ANNALES
POLONICI MATHEMATICI
LXXI.2 (1999)

Uniqueness of meromorphic functions when two linear
differential polynomials share the same 1-points

by INDRAJIT LAHIRI (Calcutta and Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving linear
differential polynomials generated by them. As consequences of the main result we improve
some previous results.

1. Introduction. Let f and g be two nonconstant meromorphic func-
tions defined in the open complex plane C. If for a € CU oo, f — a and
g — a have the same set of zeros with the same multiplicities, we say that f
and g share the value a CM (counting multiplicities), and if we do not con-
sider the multiplicities, f and g are said to share the value a IM (ignoring
multiplicities). It is assumed that the reader is familiar with the standard
notations and definitions of value distribution theory (cf. [3]).

M. Ozawa [6] proved the following result:

THEOREM A [6]. If two monconstant entire functions f, g share the
value 1 CM with 6(0; f) > 0 and 0 being lacunary for g then either f = g

or fg=1.
Improving the above result H. X. Yi [10] proved the following:

THEOREM B [10]. Let f and g be two nonconstant meromorphic functions
satisfying 0(o0; f) = d(o0;9) = 1. If f, g share the value 1 CM and 6(0; )+
5(0;g9) > 1 then either f =g or fg = 1.

In [9] C. C. Yang asked: What can be said if two nonconstant entire
functions f and g share the value 0 CM and their first derivatives share the

value 1 CM?

As an attempt to solve this question K. Shibazaki [7] proved the follow-
ing:
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THEOREM C [7]. Let f and g be two entire functions of finite order. If
f" and g' share the value 1 CM with §(0; f) > 0 and 0 being lacunary for g
then either f =g or f'g =

Improving Theorem C, H. X. Yi [13] obtained the following result:

THEOREM D [13]. Let f and g be two entire functions such that f™
and g™ share the value 1 CM. If §(0; f) 4 6(0; g) > 1 then either f = g or
Fgn) =1,

Considering meromorphic functions H. X. Yi and and C. C. Yang [15]
improved Theorem C as follows:

THEOREM E [15]. Let f and g be two meromorphic functions satisfying
d(oo; f) = d(o0;9) = 1. If f' and ¢’ share the value 1 CM with 6(0; f) +
5(0;g) > 1 then either f =g or f'g’ = 1.

In [15] it is asked whether it is possible to replace the first derivatives
f’, ¢ in Theorem E by the nth derivatives (™ and ¢(™).
In this direction the following two theorems can be noted.

THEOREM F [13]. Let f and g be two meromorphic functions sharing the
value oo CM. If f™) and g™ share the value 1 CM with §(0; f) + 6(0; g) +
(n +2)0(oc0; f) > n + 3 then either f = g or fMg™ =1,

THEOREM G [16]. Let f and g be two meromorphic functions such that
O(o0; f) = O(o0; 9) = 1. If f™ and g™ share the value 1 CM and 6(0; f)+
5(0;9) > 1 then either f =g or fMg™ =1.

So it is not irrelevant to ask: What can be said if two linear differential
polynomials generated by two meromorphic functions f and g share the
value 1 CM?

In the paper we answer this question. Also as a consequence of the main
theorem we prove a result which improves Theorem G and so some previous
results.

2. Definitions and notations. In this section we present some neces-
sary notations and definitions.

NOTATION 1. We denote by ¥ (D) a linear differential operator with
constant coefficients of the form ¥(D) = >?_, «; D, where D = d/dz.

DEFINITION 1. For a meromorphic function f and a positive integer k,
N (r,a; f) denotes the counting function of a-points of f where an a-point
with multiplicity m is counted m times if m < k and k times if m > k.
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DEFINITION 2 (cf. [1]). For a meromorphic function f we put

Ty ) = | 1)
1
NO(Tva;f)zgwdt, ng(r7a;f):§wdt,
1 1
matr ) =1 "Dt sy = (2D g ene
1 1

DEFINITION 3. If f is a meromorphic function, then

Ok(a; f) =1 —limsup %.
Clearly 0 < d(a; f) < 6g(a; f) < dp—1(a; f) < ... < da(a; f) < b1(a; f) =
O(a; f) < 1.

