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Abstract. We consider the existence of extremal solutions to second order discontin-
uous implicit ordinary differential equations with discontinuous implicit boundary condi-
tions in ordered Banach spaces. We also study the dependence of these solutions on the
data, and cases when the extremal solutions are obtained as limits of successive approx-
imations. Examples are given to demonstrate the applicability of the method developed
in this paper.

1. Introduction. Given a real interval I = [t0, t1] and a Banach space
E, consider the boundary value problem (BVP)

(1.1)

{
f(t, x(t), x′(t),−x′′(t)) = 0 a.e. on I,
Ci(x(t0), x(t1), x

′(t0), x
′(t1)) = 0, i = 0, 1,

where f : I×E3 → E and C0, C1 : E4 → E. These functions are assumed to
satisfy certain monotonicity conditions to be specified later, but they may
be discontinuous in all their arguments.

Implicit second order differential equations of the form appearing in (1.1)
with nonlinearity f : I×R

3 → R being continuous at least in its last variable,
and under standard linear or nonlinear but continuous boundary conditions,
have been studied by various authors (cf. e.g. [4, 5, 7, 9, 11, 13]). The main
approach to the implicit “continuous” differential equations as in (1.1) is
to first solve the equation f(t, x, p, z) = 0 for z. However, this approach

requires a global continuous solution z = F̂ (t, x, p) to be defined for all
(t, x, p) ∈ I × R

2, which can rarely be obtained.
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A second approach reduces the “continuous” implicit differential equa-
tion (1.1) to a differential inclusion of the form

(1.2) x′′(t) ∈ ϕ(t, x(t), x′(t)), t ∈ I

(cf. e.g. [5, 7, 9]). Existence results for differential inclusion problems have
been obtained by various authors (e.g. [2, 3, 4, 9, 10, 12]). However, in all
those papers the minimal assumption to treat an inclusion of the form (1.2)
is the lower semicontinuity of the multifunction ϕ or at least the existence
of a lower semicontinuous multiselection. Moreover, the assumptions on the
original nonlinearity f are rather implicit and hard to verify.

Due to the discontinuous nonlinearity f in our implicit differential equa-
tion (1.1) none of the existing theories can be applied, even in the case when
the functions f , C0 and C1 are real-valued. In fact, the authors are not aware
of any reference dealing with the discontinuous implicit nonlinear boundary
value problem of the form (1.1) in Banach spaces. On the other hand, it is
well known that continuity of the data does not guarantee the solvability of
differential equations in Banach spaces even in the explicit case. In the im-
plicit case regularity conditions alone do not imply the existence of solutions
for (1.1).

In this paper we develop a technique that provides existence and com-
parison results for the implicit boundary value problem (1.1) under explicit
and readily verifiable assumptions on the data. This technique is based on
the method of upper and lower solutions and a fixed point result in ordered
metric spaces, obtained by a generalized iteration method (cf. [6]). More-
over, in some special cases our method allows getting solutions as limits of
successive approximations, although the nonlinearities f , C0 and C1 may
be discontinuous in all their arguments. Examples are given to demonstrate
applications of the results obtained in this paper.

Throughout this paper we assume that

E is an ordered Banach space with regular order cone K, and the partial

ordering ≤ in E, induced by K, is defined as u ≤ v if and only if v−u ∈ K.

Regularity of K means (cf. [8], p. 36) that each order bounded and
monotone sequence of E has a limit.

A function x which belongs to the set

AC1(I,E) = {x : I → E | x′ is absolutely continuous and

a.e. differentiable on I}

is called a lower solution of (1.1) if{
f(t, x(t), x′(t),−x′′(t)) ≤ 0 a.e. on I,
Ci(x(t0), x(t1), x

′(t0), x
′(t1)) ≤ 0, i = 0, 1,

and an upper solution if the reversed inequalities hold. If the equalities hold,
we say that x is a solution of (1.1).
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For each function x ∈ AC1(I,E) we define x′′(t) = 0 at those points
t ∈ I where the second derivative of x does not exist.

We equip the space AC1(I,E) with the partial ordering � defined by

x � y iff x(t) ≤ y(t) on I, x′(t) ≤ y′(t) on I and(1.3)

x′′(t) ≥ y′′(t) a.e. on I.

If y, z ∈ AC1(I,E) and y � z, define [y, z] = {x ∈ AC1(I,E) | y � x � z}.

We say that a solution x∗ of (1.1) is the minimal solution of (1.1) in an
order interval [y, z] if y � x∗ � x for any other solution x ∈ [y, z] of (1.1),
and x∗ is the maximal solution if x � x∗ � z for any other solution x ∈ [y, z]
of (1.1). If (1.1) has both the maximal and the minimal solution in [y, z],
they are called the extremal solutions of (1.1) in [y, z].

We impose the following hypotheses on (1.1) and on the functions f :
I × E3 → E and C0, C1 : E4 → E:

(f0) There exist a lower solution y and an upper solution z of (1.1) such
that y � z.

(f1) There is µ : I×E3 → (0,∞) such that µ·f is strongly sup-measurable,
and the function w− (µ · f)(t, u, v, w) is nondecreasing in u, v and w
for a.e. t ∈ I.

