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Uniqueness of meromorphic functions when two linear

differential polynomials share the same 1-points

by Indrajit Lahiri (Calcutta and Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving linear
differential polynomials generated by them. As consequences of the main result we improve
some previous results.

1. Introduction. Let f and g be two nonconstant meromorphic func-
tions defined in the open complex plane C. If for a ∈ C ∪ ∞, f − a and
g− a have the same set of zeros with the same multiplicities, we say that f
and g share the value a CM (counting multiplicities), and if we do not con-
sider the multiplicities, f and g are said to share the value a IM (ignoring
multiplicities). It is assumed that the reader is familiar with the standard
notations and definitions of value distribution theory (cf. [3]).

M. Ozawa [6] proved the following result:

Theorem A [6]. If two nonconstant entire functions f , g share the

value 1 CM with δ(0; f) > 0 and 0 being lacunary for g then either f ≡ g
or fg ≡ 1.

Improving the above result H. X. Yi [10] proved the following:

Theorem B [10]. Let f and g be two nonconstant meromorphic functions

satisfying δ(∞; f) = δ(∞; g) = 1. If f , g share the value 1 CM and δ(0; f)+
δ(0; g) > 1 then either f ≡ g or fg ≡ 1.

In [9] C. C. Yang asked: What can be said if two nonconstant entire
functions f and g share the value 0 CM and their first derivatives share the
value 1 CM?

As an attempt to solve this question K. Shibazaki [7] proved the follow-
ing:
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Theorem C [7]. Let f and g be two entire functions of finite order. If

f ′ and g′ share the value 1 CM with δ(0; f) > 0 and 0 being lacunary for g
then either f ≡ g or f ′g′ ≡ 1.

Improving Theorem C, H. X. Yi [13] obtained the following result:

Theorem D [13]. Let f and g be two entire functions such that f (n)

and g(n) share the value 1 CM. If δ(0; f) + δ(0; g) > 1 then either f ≡ g or

f (n)g(n) ≡ 1.

Considering meromorphic functions H. X. Yi and and C. C. Yang [15]
improved Theorem C as follows:

Theorem E [15]. Let f and g be two meromorphic functions satisfying

δ(∞; f) = δ(∞; g) = 1. If f ′ and g′ share the value 1 CM with δ(0; f) +
δ(0; g) > 1 then either f ≡ g or f ′g′ ≡ 1.

In [15] it is asked whether it is possible to replace the first derivatives
f ′, g′ in Theorem E by the nth derivatives f (n) and g(n).

In this direction the following two theorems can be noted.

Theorem F [13]. Let f and g be two meromorphic functions sharing the

value ∞ CM. If f (n) and g(n) share the value 1 CM with δ(0; f) + δ(0; g) +
(n+ 2)Θ(∞; f) > n+ 3 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem G [16]. Let f and g be two meromorphic functions such that

Θ(∞; f) = Θ(∞; g) = 1. If f (n) and g(n) share the value 1 CM and δ(0; f)+
δ(0; g) > 1 then either f ≡ g or f (n)g(n) ≡ 1.

So it is not irrelevant to ask: What can be said if two linear differential
polynomials generated by two meromorphic functions f and g share the
value 1 CM?

In the paper we answer this question. Also as a consequence of the main
theorem we prove a result which improves Theorem G and so some previous
results.

2. Definitions and notations. In this section we present some neces-
sary notations and definitions.

Notation 1. We denote by Ψ(D) a linear differential operator with
constant coefficients of the form Ψ(D) =

∑p

i=1 αiD
i, where D ≡ d/dz.

Definition 1. For a meromorphic function f and a positive integer k,
Nk(r, a; f) denotes the counting function of a-points of f where an a-point
with multiplicity m is counted m times if m ≤ k and k times if m > k.
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Definition 2 (cf. [1]). For a meromorphic function f we put

T0(r, f) =

r\
1

T (t, f)

t
dt,

N0(r, a; f) =

r\
1

N(t, a; f)

t
dt, N0

k (r, a; f) =

r\
1

Nk(t, a; f)

t
dt,

m0(r, f) =

r\
1

m(t, f)

t
dt, S0(r, f) =

r\
1

S(t, f)

t
dt etc.

Definition 3. If f is a meromorphic function, then

δk(a; f) = 1 − lim sup
r→∞

Nk(r, a; f)

T (r, f)
.

Clearly 0 ≤ δ(a; f) ≤ δk(a; f) ≤ δk−1(a; f) ≤ . . . ≤ δ2(a; f) ≤ δ1(a; f) =
Θ(a; f) ≤ 1.