DEFINITION 4 (cf. [8]). For a meromorphic function f we put

. No(r, a; f) . No(r,a; f)
do(a; f) =1—limsup ———=, Og(a; f) =1—-limsup —————=,
0( f) rﬂoop TO(Ta f) 0( f) Tﬂoop TO(T7 f)
N(r,a; f)
8Y(a; f) =1 —limsup 422 where a € CU 0.
k(a; f) T_mp To(r, f)

3. Lemmas. In this section we discuss some lemmas which will be re-
quired in the sequel.

LEMMA 1 [1]. For meromorphic f,

im SO(Tv f)
r—00 TO(T7 f)

through all values of .

LEMMA 2. Let f be a meromorphic function and a € CU oco. Then
d(a; f) < dola; f), Ola; f) < Oo(a; f) and by (a; f) < 6)(a; f).
This lemma can be proved along the lines of [7, Proposition 6].

LEMMA 3. Let fi, fo be nonconstant meromorphic functions such that
afr +bfs =1, where a, b are nonzero constants. Then

To(r, f1) < No(7,0; f1) + No(r,0; f2) + No(r, 005 f1) 4 So(r, f1).
Proof. By the second fundamental theorem we get
T(r, fr) < N(r,0; fr) + N(r,a™'; f1) + N(r, 00; f2) + S(r, f1)
= N(r,0; f1) + N(r,0, fa) + N(r,00; f1) + S(r, f1).

From this inequality the lemma follows on integration.



116 I. Lahiri

LEMMA 4 [4]. For a meromorphic function f and any a € C,
N(r,0:(D)f | f = a, 2p) = N(r,0: {7 | f = a, 2p) + 5(r. f),

where N(r,b;g | f = ¢, >k) is the counting function of those b-points of g,
counted with proper multiplicities, which are the c-points of f with multi-
plicities not less than k.

LEMMA 5. Let f be a meromorphic function. Then

. .. To(r,¥(D 0
i hmlnf— 5 a;
(i) minf = ;O f),
Za;éoo 50((1' f)
ii 00(0; (D
W D)) = e )
Proof. For distinct finite complex numbers aq,...,a, we put

"1
A= .

Then by [3, inequality 2.1, p. 33] we get

Zm(r, a;; f) <m(r,A) +O(1)
m(r,0; ¥ (D) f) +m(r, A¥(D)f)
. = YD)
m(r,O,W(D)f)—I-; < - >

a;

= m(r, 0; (D +Z < —_fa_a)>
=m(r,0;¥(D)f) + 5(7’, f),
by the Milloux theorem [3, p. 55], i.e

(1) nT(r,f) <T(r,%(D +ZN7’al, N(r,0;¥(D)f)+ S(r, f)
<T(r,¥(D)f)
+Z{N(r, a;; f) = N(r,0; % (D)f | f =a;, >p)}

L S0 f).
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So by Lemma 4 we get
nT(r, f) <T(r,¥(D)f) + En:{N(h ai; f) = N(r,0; f | f = as, >p)}
i=1
+5(r, f)

< T(r,¥(D +ZN (ryag; f)+S(r, f).
This gives on integration

nTo(r, f) < To(r,¥(D —i—ZNO r,ai; f) + So(r, f).

Hence by Lemma 1 we get

To(r, (D
llTH_l)Lgf Oz,r;oT Z 50 (I“
Since n is arbitrary, it follows that
. . TO(T w 0
liminf ————>~ 5 a; f).
7—00 TO ’I" f a;o

Again by the Milloux theorem,
1 00)) < m(r 2L e )+ N )

f
+pN(r, f) + O(1)
=T(r, f) +pN(r, f) + S(r, f).

This gives on integration
(2) To(r,W(D)f) < To(r, f) + pNo(r, ) + So(r, f).
Also from (1) we get by integration

nTo(r, f) < To(r,¥(D +ZN0TCL,,

— No(r,0; ¥ (D )f)—i—So(T,f).
So by (2) we obtain
~ No(r,0;%(D)f)\ Tolr, f) + pNo(r, f) + So(r, f)
<(1-Fvmn ) To(r, /)

Ng’f’(l“ ) SO( )
+Z To(r, f) To(r, )
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In view of Lemma 1 this gives
Zéﬂ CLZ, <5U O lp( )f){l—@g(oo,f))},

from which (ii) follows because n is arbitrary. This proves the lemma.