(C) There is νi : E4 → (0,∞) such that ui − (νi · Ci)(u0, v0, v1, u1) is
nondecreasing in all its arguments for i = 0, 1.

Condition (f0) is necessary for the existence of a solution of (1.1), since
if x is a solution of (1.1), then (f0) holds when y = z = x. In Section 3 we
show that conditions (f0), (f1) and (C) are sufficient for the existence of the
extremal solutions of (1.1) in the order interval [y, z]. Before the proof we
derive some auxiliary results.

2. Auxiliaries. We shall first define an operator whose fixed points are
solutions of (1.1).

Lemma 2.1. Given f : I × E3 → E, C0, C1 : E4 → E, µ : I × E3 →
(0,∞), and ν0, ν1 : E4 → (0,∞), define

(2.1)

{
Fx(t) = −x′′(t) − (µ · f)(t, x(t), x′(t),−x′′(t)), t ∈ I,
Aix(ti) = x(i)(ti) − (νi · Ci)(x(t0), x(t1), x

′(t0), x
′(t1)), i = 0, 1.

Then x ∈ AC1(I,E) is a solution of (1.1) if and only if Fx is Bochner

integrable on I and x = Gx, where

Gx(t) = A0x(t0) + (t − t0)A1x(t1)(2.2)

+

t\
t0

(s − t0)Fx(s) ds + (t − t0)

t1\
t

Fx(s) ds.
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P r o o f. Assume first that Fx is Bochner integrable on I. From (2.2) it
follows by differentiation that

(2.3) (Gx)′(t) = A1x(t1) +

t1\
t

Fx(s) ds

for a.e. t ∈ I. The right-hand side of (2.3) is absolutely continuous and
its integral function is Gx, which implies that (2.3) holds for all t ∈ I. In
particular, (Gx)′ is absolutely continuous and a.e. differentiable on I. From
(2.3) it follows by differentiation that

(2.4) (Gx)′′(t) = −Fx(t) a.e. on I.

This and (2.1) imply that if x = Gx, then x satisfies the differential equation
of (1.1), and by (2.1)–(2.3) the boundary conditions of (1.1) also hold. Thus
x is a solution of (1.1).

Conversely, assume that x ∈ AC1(I,E) is a solution of (1.1). Then x′

is absolutely continuous and a.e. differentiable on I, so that x′′ is Bochner
integrable on I. Because −x′′(t) = Fx(t) a.e. on I, it follows that Fx is
Bochner integrable on I. Replacing Fx(s) on the right-hand side of (2.2) by
−x′′(s), calculating the integrals obtained and using (2.1) and the boundary
conditions of (1.1), one can show that the right-hand side of (2.2) equals x(t)
for each t ∈ I. Thus x = Gx.

Recall that since the order cone K of E is regular, there exists γ > 0
such that

(2.5) ‖u‖ ≤ γ‖v‖ whenever u, v ∈ K and u ≤ v.

This property is needed in the proof of the following lemma.

Lemma 2.2. Assume that the hypotheses (C), (f0) and (f1) are valid.

Then (2.1) and (2.2) define a nondecreasing mapping G : [y, z] → [y, z].

P r o o f. Let x ∈ [y, z]. Conditions (f0) and (f1) imply that the function
Fx given by (2.1) satisfies

(a) −y′′(t) ≤ Fy(t) ≤ Fx(t) ≤ Fz(t) ≤ −z′′(t) for a.e. t ∈ I.

From (a) and (2.5) it follows that

(2.6) ‖Fx(t)‖ ≤ (1 + γ)(‖y′′(t)‖ + ‖z′′(t)‖) for a.e. t ∈ I.

This and condition (f1) imply that Fx is Bochner integrable. Thus (2.1),
(2.2) define a mapping Gx ∈ AC1(I,E). From the definition of upper and
lower solutions it follows by routine calculations that

(b) y � Gy and Gz � z.

Assume next that x, x̂ ∈ [y, z] and x � x̂. By (1.3) this means that

(c) x(t) ≤ x̂(t) and x′(t) ≤ x̂′(t) on I, and x′′(t) ≥ x̂′′(t) a.e. on I.
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From (2.1) it follows by (c), (f1) and (C) that

(d)

{
Fx(t) ≤ Fx̂(t) for a.e. t ∈ I,
Aix(ti) ≤ Aix̂(ti), i = 0, 1.

In view of (2.2)–(2.4) and (d) we have

Gx(t) ≤ Gx̂(t) and (Gx)′(t) ≤ (Gx̂)′(t) on I,

and

(Gx)′′(t) ≥ (Ĝx)′′(t) a.e. on I.

This and (1.3) imply that Gx � Gx̂. Moreover, Gx ∈ AC1(I,E) for each
x ∈ [y, z].

(Hint: Equations in a proof marked by small letters, e.g. (a), (b), . . . ,
are referred to only in that proof, so that there will be no confusion if one
and the same label appears in different proofs.)

Define a norm ‖ · ‖012 in AC1(I,E) by

(2.7) ‖x‖012 = sup
t∈I

‖x(t)‖ + sup
t∈I

‖x′(t)‖ +

t1\
t0

‖x′′(t)‖ dt.