Definition 4 (cf. [8]). For a meromorphic function f we put

δ0(a; f) = 1 − lim sup
r→∞

N0(r, a; f)

T0(r, f)
, Θ0(a; f) = 1 − lim sup

r→∞

N0(r, a; f)

T0(r, f)
,

δ0k(a; f) = 1 − lim sup
r→∞

N0
k (r, a; f)

T0(r, f)
where a ∈ C ∪∞.

3. Lemmas. In this section we discuss some lemmas which will be re-
quired in the sequel.

Lemma 1 [1]. For meromorphic f ,

lim
r→∞

S0(r, f)

T0(r, f)
= 0

through all values of r.

Lemma 2. Let f be a meromorphic function and a ∈ C ∪ ∞. Then

δ(a; f) ≤ δ0(a; f), Θ(a; f) ≤ Θ0(a; f) and δk(a; f) ≤ δ0k(a; f).

This lemma can be proved along the lines of [7, Proposition 6].

Lemma 3. Let f1, f2 be nonconstant meromorphic functions such that

af1 + bf2 ≡ 1, where a, b are nonzero constants. Then

T0(r, f1) ≤ N0(r, 0; f1) +N0(r, 0; f2) +N0(r,∞; f1) + S0(r, f1).

P r o o f. By the second fundamental theorem we get

T (r, f1) ≤ N(r, 0; f1) +N(r, a−1; f1) +N(r,∞; f2) + S(r, f1)

= N(r, 0; f1) +N(r, 0, f2) +N(r,∞; f1) + S(r, f1).

From this inequality the lemma follows on integration.
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Lemma 4 [4]. For a meromorphic function f and any a ∈ C,

N(r, 0;Ψ(D)f | f = a, ≥p) ≥ N(r, 0; f (p) | f = a, ≥p) + S(r, f),

where N(r, b; g | f = c, ≥k) is the counting function of those b-points of g,
counted with proper multiplicities, which are the c-points of f with multi-

plicities not less than k.

Lemma 5. Let f be a meromorphic function. Then

lim inf
r→∞

T0(r, Ψ(D)f)

T0(r, f)
≥

∑

a6=∞

δ0p(a; f),(i)

δ0(0;Ψ(D)f) ≥

∑

a6=∞ δ0(a; f)

1 + p(1 −Θ0(∞; f))
.(ii)

P r o o f. For distinct finite complex numbers a1, . . . , an we put

A =

n
∑

i=1

1

f − ai

.

Then by [3, inequality 2.1, p. 33] we get

n
∑

i=1

m(r, ai; f) ≤ m(r,A) +O(1)

≤ m(r, 0;Ψ(D)f) +m(r,AΨ(D)f)

≤ m(r, 0;Ψ(D)f) +
n

∑

i=1

m

(

r,
Ψ(D)f

f − ai

)

= m(r, 0;Ψ(D)f) +

n
∑

i=1

m

(

r,
Ψ(D)(f − ai)

f − ai

)

= m(r, 0;Ψ(D)f) + S(r, f),

by the Milloux theorem [3, p. 55], i.e.,

nT (r, f) ≤ T (r, Ψ(D)f) +

n
∑

i=1

N(r, ai; f) −N(r, 0;Ψ(D)f) + S(r, f)(1)

≤ T (r, Ψ(D)f)

+

n
∑

i=1

{N(r, ai; f) −N(r, 0;Ψ(D)f | f = ai, ≥p)}

+ S(r, f).
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So by Lemma 4 we get

nT (r, f) ≤ T (r, Ψ(D)f) +
n

∑

i=1

{N(r, ai; f) −N(r, 0; f (p) | f = ai, ≥p)}

+ S(r, f)

≤ T (r, Ψ(D)f) +

n
∑

i=1

Np(r, ai; f) + S(r, f).

This gives on integration

nT0(r, f) ≤ T0(r, Ψ(D)f) +
n

∑

i=1

N0
p (r, ai; f) + S0(r, f).

Hence by Lemma 1 we get

lim inf
r→∞

T0(r, Ψ(D)f)

T0(r, f)
≥

n
∑

i=1

δ0p(ai; f).

Since n is arbitrary, it follows that

lim inf
r→∞

T0(r, Ψ(D)f)

T0(r, f)
≥

∑

a6=∞

δ0p(a; f).

Again by the Milloux theorem,

T (r, Ψ(D)f) ≤ m

(

r,
Ψ(D)f

f

)

+m(r, f) +N(r, f)

+ pN(r, f) +O(1)

= T (r, f) + pN(r, f) + S(r, f).

This gives on integration

(2) T0(r, Ψ(D)f) ≤ T0(r, f) + pN0(r, f) + S0(r, f).

Also from (1) we get by integration

nT0(r, f) ≤ T0(r, Ψ(D)f) +
n

∑

i=1

N0(r, ai; f)

−N0(r, 0;Ψ(D)f) + S0(r, f).