LEMMA 6 [11]. Let f1, f2, fs be nonconstant meromorphic functions
satisfying f1 + fo + f3=1. If f1, fa, f3 are linearly independent then g, =
—f2/fs, g2 = 1/f3 and g3 = —f1/ f3 are also linearly independent.

LEMMA 7. Let f1, fo, f3 be three linearly independent meromorphic func-
tions such that f1 + fo+ f3=1. Then

(r, f1) < ZN2 (r,0; f;) + max {NJ(r,00; f;) + No(r,00; f;)}

1<i£;<3
+SO( )s
where So(r) = Z _150(r, f5)-

Proof. We prove under the hypotheses of the lemma the following in-
equality which on integration proves the lemma:

(3) T(r,f1)< ZNQ r,0; f;) + 1<m¢ax< {Ny(r,00; f;) + N(r,00; i)}

3
+) S0, f5).
j=1

From the proof of a generalisation of Borel’s theorem by Nevanlinna (cf.
[2, p. 70]) we get

(4) T(r, f1) < ZN (r,05 f;) = N(r,0;A) + N(r, A)

( 7f2)_ (T,fg)—i-S(T),

where A is the wronskian determinant of fi, fa, f3 and S(r) = 23:1 S(r, f)-
Now we need the following notations from [5]: for z € C and b € CU{c0}
we put

b () = m if z is a b-point of f with multiplicity m > 1,

2= 0 if zisnot a b-point of f,

i (2) = 1 if z is a b-point of f with multiplicity > 1,

~ 1 0 if 2 is not a b-point of f,

b (2) = 2 if z is a b-point of f with multiplicity m > 2,
T \'m if 2 is a b-point of f with multiplicity m < 2.
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Also we put
3
p(z) = Z p(2) — A (2) + 1R (2) — p3(2) — p3(2)

and

3
* _ 0 fee) —00
p(z) = E 1 vy, (2) + 1§Ig?;<§3{vﬂ (2) + 1% (=)}
j:

Now (3) will follow from (4) if we can prove that for any z € C, u(z) < p*(2).
We consider the following cases.

CASE 1. Let z be not a pole of any f; (i = 1,2,3). Since any zero of f;
with multiplicity m > 2 is a zero of A with multiplicity at least m — 2, it
follows that u(z) < p*(z).

CASE 2. Let z be a pole of at least one of f; (i = 1,2,3). So the following
subcases come up for consideration.

SUBCASE 2.1. Let z be a zero of f; with multiplicity m > 2 and a pole
of fo, f3 with multiplicity £ > 1. Then z is a pole of A with multiplicity
k —m + 3 provided kK — m 4+ 3 > 0 and otherwise z is a zero of A with
multiplicity m — k — 3. Hence pu(z) =3 —k and p*(z) > 3. So u(z) < pu*(2).

Let z be a zero of f; with multiplicity m < 2 and a pole of f5, f3 with
multiplicity & > 1. Then z is a pole A with multiplicity not exceeding k + 2.
Hence p(z) <m+k+2—k—k<4—Fk and p*(z) > 3. So u(z) < p*(2).

SUBCASE 2.2. Let z be a zero of fo with multiplicity m > 2 and a pole
of f1, f3 with multiplicity £ > 1. Then z is a pole of A with multiplicity
k —m + 3 provided £k — m + 3 > 0 and otherwise z is a zero of A with
multiplicity m — k — 3. Hence pu(z) = 3 and p*(2) > 3. So u(z) < p*(2).

Let z be a zero of fy with multiplicity m < 2 and a pole of f, f3 with
multiplicity £ > 1. Then z is a pole of A with multiplicity not exceeding
k+2. Hence pu(z) <m+k+2—k = m+2and p*(z) >m+2. So pu(z) <p*(2).

SUBCASE 2.3. Let z be a zero of f3 with multiplicity m > 1 and a pole
of fi1, fo with multiplicity £ > 1. Then as in Subcase 2.2 we can prove that
n(z) < p(z2).

SUBCASE 2.4. Let z be neither a zero nor a pole of fi. Since fo + f3 =
1 — fq, it follows that z is not a pole of fo + f3. Since z is a pole of at least
one of f; (i =1,2,3), it follows that z is a pole of fo and f3 with the same
multiplicity m, say (because the singularities of fo and f3 at z cancel each
other). Then z is a pole of A with multiplicity not exceeding m + 2. Hence
wz) <m+2—-—m—-—m<2and pu*(z) > 2. So u(z) < p*(z).