Lemma 2.3. Assume that the hypotheses (C), (f0) and (f1) hold. If

(xn)∞n=0 is a monotone sequence in [y, z], then (Gxn)∞n=0 converges in [y, z]
with respect to the norm ‖ · ‖012.

P r o o f. Let (xn)∞n=0 be a nondecreasing sequence in the order interval
[y, z] of (AC1(I,E),�). By Lemma 2.2 the sequence (Gxn)∞n=0 is nonde-
creasing and belongs to [y, z]. In view of (1.3) this means that the sequences
(Gxn(t))∞n=0, t ∈ I, are nondecreasing in the order interval [y(t), z(t)] of
(E,≤), the sequences ((Gxn)′(t))∞n=0, t ∈ I, are nondecreasing in [y′(t), z′(t)]
and the sequence ((−Gxn)′′(t))∞n=0 = (Fxn(t))∞n=0 is nondecreasing in
[−y′′(t),−z′′(t)] for a.e. t ∈ I. These results, (2.1) and (C) also imply
that the sequences (Aixn(ti))

∞

n=0 are nondecreasing in [Aiy(ti), Aiz(ti)] for
i = 0, 1. Since the order cone of E is regular, the following limits exist:

x(t) = lim
n→∞

Gxn(t), v(t) = lim
n→∞

(Gxn)′(t), t ∈ I,(a)

w(t) = lim
n→∞

(Gxn)′′(t) = lim
n→∞

−Fxn(t) for a.e. t ∈ I,(b)

ci = lim
n→∞

Aixn(ti), i = 0, 1.(c)

Because of (2.2) and (2.3) we have, for each t ∈ I,

Gxn(t) = A0xn(t0) + (t − t0)A1xn(t1)(d)

+

t\
t0

(s − t0)Fxn(s) ds + (t − t0)

t1\
t

Fxn(s) ds,
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and

(e) (Gxn)′(t) = A1xn(t1) +

t1\
t

Fxn(s) ds.

Applying the dominated convergence theorem we then obtain

x(t) = c0 + (t− t0)c1 +

t\
t0

(s− t0)(−w(s)) ds + (t− t0)

t1\
t

(−w(s)) ds, t ∈ I,

and

v(t) = c1 +

t1\
t

(−w(s)) ds, t ∈ I.

This implies that x ∈ AC1(I,E), x′(t) = v(t) on I, and x′′(t) = w(t) a.e.
on I. In view of (d), (e) and (2.6) the sequences (Gxn)∞n=0 and ((Gxn)′)∞n=0

are equicontinuous. From these facts and from (a) it follows that (Gxn)(t) →
x(t) and (Gxn)′(t) → x′(t) uniformly on I. The dominated convergence
theorem also implies that

lim
n→∞

t1\
t0

‖(Gxn)′′(t) − x′′(t)‖ dt = 0.

These results ensure that Gxn → x with respect to the norm ‖·‖012, defined
by (2.7).

The proof in the case when the sequence (xn)∞n=0 is nonincreasing is
similar.

As a special case of Theorem 1.2.2 of [6] we obtain the following result:

Lemma 2.4. Let [α, β] be a nonempty order interval in (AC1(I,E),�),
and assume that G : [α, β] → [α, β] is nondecreasing. If (Gxn)∞n=0 converges

in (AC1(I,E), ‖ · ‖0,1,2) whenever (xn)∞n=0 is a monotone sequence in [α, β],
then G has the least fixed point x∗ and the greatest fixed point x∗, and

(2.8) x∗ = min{w ∈ [α, β] | Gw � w}, x∗ = max{w ∈ [α, β] | w � Gw}.

3. Existence and comparison results

3.1. Existence results. Now we are ready to prove our main existence
result.

Theorem 3.1. If conditions (C), (f0) and (f1) are valid , then the BVP

(1.1) has the extremal solutions in [y, z].

P r o o f. Assume conditions (C), (f0) and (f1). Lemmas 2.2 and 2.3 ensure
that the hypotheses of Lemma 2.4 hold for the operator G defined by (2.1),
(2.2), and [α, β] = [y, z]. Thus G has the least fixed point x∗ and the greatest
fixed point x∗. In view of Lemma 2.1 this means that x∗ and x∗ are the
least and the greatest solutions of (1.1) in the order interval [y, z].
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Remark 3.1. The hypotheses of Theorem 3.1 allow the functions f , C0

and C1 in (1.1) to be discontinuous with respect to all their arguments.

Consider next the case when certain one-sided continuity hypotheses are
satisfied. Given a sequence (un) in E converging to u, write un ր u if (un)
is nondecreasing and un ց u if (un) is nonincreasing.