So by (2) we obtain

n ≤

(

1 −
N0(r, 0;Ψ(D)f)

T0(r, Ψ(D)f)

)

·
T0(r, f) + pN0(r, f) + S0(r, f)

T0(r, f)

+

n
∑

i=1

N0(r, ai; f)

T0(r, f)
+
S0(r, f)

T0(r, f)
.
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In view of Lemma 1 this gives
n

∑

i=1

δ0(ai; f) ≤ δ0(0;Ψ(D)f){1 −Θ0(∞; f))},

from which (ii) follows because n is arbitrary. This proves the lemma.

Lemma 6 [11]. Let f1, f2, f3 be nonconstant meromorphic functions

satisfying f1 + f2 + f3 ≡ 1. If f1, f2, f3 are linearly independent then g1 =
−f2/f3, g2 = 1/f3 and g3 = −f1/f3 are also linearly independent.

Lemma 7. Let f1, f2, f3 be three linearly independent meromorphic func-

tions such that f1 + f2 + f3 ≡ 1. Then

T0(r, f1) ≤

3
∑

j=1

N0
2 (r, 0; fj) + max

1≤i 6=j≤3
{N0

2 (r,∞; fi) +N0(r,∞; fj)}

+ S0(r),

where S0(r) =
∑3

j=1 S0(r, fj).

P r o o f. We prove under the hypotheses of the lemma the following in-
equality which on integration proves the lemma:

T (r, f1) ≤

3
∑

j=1

N2(r, 0; fj) + max
1≤i 6=j≤3

{N2(r,∞; fi) +N(r,∞; fj)}(3)

+

3
∑

j=1

S(r, fj).

From the proof of a generalisation of Borel’s theorem by Nevanlinna (cf.
[2, p. 70]) we get

T (r, f1) ≤

3
∑

j=1

N(r, 0; fj) −N(r, 0;∆) +N(r,∆)(4)

−N(r, f2) −N(r, f3) + S(r),

where∆ is the wronskian determinant of f1, f2, f3 and S(r) =
∑3

j=1 S(r, fj).
Now we need the following notations from [5]: for z ∈ C and b ∈ C∪{∞}

we put

µb
f (z) =

{

m if z is a b-point of f with multiplicity m ≥ 1,
0 if z is not a b-point of f ,

µb
f (z) =

{

1 if z is a b-point of f with multiplicity ≥ 1,
0 if z is not a b-point of f ,

νb
f (z) =

{

2 if z is a b-point of f with multiplicity m > 2,
m if z is a b-point of f with multiplicity m ≤ 2.
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Also we put

µ(z) =

3
∑

j=1

µ0
fj

(z) − µ0
∆(z) + µ∞

∆ (z) − µ∞
f2

(z) − µ∞
f3

(z)

and

µ∗(z) =

3
∑

j=1

ν0
fj

(z) + max
1≤i 6=j≤3

{ν∞fi
(z) + µ∞

fj
(z)}.

Now (3) will follow from (4) if we can prove that for any z ∈ C, µ(z) ≤ µ∗(z).

We consider the following cases.

Case 1. Let z be not a pole of any fi (i = 1, 2, 3). Since any zero of fi

with multiplicity m > 2 is a zero of ∆ with multiplicity at least m − 2, it
follows that µ(z) ≤ µ∗(z).

Case 2. Let z be a pole of at least one of fi (i = 1, 2, 3). So the following
subcases come up for consideration.

Subcase 2.1. Let z be a zero of f1 with multiplicity m > 2 and a pole
of f2, f3 with multiplicity k ≥ 1. Then z is a pole of ∆ with multiplicity
k − m + 3 provided k − m + 3 > 0 and otherwise z is a zero of ∆ with
multiplicity m− k− 3. Hence µ(z) = 3− k and µ∗(z) ≥ 3. So µ(z) ≤ µ∗(z).

Let z be a zero of f1 with multiplicity m ≤ 2 and a pole of f2, f3 with
multiplicity k ≥ 1. Then z is a pole ∆ with multiplicity not exceeding k+2.
Hence µ(z) ≤ m+ k + 2 − k − k ≤ 4 − k and µ∗(z) ≥ 3. So µ(z) ≤ µ∗(z).

Subcase 2.2. Let z be a zero of f2 with multiplicity m > 2 and a pole
of f1, f3 with multiplicity k ≥ 1. Then z is a pole of ∆ with multiplicity
k − m + 3 provided k − m + 3 > 0 and otherwise z is a zero of ∆ with
multiplicity m− k − 3. Hence µ(z) = 3 and µ∗(z) ≥ 3. So µ(z) ≤ µ∗(z).