SUBCASE 2.5. Let z be a pole of f1, fo with multiplicity m > 1 and a
pole of f3 with multiplicity ¢ (1 < ¢ < m). Then z is a pole of A with



120 I. Lahiri

multiplicity not exceeding m + g + 3. Hence p(z) <m+q¢+3—m—q=3
and p*(z) =24 1=3. So u(z) < p*(z).

SUBCASE 2.6. Let z be a pole of f1, fs, f3 with multiplicity m > 1.
Then there exist two functions ¢, analytic at z and ¢(z) # 0,9(z) # 0
such that in some neighbourhood of z, fo(w) = (w — 2)"™¢(w) and f3(w)
= (w—2)""p(w). Also A = fify — fi fi shows that z is a pole of A with
multiplicity not exceeding 2m + 3 but by actual calculation we see that the
coefficient of (w — 2)~®™*3) in A is m?(m + 1)¢ep — m?(m + 1)ép = 0.
So z is a pole of A with multiplicity not exceeding 2m + 2. Hence pu(z) <
2m+2—m—m =2 and p*(z) > 2. So p(z) < p*(2).

SUBCASE 2.7. Let z be a pole of fi, fo with multiplicity m > 1 and
neither a zero nor a pole of f3. Then z is a pole of A with multiplicity
not exceeding m + 2. Hence p(z) < m+2—m = 2 and p*(z) > 2. So
n(z) < p*(2).

SUBCASE 2.8. Let z be a pole of f; with multiplicity m >1 and a pole of
f2 with multiplicity m+q (¢>1). Then z is also a pole of f3 with multiplicity
m + ¢ and the terms containing (w — z)~(™*+%) (i = 1,...,¢q) of the Laurent
expansions of fo and f3 about z cancel each other because f>+ f3 has a pole
at z with multiplicity m. Also we see that A has a pole at z with multiplicity
not exceeding 2m + g+ 3. Hence u(z) <2m+qg+3—-—m—-q—m—q=3—¢q
and p*(z) =24 1=3. So u(z) < p*(z).

LEMMA 8. If 3, 69(a; f) > 0 then
1 —69(o0; f)
Oo(00; U (D) f) > 1 — =20 ))
O( ( )f) Za;éoo 52(&, f)
Proof. Since No(r,¥(D)f) = No(r, f), the lemma follows from Lemma
5().

LEMMA 9 [14]. Let F' and G be two nonconstant meromorphic functions
such that F' and G share 1 CM. If

lim sup No(r, 0; F') + Na(r, 005 F') 4+ No(r, 0; G) + Na(r, 00; G)

r—oo, rel T(T)

<1,

where
T(r) =max{T(r,F),T(r,G)}
and I is a set of r’s (0 < r < o0) of infinite linear measure, then F' = G or
FG =1.
4. Theorems. In this section we present the main results of the paper.

THEOREM 1. Let f, g be two meromorphic functions such that
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(i) ¥(D)f, ¥(D)g are nonconstant and share 1 CM and

(i) D astoo 0(as f) D artoo 0(aig)

L4+ p(1=6(c0; f))  1+p(1—-60(0;9))

41— 6(1f) | 41— O(cxi9)
Daroo 0p(@5f)  Pgsoe Oplasg)
where >, 4. 0p(a; f) > 0 and 3, 6p(asg) > 0. Then either [¥(D)f] -

W(D)g) =1 or f—g=s, where s is a solution of the differential equation
¥(D)w = 0.

THEOREM 2. Let f, g be two meromorphic functions of finite order such
that

(i) ¥(D)f, ¥(D)g are nonconstant and share 1 CM and

(11) Za;éoo (S(CL, f) Za;éoo 6(0’7 g)

L4+ p(1=6(c0; f))  1+p(1—-60(0;9))

2(1 - 6(0; f)) | 2(1 = 6O(c059))
Dartoo Op(ai ) D Oplaig)’

where Y, 0p(as f) > 0 and 3, 0p(a;g) > 0. Then either [¥(D)f] -
[W(D)g) =1 or f—g=s, where s is a solution of the differential equation
7(D)w = 0.

> 14+

> 14

The following example shows that the theorems are sharp.