Proposition 3.1. If conditions (f0), (f1) and (C) hold , then the succes-

sive approximations

(3.1) xn = Gxn−1, n = 1, 2, . . . ,

where G is defined by (2.1), (2.2), converge in (AC1(I), ‖ · ‖012) to

(a) the minimal solution x∗ of the BVP (1.1) in [y, z] if x0 = y and if

(µ · f)(t, un, vn, wn) → (µ · f)(t, u, v, w) for a.e. t ∈ I and

(νi · Ci)(sn, un, vn, wn) → (νi · Ci)(s, u, v, w) for i = 0, 1

whenever sn ր s, un ր u, vn ր v and wn ր w;

(b) the maximal solution x∗ of the BVP (1.1) in [y, z] if x0 = z and if

(µ · f)(t, un, vn, wn) → (µ · f)(t, u, v, w) for a.e. t ∈ I and

(νi · Ci)(sn, un, vn, wn) → (νi · Ci)(s, u, v, w) for i = 0, 1

whenever sn ց s, un ց u, vn ց v and wn ց w.

P r o o f. (a) Choose x0 = y. From Lemma 2.2 it follows that (3.1) defines
a nondecreasing sequence (xn)∞n=0 in [y, z]. Since xn = Gxn−1, n = 1, 2, . . . ,
by Lemma 2.3 there exists x∗ ∈ [y, z] such that xn → x∗ in the norm ‖·‖012.
In particular,

xn(t) ր x∗(t) and x′

n(t) ր x′

∗
(t) uniformly on I, and(a)

x′′

n(t) ց x′′

∗
(t) a.e. on I.

From this and (2.1) it follows by the given continuity hypotheses that

lim
n→∞

Fxn(t) = Fx∗(t) for a.e. t ∈ I,

lim
n→∞

Aixn(ti) = Aix∗(ti) for i = 0, 1.

These relations, (a), (2.2) and the dominated convergence theorem imply
that

x∗(t) = lim
n→∞

xn+1(t) = lim
n→∞

Gxn(t) = Gx∗(t), t ∈ I.

Thus x∗ = Gx∗, so that x∗ is by Lemma 2.1 a solution of (1.1).
If x is any solution of (1.1) in [y, z], we know by Lemma 2.1 that x is

a fixed point of G, so that x0 = y � x = Gx. Since G is nondecreasing in
[y, z] by Lemma 2.2, it is then easy to see by induction that xn � x for each
n ∈ N, which implies, as n → ∞, that x∗ � x. This proves that x∗ is the
minimal solution of (1.1) in [y, z].

(b) The proof is similar to case (a).
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3.2. A comparison result. As for the dependence of the extremal solutions
of (1.1) on the functions f , C0 and C1 we have the following result.

Proposition 3.2. If conditions (C), (f0) and (f1) hold , then the ex-

tremal solutions of the BVP (1.1) are nonincreasing with respect to the

functions f , C0 and C1.

P r o o f. Assume that conditions (f0), (f1) and (C) are valid for the func-

tions f, f̂ : I × E3 → E and Ci, Ĉi : E4 → E. Assume also that

(a) f(t, u, v, w) ≥ f̂(t, u, v, w) for a.e. t ∈ I and all u, v,w ∈ E,

and that

(b) Ci(u0, v0, v1, u1) ≥ Ĉi(u0, v0, v1, u1), ui, vi ∈ E, i = 0, 1.

Thus the hypotheses of Theorem 3.1 also hold when f , C0 and C1 are re-
placed by f̂ , Ĉ0 and Ĉ1, respectively, so that the boundary value problems
(1.1) and

(3.2)

{
f̂(t, x(t), x′(t),−x′′(t)) = 0 a.e. on I,

Ĉi(x(t0), x(t1), x
′(t0), x

′(t1)) = 0, i = 0, 1,

have the minimal solutions x∗, x̂∗ and the maximal solutions x∗, x̂∗ in the
order interval [y, z]. In view of Lemma 2.1 we have

(c) x̂∗(t) = Ĝx̂∗(t), t ∈ I,

where

Ĝx(t) = Â0x(t0) + (t − t0)Â1x(t1)(3.3)

+

t\
t0

(s − t0)F̂ x(s) ds + (t − t0)

t1\
t

F̂ x(s) ds,

with

(3.4)

{
F̂ x(t) = −x′′(t) − (µ · f̂)(t, x(t), x′(t),−x′′(t)), t ∈ I,

Âix(ti) = x(i)(ti) − (νi · Ĉi)(x(t0), x(t1), x
′(t0), x

′(t1)), i = 0, 1.

From (a), (b), (2.1) and (3.4) it follows that
{

Fx̂∗(s) ≤ F̂ x̂∗(s) for a.e. s ∈ I,

Aix̂∗(ti) ≤ Âix̂∗(ti), i = 0, 1.

This, (2.2), (3.3), (3.4) and (c) imply that Gx̂∗ � x̂∗. Thus x̂∗ ∈ [y, z] and
Gx̂∗ � x̂∗, so that x∗ � x̂∗, by the first formula of (2.8).

Similarly, it can be shown, by applying the second formula of (2.8), that
x∗ � x̂∗.
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4. Special cases. In this section we consider

(4.1)

{
−x′′(t) = g(t, x(t), x′(t),−x′′(t)) a.e. on I,
x(i)(ti) = Di(x(t0), x(t1), x

′(t0), x
′(t1)), i = 0, 1,

where g : I×E3→K and D0,D1 : E4→K, i = 0, 1. We make the following
assumptions:

(g0) g is a strongly sup-measurable function, and there is p∈L1
+(I) such

that g(t, u, v, w)+p(t)w is nondecreasing in u, v and w for a.e. t ∈ I.