Let z be a zero of f2 with multiplicity m ≤ 2 and a pole of f1, f3 with
multiplicity k ≥ 1. Then z is a pole of ∆ with multiplicity not exceeding
k+2. Hence µ(z)≤m+k+2−k = m+2 and µ∗(z)≥m+2. So µ(z)≤µ∗(z).

Subcase 2.3. Let z be a zero of f3 with multiplicity m ≥ 1 and a pole
of f1, f2 with multiplicity k ≥ 1. Then as in Subcase 2.2 we can prove that
µ(z) ≤ µ∗(z).

Subcase 2.4. Let z be neither a zero nor a pole of f1. Since f2 + f3 =
1− f1, it follows that z is not a pole of f2 + f3. Since z is a pole of at least
one of fi (i = 1, 2, 3), it follows that z is a pole of f2 and f3 with the same
multiplicity m, say (because the singularities of f2 and f3 at z cancel each
other). Then z is a pole of ∆ with multiplicity not exceeding m+ 2. Hence
µ(z) ≤ m+ 2 −m−m ≤ 2 and µ∗(z) ≥ 2. So µ(z) ≤ µ∗(z).

Subcase 2.5. Let z be a pole of f1, f2 with multiplicity m ≥ 1 and a
pole of f3 with multiplicity q (1 ≤ q < m). Then z is a pole of ∆ with
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multiplicity not exceeding m+ q + 3. Hence µ(z) ≤ m+ q + 3 −m− q = 3
and µ∗(z) = 2 + 1 = 3. So µ(z) ≤ µ∗(z).

Subcase 2.6. Let z be a pole of f1, f2, f3 with multiplicity m ≥ 1.
Then there exist two functions φ,ψ analytic at z and φ(z) 6= 0, ψ(z) 6= 0
such that in some neighbourhood of z, f2(ω) = (ω − z)−mφ(ω) and f3(ω)
= (ω − z)−mψ(ω). Also ∆ = f ′

2f
′′
3 − f ′′

2 f
′
3 shows that z is a pole of ∆ with

multiplicity not exceeding 2m+ 3 but by actual calculation we see that the
coefficient of (ω − z)−(2m+3) in ∆ is m2(m + 1)φψ − m2(m + 1)φψ ≡ 0.
So z is a pole of ∆ with multiplicity not exceeding 2m + 2. Hence µ(z) ≤
2m+ 2 −m−m = 2 and µ∗(z) ≥ 2. So µ(z) ≤ µ∗(z).

Subcase 2.7. Let z be a pole of f1, f2 with multiplicity m ≥ 1 and
neither a zero nor a pole of f3. Then z is a pole of ∆ with multiplicity
not exceeding m + 2. Hence µ(z) ≤ m + 2 − m = 2 and µ∗(z) ≥ 2. So
µ(z) ≤ µ∗(z).

Subcase 2.8. Let z be a pole of f1 with multiplicity m≥1 and a pole of
f2 with multiplicity m+q (q≥1). Then z is also a pole of f3 with multiplicity
m+ q and the terms containing (w− z)−(m+i) (i = 1, . . . , q) of the Laurent
expansions of f2 and f3 about z cancel each other because f2 +f3 has a pole
at z with multiplicity m. Also we see that ∆ has a pole at z with multiplicity
not exceeding 2m+ q+ 3. Hence µ(z) ≤ 2m+ q+ 3−m− q−m− q = 3− q
and µ∗(z) = 2 + 1 = 3. So µ(z) ≤ µ∗(z).

Lemma 8. If
∑

a6=∞ δ0p(a; f) > 0 then

Θ0(∞;Ψ(D)f) ≥ 1 −
1 −Θ0(∞; f)
∑

a6=∞ δ0p(a; f)
.

P r o o f. Since N0(r, Ψ(D)f) = N0(r, f), the lemma follows from Lemma
5(i).

Lemma 9 [14]. Let F and G be two nonconstant meromorphic functions

such that F and G share 1 CM. If

lim sup
r→∞, r∈I

N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G)

T (r)
< 1,

where

T (r) = max{T (r, F ), T (r,G)}

and I is a set of r’s (0 < r <∞) of infinite linear measure, then F ≡ G or

FG ≡ 1.

4. Theorems. In this section we present the main results of the paper.

Theorem 1. Let f , g be two meromorphic functions such that
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(i) Ψ(D)f , Ψ(D)g are nonconstant and share 1 CM and

(ii)

∑

a6=∞ δ(a; f)

1 + p(1 −Θ(∞; f))
+

∑

a6=∞ δ(a; g)

1 + p(1 −Θ(∞; g))

> 1 +
4(1 −Θ(∞; f))
∑

a6=∞ δp(a; f)
+

4(1 −Θ(∞; g))
∑

a6=∞ δp(a; g)
,

where
∑

a6=∞ δp(a; f) > 0 and
∑

a6=∞ δp(a; g) > 0. Then either [Ψ(D)f ] ·
[Ψ(D)g] ≡ 1 or f − g ≡ s, where s is a solution of the differential equation

Ψ(D)w = 0.

