
( s\

1/2

qj(t) dt
)
ds, j = 1, . . . ,m

}
> 0.

In the sequel, δ always satisfies (3.3).
We define a continuous and positive function on [δ, 1 − δ],

z(x) := min{zj(x) : j = 1, . . . ,m}, δ ≤ x ≤ 1 − δ,

where

zj(x) :=

x\
δ

G
( x\

s

qj(t) dt
)
ds +

1−δ\
x

G
( s\

x

qj(t) dt
)
ds.

Moreover, M > 0 is chosen so that

(3.4) δ2αM > 2, α := min{z(x) : δ ≤ x ≤ 1 − δ} > 0.

Further, since f∞ = ∞, there exists ̺2 > ̺1 such that

(3.5) fj(u) ≥ (M |u|)p−1 whenever |u| > δ2̺2, j = 1, . . . ,m,

where the constant M satisfies (3.4).
Let Ω2 := {y ∈ E : ‖y‖ < ̺2}. Then each y ∈ Ka with ‖y‖ = ̺2 satisfies

(3.6) yj(t) ≥ δ2̺2 on [δ, 1 − δ] for some j ∈ {1, . . . ,m}.
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Consequently, it follows from (3.3)–(3.6) that for each j ∈ {1, . . . ,m} satis-
fying (3.6) we have

2‖wj‖ ≥

σj\
δ

G
( σj\

s

qj(t)fj(y(t)) dt
)
ds +

1−δ\
σj

G
( s\

σj

qj(t)fj(y(t)) dt
)
ds

≥ δ2M̺2

{ σj\
δ

G
( σj\

s

qj(t) dt
)
ds +

1−δ\
σj

G
( s\

σj

qj(t) dt
)
ds}

≥ δ2M̺2α > 2̺2 = 2‖y‖ when σj ∈ [δ, 1 − δ],

‖wj‖ ≥

1−δ\
δ

G
( 1−δ\

s

qj(t)fj(y(t)) dt
)
ds

≥ δ2M̺2α > ̺2 = ‖y‖ when σj > 1 − δ,

‖wj‖ ≥

1−δ\
δ

G
( s\

δ

qj(t)fj(y(t)) dt
)
ds

≥ δ2M̺2α > ‖y‖ when σj < δ.

This shows that

‖Φay‖ ≥ ‖wj‖ > ‖y‖ ∀y ∈ Ka ∩ ∂Ω2.

Therefore, from the first part of Theorem 2, we conclude that Φa has a
fixed point y ∈ Ka ∩ (Ω2 \ Ω1). Since 0 < ̺1 ≤ ‖y‖ ≤ ̺2, we see that y(t)
is a nontrivial nonnegative solution to the problem (1.7)–(1.8)a .

Next consider f0 = ∞ and f∞ = 0. Since f0 = ∞, we may choose ̺1 > 0
such that

fj(u) ≥ (M |u|)p−1 whenever 0 ≤ |u| ≤ ̺1, j = 1, . . . ,m,

where the constant M satisfies (3.4). Thus, each y ∈ Ka with ‖y‖ = ̺1

satisfies

(3.7) yj(t) ≥ δ2̺1 on [δ, 1 − δ] for some j ∈ {1, . . . ,m}.

Then for each j ∈ {1, . . . ,m} satisfying (3.7), in the same way as above, we
can prove

‖Φay‖ ≥ ‖wj‖ > ‖y‖ ∀y ∈ Ka ∩ ∂Ω1,

where Ω1 := {y ∈ E : ‖y‖ < ̺1}.

Further, since f∞ = 0, there exists an N > ̺1 such that

fj(u) ≤

(
ε

2
|u|

)p−1

whenever |u| ≥ N, j = 1, . . . ,m,
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where the constant ε satisfies (3.2). Let

1

2
̺2 > N + max{fj(u) : 0 ≤ |u| ≤ N}

( 1/2\
0

G
( 1/2\

s

qj(t) dt
)
ds

+

1\
1/2

G
( s\

1/2

qj(t) dt
)
ds

)
for j = 1, . . . ,m.

Then for y ∈ Ka with ‖y‖ = ̺2, for each j ∈ {1, . . . ,m} we have

‖wj‖ =

σj\
0

G
( σj\

s

qj(t)fj(y(t)) dt
)
ds

≤

1/2\
0

G
( 1/2\

s

qj(t)fj(y(t)) dt
)
ds

< N + max{fj(u) : 0 ≤ |u| ≤ N}
( 1/2\

0

G
( 1/2\

s

qj(t) dt
)
ds

+
ε

2
‖y‖

1/2\
0

G
( 1/2\

s

qj(t) dt
)
ds

)

< 1
2̺2 + 1

2‖y‖ = ‖y‖ when σj ∈ (0, 1/2].

When σj ∈ [1/2, 1), in the same way as above we have

‖wj‖ < ‖y‖.

Hence we obtain

‖Φay‖ < ‖y‖ ∀y ∈ Ka ∩ ∂Ω2,

where Ω2 := {y ∈ E : ‖y‖ < ̺2}.

Therefore, by the second part of Theorem 2, it follows that Φa has a
fixed point y(t) in Ka∩ (Ω2 \Ω1), which is a nontrivial nonnegative solution
to the problem (1.7)–(1.8)a .

Finally, we consider the problems (1.7)–(1.8)b and (1.7)–(1.8)c . It is easy
to check that they are equivalent to the integral equation

yj(t) =

t\
0

G
( 1\

s

qj(r)fj(y(r)) dr
)
ds, j = 1, . . . ,m,

and

yj(t) =

1\
t

G
( s\

0

qj(r)fj(y(r)) dr
)
ds, j = 1, . . . ,m,

respectively, where y(t) = (y1(t), . . . , ym(t)).
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For the problem (1.7)–(1.8)b , let Kb be the cone given by

Kb = {y ∈ E : yj(t) is concave on [0, 1],

yj(0) = 0 is the minimum and yj(1) the maximum, j = 1, . . . ,m}.

For the problem (1.7)–(1.8)c , let Kc be the cone given by

Kc = {y ∈ E : yj(t) is concave on [0, 1],

yj(0) is the maximum and yj(1) = 0 the minimum, j = 1, . . . ,m}.

By the method above, Theorem 2 is employed to prove that (1.7)–(1.8)b
and (1.7)–(1.8)c have nontrivial nonnegative solutions. This completes the
proof of Theorem 1.
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Révisé le 25.5.1998