(g1) g(t, u, v, w) ≤ M(t)(u + v) + h(t) + λ(t)w for a.e. t ∈ I and for all
u, v,w ∈ K, where h : I → K is Bochner integrable, M/(1 − λ) ∈
L1

+(I), and

(4.2) max
t∈I

{ t\
t0

(s − t0)M(s)

1 − λ(s)
ds +

t1\
t

(t − t0)M(s)

1 − λ(s)
ds

}
+

t1\
t0

M(s)

1 − λ(s)
ds < 1.

(D0) There exist mi ≥ 0 such that Di(u0, v0, v1, u1) + miui are nonde-
creasing in u0, u1, v0 and v1 for i = 0, 1.

(D1) Di(u0, v0, v1, u1) ≤ diui + ci for u0, u1, v0, v1 ∈ K, where ci/(1− di)
∈ K, i = 0, 1.

Lemma 4.1. Assume that conditions (D1) and (g1) are valid. If x ∈
AC1(I,E) is a solution of the BVP (4.1), then x belongs to the order interval

[0, z], where z is the solution of the BVP

(4.3) −z′′(t) =
M(t)(z(t) + z′(t)) + h(t)

1 − λ(t)
, z(i)(ti) =

ci

1 − di
.

P r o o f. It is an elementary matter to show (cf. the proof of Lemma 2.1)
that z ∈ AC1(I,E) is a solution of (4.3) if and only if z is a solution of the
equation

(4.4) z(t) = z0(t) + Lz(t), t ∈ I,

where L : C1(I,E) → C1(I,E) and z0 ∈ C1(I,E) are defined by

Lx(t) =

t\
t0

(s − t0)M(s)

1 − λ(s)
(x(s) + x′(s)) ds(4.5)

+ (t − t0)

t1\
t

M(s)

1 − λ(s)
(x(s) + x′(s)) ds,

z0(t) =
c0

1 − d0
+

(t − t0)c1

1 − d1
(4.6)

+

t\
t0

(s − t0)
h(s)

1 − λ(s)
ds + (t − t0)

t1\
t

h(s)

1 − λ(s)
ds, t ∈ I.
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Since

(4.7) (Lx)′(t) =

t1\
t

M(s)(x(s) + x′(s))

1 − λ(s)
ds, t ∈ I,

condition (4.2) and equations (4.5) and (4.7) imply that, with respect to
the norm ‖x‖ = maxt∈I ‖x(t)‖ + maxt∈I ‖x

′(t)‖ of C1(I,E), the norm of
the linear operator L is less than one. Thus (4.4) and hence also (4.3) has
a unique solution z ∈ AC1(I,E). This solution and its derivative can be
obtained as the limits of the successive approximations

zn+1(t) = Lzn(t), z′n+1(t) = (Lzn)′(t), t ∈ I.

Since h is K-valued and since ci/(1 − di) ∈ K, i = 0, 1, it follows from (4.6)
that z0(t) ∈ K and z′0(t) ∈ K for all t ∈ I. But M/(1 − λ) ∈ L1

+(I), so from
(4.5) and (4.7) it follows that L is a positive operator with respect to the
partial ordering of C1(I,E) defined by

y ≤ z iff y(t) ≤ z(t) and y′(t) ≤ z′(t) for all t ∈ I.

Thus z(t) ∈ K and z′(t) ∈ K for all t ∈ I. This and (4.3) imply that
−z′′(t)∈K a.e. on I. The above proof shows that (4.3) has a unique solution
z ∈ AC1(I,E), and that 0 � z.

Assume that x ∈ AC1(I,E) is a solution of (4.1). Then x also satisfies
the integral equation

x(t) = x(t0) + (t − t0)x
′(t1) +

t\
t0

(s − t0)g(s, x(s), x′(s),−x′′(s)) ds(4.8)

+ (t − t0)

t1\
t

g(s, x(s), x′(s),−x′′(s)) ds, t ∈ I.

This implies by differentiation that

(4.9) x′(t) = x′(t1) +

t1\
t

g(s, x(s), x′(s),−x′′(s)) ds, t ∈ I.

Since g and Di, i = 0, 1, are K-valued, it follows from (4.1), (4.8) and (4.9)
that x(t) ∈ K and x′(t) ∈ K on I, and −x′′(t) ∈ K a.e. on I. Thus we can
apply condition (g1) to show that

−x′′(t) = g(t, x(t), x′(t),−x′′(t)) ≤ M(t)(x(t) + x′(t)) + h(t) + λ(t) (−x′′(t))

for a.e. t ∈ I, or equivalently,

−x′′(t) = g(t, x(t), x′(t),−x′′(t))(a)

≤
M(t)(x(t) + x′(t)) + h(t)

1 − λ(t)
for a.e. t ∈ I.
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From condition (D1) and (4.1) it follows that

x(i)(ti) = Di(x(t0), x(t1), x
′(t0), x

′(t1)) ≤ dix
(i)(ti) + ci, i = 0, 1,

so that

(b) x(i)(ti) ≤
ci

1 − di
= z(i)(ti), i = 0, 1.