Theorem 2. Let f , g be two meromorphic functions of finite order such

that

(i) Ψ(D)f , Ψ(D)g are nonconstant and share 1 CM and

(ii)

∑

a6=∞ δ(a; f)

1 + p(1 −Θ(∞; f))
+

∑

a6=∞ δ(a; g)

1 + p(1 −Θ(∞; g))

> 1 +
2(1 −Θ(∞; f))
∑

a6=∞ δp(a; f)
+

2(1 −Θ(∞; g))
∑

a6=∞ δp(a; g)
,

where
∑

a6=∞ δp(a; f) > 0 and
∑

a6=∞ δp(a; g) > 0. Then either [Ψ(D)f ] ·
[Ψ(D)g] ≡ 1 or f − g ≡ s, where s is a solution of the differential equation

Ψ(D)w = 0.

The following example shows that the theorems are sharp.

Example 1. Let f = 1
2
ez(ez−1), g = 1

2
e−z

(

1
2
− 1

5
e−z

)

and Ψ(D) = D2−
3D. Then

∑

a6=∞ δ(a; f) =
∑

a6=∞ δ(a; g) = 1/2, Θ(∞; f) = Θ(∞; g) = 1
and

∑

a6=∞ δ2(a; f) > 0,
∑

a6=∞ δ2(a; g) > 0. Also Ψ(D)f = ez(1 − ez) and

Ψ(D)g = e−z(1 − e−z) share 1 CM but neither [Ψ(D)f ] · [Ψ(D)g] ≡ 1 nor
f − g ≡ c1 + c2e

3z for any constants c1 and c2.

Proof of Theorem 1. Let F = Ψ(D)f and G = Ψ(D)g. Then in view of
Lemmas 2, 5 and 8 the condition (ii) implies

(5) δ0(0;F ) + δ0(0;G) + 4Θ0(∞;F ) + 4Θ0(∞;G) > 9.

We put

(6) H =
F − 1

G− 1
.

Since F , G share 1 CM, the poles and zeros of H occur only at the poles
of F and G respectively. Also N0(r,∞;H) ≤ N0(r,∞;F ) and N0(r, 0;H) ≤
N0(r,∞;G).

Let F1 = F , F2 = −GH and F3 = H. Then from (6) it follows that

(7) F1 + F2 + F3 ≡ 1.
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First we suppose that F3 = H ≡ k, a constant. Then from (7) we get
F − kG = 1 − k. If k 6= 1, we see that

1

1 − k
F −

k

1 − k
G ≡ 1.

Since k 6= 0, from Lemma 3 it follows that

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F ) + S0(r, F ),

T0(r,G) ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;G) + S0(r,G).

So

max{T0(r, F ), T0(r,G)} ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F )

+N0(r,∞;G) + o(max{T0(r, F ), T0(r,G)}).

This gives δ0(0;F ) + δ0(0;G) + Θ0(∞;F ) + Θ0(∞;G) ≤ 3 and so from
(5) we see that 9 < 3Θ0(∞;F ) + 3Θ0(∞;G) + 3 ≤ 9, a contradiction. So
k = 1 and hence F ≡ G. Therefore Ψ(D)(f − g)≡0 and so f − g ≡ s, where
s = s(z) is a solution of Ψ(D)w = 0.

Similarly if F2 ≡ k, a constant, we can show that [Ψ(D)f ] · [Ψ(D)g] ≡ 1.

Now we suppose that F1, F2 and F3 are nonconstant. If possible, let
F1, F2, F3 be linearly independent. Then from Lemma 7 we get

T0(r, F ) ≤ N0
2 (r, 0;F ) +N0

2 (r, 0;G) + 2N0
2 (r, 0;H)(8)

+ max
1≤i 6=j≤3

{N0
2 (r,∞;Fi) +N0(r,∞;Fj)} +

3
∑

j=1

S0(r, Fj)

≤ N0(r, 0;F ) +N0(r, 0;G) + 4N0(r,∞;G)

+ max
1≤16=j≤3

{N0
2 (r,∞;Fi) +N0(r,∞;Fj )} +

3
∑

j=1

S0(r, Fj).

Now in view of (6) we see that

3
∑

j=1

S0(r, Fj) = o(max{T0(r, F ), T0(r,G)})

and

N0
2 (r,∞;F1) +N0(r,∞;F2) = N0

2 (r,∞;F ) +N0(r,∞;H(G − 1))

= N0
2 (r,∞;F ) +N0(r,∞;F ) ≤ 3N0(r,∞;F ),

N0
2 (r,∞;F2) +N0(r,∞;F3) = N0

2 (r,∞;H(G − 1)) +N0(r,∞;H)

≤ N0
2 (r,∞;F ) +N0(r,∞;F ) ≤ 3N0(r,∞;F ),

N0
2 (r,∞;F3) +N0(r,∞;F1) = N0

2 (r,∞;H) +N0
2 (r,∞;F )

≤ 2N0(r,∞;H) +N0(r,∞;F ) ≤ 3N0(r,∞;F )
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and similarly for the other three terms. So from (8) we get

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;G) + 3N0(r,∞;F )(9)

+ 4N0(r,∞;G) + o(max{T0(r, F ), T0(r,G)}).

Now we put G1 = −F2/F3 = G, G2 = 1/F3 = 1/H and G3 = −F1/F3 =
−F/H. Then by Lemma 6, G1, G2, G3 are linearly independent and so
proceeding as above we get

T0(r,G) ≤ N0(r, 0;F ) +N0(r, 0;G) + 3N0(r,∞;G)(10)

+ 4N0(r,∞;F ) + o(max{T0(r, F ), T0(r,G)}).

From (9) and (10) we get

max{T0(r, F ), T0(r,G)} ≤ (10 − δ0(0;F ) − δ0(0;G) − 4Θ0(∞;F )

− 4Θ0(∞;G) + o(1))max{T0(r, F ), T0(r,G)}

< (1 − ε+ o(1))max{T0(r, F ), T0(r,G)},

which is a contradiction, where by (5) we choose

0 < ε < δ0(0;F ) + δ0(0;G) + 4Θ0(∞;F ) + 4Θ0(∞;G) − 9.

Hence there exist constants c1, c2, c3, not all zero, such that

(11) c1F1 + c2F2 + c3F3 ≡ 0.

Clearly c1 6= 0. For, otherwise from (11) we get H(c3 − c2G) ≡ 0, which is
impossible because F and G are nonconstant.

Now eliminating F1 from (7) and (11) we get

(12) cF2 + dF3 ≡ 1,

where c = 1 − c2/c1 and d = 1 − c3/c1.
If possible let cd 6= 0. Then from (12) we get (c/d)(G)+1/(dH) ≡ 1. So

by Lemma 3 we get

T0(r,G) ≤ N0(r, 0;G) +N0(r,∞;H) +N0(r,∞;G) + S0(r,G),

i.e.

(13) T0(r,G) ≤ N0(r, 0;G) +N0(r,∞;F ) +N0(r,∞;G) + S0(r,G).

By the second fundamental theorem we get on integration

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 1;F ) +N0(r,∞;F ) + S0(r;F )

= N0(r, 0;F ) +N0(r, 1;G) +N0(r,∞;F ) + S0(r, F )

≤ N0(r, 0;F ) + T0(r,G) +N0(r,∞;F ) + S0(r, F ).

So by (13) we obtain

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;G) + 2N0(r,∞;F )(14)

+N0(r,∞;G) + S0(r, F ) + S0(r,G).
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From (13) and (14) we get

max{T0(r, F ), T0(r,G)} ≤ N0(r, 0;F ) +N0(r, 0;G) + 2N0(r,∞;F )

+N0(r,∞;G) + o(max{T0(r, F ), T0(r,G)})

and so δ0(0;F ) + δ0(0;G) + 2Θ0(∞;F ) +Θ0(∞;G) ≤ 4.
Now by (5) we see that

9 < δ0(0;F ) + δ0(0;G) + 4Θ0(∞;F ) + 4Θ0(∞;G)

≤ 4 + 2Θ0(∞;F ) + 3Θ0(∞;G) ≤ 9,

which is a contradiction. Therefore cd = 0. From (12) we see that c and d
are not simultaneously zero. So we consider the following cases.

Case I. Let d = 0. Then from (12) we get −cF + 1/G ≡ 1− c. If c 6= 1,
we obtain (−c/(1− c))F + 1/((1− c)G) ≡ 1. So by Lemma 3 it follows that

T0(r, F ) ≤ N0(r, 0;F ) +N0(r,∞;G) +N0(r,∞;F ) + S0(r, F )

and

T0(r,G) = T0(r, 1/G) + S0(r,G)

≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;G) + S0(r,G).

Hence

max{T0(r, F ), T0(r,G)} ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F )

+N0(r,∞;G) + o(max{T0(r, F ), T0(r,G)}),

and so δ0(0;F ) + δ0(0;G) +Θ0(∞;F ) +Θ0(∞;G) ≤ 3.
From (5) we see that

9 < δ0(0;F ) + δ0(0;G) + 4Θ0(∞;F ) + 4Θ0(∞;G)

≤ 3 + 3Θ0(∞;F ) + 3Θ0(∞;G) ≤ 9,

which is a contradiction. Therefore c = 1 and so FG ≡ 1, i.e., [Ψ(D)f ] ·
[Ψ(D)g] ≡ 1.