The integral equations (4.8) and (4.9) and the inequalities (a) and (b) imply
that

x(t) ≤
c0

1 − d0
+

(t − t0)c1

1 − d1
+

t\
t0

(s − t0)
M(s)(x(s) + x′(s)) + h(s)

1 − λ(s)
ds

+ (t − t0)

t1\
t

M(s)(x(s) + x′(s)) + h(s)

1 − λ(s)
ds, t ∈ I,

and

(c) x′(t) ≤
c1

1 − d1
+

t1\
t

M(s)(x(s) + x′(s)) + h(s)

1 − λ(s)
ds, t ∈ I.

In particular, x and x′ satisfy the inequalities

x(t) ≤ z0(t) + Lx(t), x′(t) ≤ z′0(t) + (Lx)′(t), t ∈ I,

where L and z0 are defined by (4.5) and (4.6). On the other hand, z and
z′ are the solutions of the corresponding equalities. Since L is a positive
operator, it follows by the Abstract Gronwall Lemma (cf. [14], Prop. 7.15)
that x(t) ≤ z(t) and x′(t) ≤ z′(t) on I. In view of this and (a) we then have

−x′′(t) ≤
M(t)(z(t) + z′(t)) + h(t)

1 − λ(t)
= −z′′(t) for a.e. t ∈ I.

Thus {
x(t) ≤ z(t), x′(t) ≤ z′(t) on I,
−x′′(t) ≤ −z′′(t) for a.e. t ∈ I.

From these relations it follows by (1.3) that x � z. Moreover, since g and
Di, i = 0, 1, are K-valued, it follows from (4.1), (4.8) and (4.9) that 0 � x.
Thus x ∈ [0, z].

The next result is a consequence of Theorem 3.1, Proposition 3.2 and
Lemma 4.1.

Proposition 4.1. Assume that conditions (g0), (g1), (D0) and (D1)
hold. Then the BVP (4.1) has the extremal solutions x∗ and x∗ in the sense

that if x is a solution of (4.1), then x belongs to [x∗, x
∗]. Moreover , x∗ and

x∗ are nondecreasing with respect to g, D0 and D1.
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P r o o f. Let

(4.10)






f(t, u, v, w) = w − g(t, u, v, w),

µ(t, u, v, w) =
1

p(t) + 1
, t ∈ I, u, v, w ∈ E,

Ci(u0, v0, v1, u1) = ui − Di(u0, v0, v1, u1), ui, vi ∈ E, i = 0, 1,

νi(u0, v0, v1, u1) =
1

mi + 1
, ui, vi ∈ E, i = 0, 1.

Since

w − (µ · f)(t, u, v, w) =
g(t, u, v, w) + p(t)w

p(t) + 1
, t ∈ I, u, v, w ∈ E,

condition (g0) implies that condition (f1) is valid. From

ui−(νi ·Ci)(u0, v0, v1, u1) =
Di(u0, v0, v1, u1) + miui

1 + mi
, ui, vi ∈ E, i = 0, 1,

it follows by condition (D0) that (C) holds. We now show that the solution
z of (4.3) and 0 are upper and lower solutions of (1.1) with f , µ, Ci and νi

given by (4.10). Since z(t) ∈ K on I, z′(t) ∈ K on I and −z′′(t) ∈ K a.e.
on I, it follows from (4.3), (4.10) and (g1) that

f(t, z(t), z′(t),−z′′(t))

= −z′′(t) − g(t, z(t), z′(t),−z′′(t))

≥ −z′′(t) − M(t)(z(t) + z′(t)) − h(t) + λ(t)z′′(t)

= (1 − λ(t))

(
−z′′(t) −

M(t)(z(t) + z′(t)) + h(t)

1 − λ(t)

)
= 0

for a.e. t ∈ I. Since g is K-valued, we have

f(t, 0, 0, 0) = 0 − g(t, 0, 0, 0) ≤ 0, t ∈ I.

Thus

(a) f(t, 0, 0, 0) ≤ 0 and f(t, z(t), z′(t),−z′′(t)) ≥ 0 for a.e. t ∈ I.

In view of (D1), (4.3) and (4.10) we have, for i = 0, 1,

(b) Ci(z(t0), z(t1), z
′(t0), z

′(t1))

=
ci

1 − di
− Di(z(t0), z(t1), z

′(t0), z
′(t1)) ≥ 0.

Because D0 and D1 are K-valued, we have

(c) Ci(0, 0, 0, 0) = −Di(0, 0, 0, 0) ≤ 0, i = 0, 1.

From (a)–(c) it follows that 0 is a lower solution and z is an upper solution
of (1.1). Moreover, 0 ≤ z(t) on I, 0 ≤ z′(t) on I and 0 ≤ −z′′(t) a.e. on I.
Thus condition (f0) holds when y(t) ≡ 0 and z is the solution of (4.3).
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The above proof shows that all the hypotheses of Theorem 3.1 are valid,
so that (1.1), or equivalently (4.1), has the minimal solution x∗ and the
maximal solution x∗ in the order interval [0, z]. Since all the solutions x of
(4.1) belong by Lemma 4.1 to [0, z], it follows that x∗ is the least and x∗ is
the greatest solution of (4.1).