Case II. Let c = 0. Then from (12) we get dF −G ≡ d− 1. If d 6= 1 it
follows that (d/(d − 1))F − (1/(d − 1))G ≡ 1. Now by Lemma 3 we obtain

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F ) + S0(r, F ),

T0(r,G) ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;G) + S0(r,G).

So we get

max{T0(r, F ), T0(r,G)} ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F )

+N0(r,∞;G) + o(max{T0(r, F ), T0(r,G)})

and as in Case I this leads to a contradiction. So d = 1 and hence F ≡ G,
i.e., Ψ(D)(f − g) ≡ 0. Therefore f − g ≡ s where s = s(z) is a solution of
Ψ(D)w = 0. This proves the theorem.
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Proof of Theorem 2. If f and g are of finite order, we can prove along
the lines of Lemmas 5 and 8 that

δ(0;Ψ(D)f) ≥

∑

a6=∞ δ(a; f)

1 + p(1 −Θ(∞; f))
, Θ(∞;Ψ(D)f) ≥ 1 −

1 −Θ(∞; f)
∑

a6=∞ δp(a; f)
,

and the corresponding results for g. Let F = Ψ(D)f and G = Ψ(D)g. Then
by the condition (ii) of the theorem we get

δ(0;F ) + δ(0;G) + 2Θ(∞;F ) + 2Θ(∞;G) > 5.

This implies

lim sup
r→∞

N(r, 0;F )

T (r, F )
+ lim sup

r→∞

N(r, 0;G)

T (r,G)

+ 2 lim sup
r→∞

N(r,∞;F )

T (r, F )
+ 2 lim sup

r→∞

N(r,∞;G)

T (r,G)
< 1,

i.e.,

lim sup
r→∞

N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

max{T (r, F ), T (r,G)}
< 1

and so by Lemma 9 the theorem follows.

Considering f = −2−ne2z+ez, g(z) = −(−1)n2−ne−2z+(−1)ne−z where
n is a positive integer, Yi and Yang [16] claimed that for n ≥ 1 the condition
δ(0; f)+ δ(0; g) > 1 of Theorem G is necessary. In the following example we
see that this claim is not justified.

Example 2. Let f = ez − 1 and g = 1 + (−1)ne−z. Then δ(0; f) =
δ(0; g) = 0 and f (n), g(n) share 1 CM. Also f (n)g(n) ≡ 1.

In the first corollary we improve Theorem G for n ≥ 1.

Corollary 1. Let f , g be two meromorphic function with Θ(∞; f) =
Θ(∞; g) = 1. If for n ≥ 1 the derivatives f (n) and g(n) are nonconstant and

share 1 CM with

(i)
∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) > 1,

(ii) Θ(0; f) +Θ(0; g) > 1,

then either (a) f (n)g(n) ≡ 1 or (b) f ≡ g.

P r o o f. Choosing Ψ(D) = Dn, from Theorem 1 it follows that either
f (n)g(n) ≡ 1 or f − g ≡ Q, where Q is a polynomial of degree at most n− 1.
If possible, let Q 6≡ 0. Then from [3, Theorem 2.5, p. 47] it follows that

T (r, f) ≤ N(r, 0; f) +N(r,Q; f) +N(r,∞; f) + S(r, f)

= N(r, 0; f) +N(r, 0; g) +N(r,∞; f) + S(r, f).
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Since f − g ≡ Q, it follows that T (r, f) = T (r, g) + O(log r). So we get
Θ(0; f)+Θ(0; g) ≤ 1, which is a contradiction. Therefore Q≡0 and so f≡g.

The following examples show that the condition Θ(0; f) +Θ(0; g) > 1 is
necessary for the validity of case (b).

Example 3. Let f = ez + 1 and g = ez. Then Θ(0; f) = 0, Θ(0; g) = 1,
∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) = 2, Θ(∞; f) = Θ(∞; g) = 1 and f (n), g(n)

share 1 CM but f − g ≡ 1.

Example 4. Let f = ez + 1 and g = (−1)ne−z. Then Θ(0; f) = 0,
Θ(0; g) = 1,

∑

a6=∞ δ(a; f)+
∑

a6=∞ δ(a; g) = 2, Θ(∞; f) = Θ(∞; g) = 1 and

f (n), g(n) share 1 CM but f (n)g(n) ≡ 1.

Answering the question of C. C. Yang [9], mentioned in the introduction,
H. X. Yi [12] proved the following theorem.

Theorem H [12]. Let f and g be two nonconstant entire functions. As-

sume that f , g share 0 CM and f (n), g(n) share 1 CM , where n is a non-

negative integer. If δ(0; f) > 1/2 then either f ≡ g or f (n)g(n) ≡ 1.