The last conclusion is a consequence of Proposition 3.2.

Remarks 4.1. (i) We would like to emphasize that the proof of Propo-
sition 4.1 shows that the class of functions f , µ, Ci and νi having properties
(f0), (f1) and (C) is wide. Namely, examples of such classes of functions are
defined by (4.10) combined with conditions (g0), (g1), (D0) and (D1).

(ii) Condition (4.2) can be weakened, for instance by assuming that the
operator T : C1(I,E) → C1(I,E) defined by

Tx(t) =

t\
t0

(s − t0)M(s)

1 − λ(s)
(x(s)+x′(s)) ds+(t−t0)

t1\
t

M(s)

1 − λ(s)
(x(s)+x′(s)) ds

satisfies ‖T‖n < 1 for some n ∈ N.

If M(t)/(1 − λ(t)) ≡ r ≥ 0, then (4.2) reduces to (r/2) · ((t1 − t0)
2 +

2(t1 − t0)) < 1. In particular, if E = R, one can prove the following result:

Proposition 4.2. Let g : I×R
3 → R and Di : R

4 → R, i = 0, 1, satisfy

the conditions

(g2) g is a Shragin function (cf. [1]) and there is p ∈ L1
+(I) such that

g(t, u, v, w) + p(t)w is nondecreasing in u, v and w for a.e. t ∈ I;

(g3) |g(t, u, v, w)| ≤ h(t) + M(t)(|u| + |v|) + λ(t)|w| for all u, v,w ∈ R

and for a.e. t ∈ I, where h,M, λ ∈ L1
+(I) and

∥∥∥∥
M

1 − λ

∥∥∥∥
∞

<
2

(t1 − t0)2 + 2(t1 − t0)
;

(D2) there exists mi ≥ 0 such that Di(u0, v0, v1, u1)+miui is nondecreas-

ing in u0, u1, v0 and v1 for i = 0, 1;

(D3) |Di(u0, v0, v1, u1)| ≤ di|ui| + ci for all u0, u1, v0, v1 ∈ R, where

ci/(1 − di) ≥ 0, i = 0, 1.

Then the BVP (4.1) has the extremal solutions x∗ and x∗, and all the solu-

tions of (4.1) belong to the order interval [−z, z], where z is the solution of

the BVP (4.3).

5. Convergence of successive approximations and examples. The
next result is an application of Proposition 3.1 to the special case considered
in Section 4. We use the following extra conditions:
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(A) g(t, un, vn, wn) → g(t, u, v, w) for a.e. t ∈ I and Di(sn, un, vn, wn) →
Di(s, u, v, w) for i = 0, 1 whenever sn ր s, un ր u, vn ր v and
wn ր w.

(B) g(t, un, vn, wn) → g(t, u, v, w) for a.e. t ∈ I and Di(sn, un, vn, wn) →
Di(s, u, v, w) for i = 0, 1 whenever sn ց s, un ց u, vn ց v and
wn ց w.

Proposition 5.1. If conditions (g0), (g1), (D0) and (D1) are valid ,
then the successive approximations

xn+1(t) = A0xn(t0) + (t − t0)A1xn(t1)(5.1)

+

t\
t0

(s − t0)Fxn(s) ds + (t − t0)

t1\
t

Fxn(s) ds,

with

(5.2) Fxn(t) =
g(t, xn(t), x′

n(t),−x′′

n(t)) − p(t)x′′

n(t)

1 + p(t)
, t ∈ I,

and

(5.3) Aixn(ti) =
Di(xn(t0), xn(t1), x

′

n(t0), x
′

n(t1)) + mix
(i)
n (ti)

1 + mi
, i ∈ 0, 1,

converge in AC1(I,E), with respect to the norm ‖ · ‖012 defined by (2.7), to

(a) the minimal solution x∗ of the BVP (4.1) if x0 = 0 and if (A) holds;
(b) the maximal solution x∗ of the BVP (4.1) if x0 = z, where z is the

solution of (4.3), and if (B) holds.

P r o o f. (a) The hypotheses of Proposition 3.1 hold when y = 0 and
when f , µ, Ci and νi, i = 0, 1, are given by (4.10). Then the successive
approximations (5.1) converge to the minimal solution of (4.1) in [0, z]. If x
is any solution of (4.1), then x ∈ [0, z], by Lemma 4.1. In view of the choices
(4.10) this proves (a).

(b) The proof is similar.

Remarks 5.1. If the assumptions that g and Di are K-valued are re-
placed by the assumptions that g(t, 0, 0, 0) ∈ K for a.e. t ∈ I and that
Di(0, 0, 0, 0) ∈ K, then the results of Sections 4 and 5 hold when one re-
stricts attention to the solutions of (4.1) which satisfy 0 � x.

If E = R and if the hypotheses (g2), (g3), (D2) and (D3) hold, then
the conclusions of Proposition 5.1 are valid when we choose in the case (a)
x0 = −z, where z is the solution of (4.3).