Considering f = −2−ne2z + (−1)n+12−nez and g = (−1)n+12−ne−2z −
2−ne−z, Yi [12] claimed that the condition δ(0; f) > 1/2 is necessary. The
following example shows that for n ≥ 1 this is not always the case.

Example 5. Let f = ez − 1 nad g = (−1)n+1 + (−1)ne−z. Then f , g
share 0 CM and f (n), g(n) (n ≥ 1) share 1 CM, δ(0; f) = 0 but f (n)g(n) ≡ 1.

In the following corollary we provide an answer to a question of Yang [9].

Corollary 2. Let f and g be two meromorphic functions with Θ(∞; f)
= Θ(∞; g) = 1. Suppose that f (n), g(n) (n ≥ 1) share 1 CM and f, g share

a value b (6= ∞) IM. If
∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) > 1 then either f ≡ g

or f (n)g(n) ≡ 1.

P r o o f. The condition
∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) > 1 implies that

f and g are transcendental so that f (n), g(n) are nonconstant. Choosing
Ψ(D) = Dn we see from Theorem 1 that either f (n)g(n) ≡ 1 or f − g ≡ Q,
where Q is a polynomial. Now we consider the case f − g ≡ Q. If possible,
let Q 6≡ 0. Also we suppose that f has at most a finite number of b-points
and so g also has a finite number of b-points. Now by [3, Theorem 2.5, p. 47]
it follows that

T (r, f) ≤ N(r, b; f) +N(r, b+Q; f) +N(r,∞; f) + S(r, f)

= N(r, b; f) +N(r, b; g) + S(r, f) = O(log r) + S(r, f),

which is a contradiction. Therefore f has infinitely many b-points and so
f − g has infinitely many zeros. This again implies a contradiction because
f − g ≡ Q and Q 6≡ 0. So Q ≡ 0 and hence f ≡ g.
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Considering f = −2−ne2z + (−1)n+12−nez and g = (−1)n+12−ne−2z −
2−ne−z we can verify that the condition

∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) > 1
of Corollary 2 is necessary.

Corollary 3. Let Ψ(D) = D(D−λ1)(D−λ2) . . . (D−λp−1) where λi’s

are nonzero pairwise distinct complex numbers. Also suppose that f and g
are two meromorphic functions with the following properties:

(i) Ψ(D)f , Ψ(D)g are nonconstant and share 1 CM ,
(ii)

∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) > 1 and Θ(∞; f) = Θ(∞; g) = 1,
(iii) f and g have b-points (b 6= ∞) with multiplicities not less than p+1

at the origin.

Then f ≡ g.

P r o o f. From the theorem we get either [Ψ(D)f ] · [Ψ(D)g] ≡ 1 or f−g ≡
c0 + c1e

λ1z + c2e
λ2z + . . .+ cp−1e

λp−1z where ci’s are constants. Since f has
a b-point with multiplicity at least p+1 at the origin, it follows that Ψ(D)f
has at least a simple zero at the origin. Similarly Ψ(D)g has at least a
simple zero at the origin. So the case [Ψ(D)f ] · [Ψ(D)g] ≡ 1 does not occur.
If possible, let f 6≡ g. Then the constants c0, c1, . . . , cp−1 are not all zero.
Also by condition (iii) it follows that f − g has a zero at the origin with
multiplicity at least p+ 1. This implies that

p−1
∑

i=0

ci = 0,

p−1
∑

i=0

λici = 0,

p−1
∑

i=0

λ2
i ci = 0, . . . ,

p−1
∑

i=0

λp
i ci = 0.

This system of equations gives c0 = c1 = c2 = . . . = cp−1 = 0, which is a
contradiction. Therefore f ≡ g. This proves the corollary.

The following examples show that condition (iii) of Corollary 3 is neces-
sary.

Example 6. Let f = ez3

, g = ez3

+ 1 and Ψ(D) = D(D − 1). Then
Ψ(D)f , Ψ(D)g share 1 CM,

∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) = 2, Θ(∞; f) =
Θ(∞; g) = 1 and f−1, g−2 have zeros with multiplicity three at the origin,
but f 6≡ g.

Example 7. Let f = ez − 1, g = 1 − e−z and Ψ(D) = D. Then Ψ(D)f ,
Ψ(D)g share 1 CM,

∑

a6=∞ δ(a; f) +
∑

a6=∞ δ(a; g) = 2, Θ(∞; f) = Θ(∞; g)
= 1 and f , g have simple zeros at the origin, but f 6≡ g.

Let us conclude the paper with the following question: What can be
said if two nonlinear differential polynomials generated by two meromorphic
functions share 1 CM?
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