The results derived in Sections 2–5 are valid when E is

(a) a finite-dimensional ordered Banach space (cf. [6], Prop. 1.3.1),
(b) lp, 1 ≤ p < ∞, with componentwise ordering (cf. [6], Ex. 5.8.3),
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(c) an ordered Hilbert space with (x|y) ≥ 0 for all x, y ≥ 0 (cf. [6], Prop.
5.8.2),

(d) an ordered Banach space with uniformly monotone norm (cf. [6],
Prop. 5.8.1),

or one of the following function spaces:

(e) Lp(Ω,Z), 1 ≤ p < ∞, with a.e. pointwise ordering, where (Ω,A, µ)
is a measure space and Z is an ordered Banach space with regular order
cone (cf. [6], Prop. 5.8.7),

(f) Orlicz space LM (Ω), with a.e. pointwise ordering, where Ω is a bound-
ed domain in R

m, and M satisfies the ∆2-condition (cf. [8]),
(g) the space c0 of real sequences x = (xi)

∞

i=1 with limi xi = 0, equipped
with the norm ‖x‖ = supi |xi| and componentwise ordering (cf. [6], Ex.
5.8.1),

(h) the closure EM (Ω) of L∞(Ω) in LM (Ω), equipped with a.e. pointwise
ordering (cf. [8]).

For other examples of ordered Banach spaces with regular order cones,
see for instance [6], Ex. 5.8.4–5.8.6, Cor. 5.8.1–5.8.3 and Prop. 5.8.3.

Example 5.1. Define functions hi : I → R and qi : R → R, i = 1, 2, . . . ,
by

hi(t) =
1

2i

i∑

m=1

∞∑

k=1

2 + [k1/mt] − k1/mt

(km)2

(
2 + sin

(
1

1 + [k1/mt] − k1/mt

))

for t ∈ I, i = 1, 2, . . . , and

qi(s) =
1

2i

i∑

m=1

∞∑

k=1

π/2 + arctan([k1/ms])

(km)2
, s ∈ R, i = 1, 2, . . . ,

where [v] denotes the greatest integer ≤ v. By choosing E = l1, ordered by
the cone l1+ of those elements of l1 with nonnegative coordinates, consider
the BVP

(5.4)

{
−x′′(t) = g(t, x(t), x′(t),−x′′(t)) a.e. on I,
x(t0) = c0, x′(t1) = c1,

where c0, c1 ∈ l1+, the components of g = (g1, g2, . . .) being defined by

gi(t, u, v, w) = hi(t) + qi

( i∑

j=1

(uj + vj)
)

+
π/2 + arctan([−wi])

2i

for i = 1, 2, . . ., t ∈ I and u = (u1, u2, . . .), v = (v1, v2, . . .), w = (w1, w2, . . .)
∈ l1. It is easy to see that conditions (g0), (g1) and also (D0) and (D1)
hold when Di(u0, v0, v1, u1)≡ci, i = 0, 1. Thus by Proposition 4.1 the BVP
(5.4) has the extremal solutions x∗ and x∗. Since the function v 7→ [v] is
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right-continuous, it follows from Proposition 5.1 that x∗ is obtained as a
limit of successive approximations.

Example 5.2. Consider the BVP

(5.5)






−x′′(t) =
[x(t) − t2]

2 + 2|[x(t) − t2]|
+

[x′(t)]

2 + 2|[x′(t)]|
+

[−x′′(t)]

2 + 2|[−x′′(t)]|
a.e. on I,

x(t0) = c0, x′(t1) = c1.

From Proposition 4.2 it follows that (5.5) has the extremal solutions. By
Proposition 5.1 the maximal solution is obtained as a limit of successive
approximations. These approximations can be calculated by computer, and
afterwards one can in some special cases even infer the exact maximal so-
lution. For instance, the maximal solution of (5.5) when I = [0, 1], c0 = 0,
and c1 = 3/4, is

x(t) =






t

2
, 0 ≤ t <

1

2
,

t2

4
+

t

4
+

1

15
,

1

2
≤ t ≤ 1.

When I = [0, 1], c0 = −1 and c1 = 3/4, the maximal solution of (5.5) is

x(t) =






t2

4
+

3t

16
− 1, 0 ≤ t <

1

4
,

7

24
t2 +

t

6
+

383

384
,

1

4
≤ t ≤ 1.

In the case when when I = [0, 1] and ci = 1, i = 0, 1, the maximal solution
of (5.5) is

x(t) =
−t2

4
+

3

2
t + 1, t ∈ I.

Example 5.3. In our last example

(5.6)






−x′′(t) =
[x(t) − t2]

2
+

[x′(t)]

4
+

[−x′′(t)]

2
a.e. on I,

x(t0) =
x(t1)

2 + 2|[x(t1)]|
, x′(t1) =

4[x(t0) + 1]

1 + |[x(t0) + 1]|
,

also the boundary conditions are implicit. In view of Proposition 5.1(b) and
Remarks 5.1 the maximal solution of (5.6) can be obtained by a method of
successive approximations. When I = [0, 1/2], it is

x(t) =






−
t2

2
+

11

4
t +

13

32
, 0 ≤ t <

1

4
,

−t2 + 3t +
3

8
,

1

4
≤ t ≤

1

2
.

In the case when I = [1/2, 1], the maximal solution of (5.6) is

x(t) = −
t2

2
+ 3t − 1, t ∈ I.
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