EXAMPLE 1. Let f = 1e(e*—1), g = 3¢ *(3—1e %) and ¥ (D) = D*—
3D. Then } ., d(a;f) = 3,2 0(asg) = 1/2, O(o0; f) = O(o0ig) = 1
and >, d2(a; f) >0, 32, d2(a;g) > 0. Also ¥(D)f = e*(1 — ¢*) and
U(D)g = e *(1 — e *) share 1 CM but neither (D) f]- [¥(D)g] = 1 nor
f — g = c1 + c2e®* for any constants ¢; and cs.

Proof of Theorem 1. Let F' =¥ (D)f and G = ¥(D)g. Then in view of
Lemmas 2, 5 and 8 the condition (ii) implies

(5) 30(0; F') + 60(0; G) + 46 (00; F) + 4604 (00; G) > 9.
We put
F-1

Since F', G share 1 CM, the poles and zeros of H occur only at the poles
of F and G respectively. Also Ny(r,00; H) < Ny(r,00; F') and Ny(r,0; H) <
No(r,00; G).

Let Fy = F, F, = —GH and F3 = H. Then from (6) it follows that

(7) F1 —|—F2—|—F351
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First we suppose that F3 = H = k, a constant. Then from (7) we get
F—-kG=1—-k. If £k # 1, we see that

1 k
1—kF_1—k

Since k # 0, from Lemma 3 it follows that
To(r, F) < No(r,0; F) + No(r,0; G) + No(r, 00; F) + So(r, F),
To(r, G) < No(r,0; F) + No(r,0; G) + No(r, 00; G) + So(r, G).

G=1

So
maX{TU(Tv F)v TO(T7 G)} < NO(T, 0; F) + NO(Ta 0; G) + NO(Tv 05 F)
+ No(r, 00; G) + o(max{To(r, F'), Ty (r, G)}).

This gives 00(0; F') + 00(0; G) + Og(c0; F) 4+ Og(00; G) < 3 and so from
(5) we see that 9 < 30y(o0; F') + 30(00; G) + 3 < 9, a contradiction. So
k =1 and hence F' = G. Therefore ¥(D)(f —g)=0 and so f — g = s, where
s = s(z) is a solution of ¥(D)w = 0.

Similarly if F5 = k, a constant, we can show that [¥(D)f]-[¥(D)g] = 1.

Now we suppose that Fi, F5 and F3 are nonconstant. If possible, let
Fy, F5, F5 be linearly independent. Then from Lemma 7 we get

(8) To(r,F) < NY(r,0;F) + NJ(r,0;G) +2N3 (r,0; H)

3
0 Y 4 N - A
+ 1%?%?’%3{]\[2 (Tv OO,F,) + Nﬂ(rv OO,FJ)} + ;SO(Tv Fj)
=
< No(r,0; F) + No(r,0; G) + 4Noy(r, 00; Q)
3

0 il N, Nl .
+ 1SI{1£;<§3{N2 (r, 00; ;) + No(r, 00; F;)} + Z;SO(T’ F;).
]:

Now in view of (6) we see that

So(r, F) = o(max{Ty(r, F'), To(r,G)})

3
=1

J
and

< 2N0(T',OO,H) + NU(TvoO;F) < 3N0(T',OO,F)
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and similarly for the other three terms. So from (8) we get
9) To(r, F) < No(r,0; F) + No(r,0; G) + 3Ny(r, 00; F)
+ 4Ny(r, 00; G) + o(max{Ty(r, F), To(r, G)}).
Now we put Gy = —F/F3 =G, Gy =1/F3 =1/H and G3 = —F} /F3 =

—F/H. Then by Lemma 6, G;, G3, G5 are linearly independent and so
proceeding as above we get

(10) To(r,G) < No(r,0; F) + No(r,0; G) + 3Ny(r, 00; G)
+ 4Ny(r, 00; F) + o(max{Ty(r, F), To(r, G)}).
From (9) and (10) we get
max{To(r, F), To(r,G)} < (10 — 60(0; F') — 60(0; G) — 46 (oc0; F)
— 460 (00; G) + o(1)) max{Ty(r, F), To(r,G)}
< (1—=e+o(1)) max{Ty(r, F), To(r,G)},
which is a contradiction, where by (5) we choose
0<e<0(0; F) + 00(0; G) + 460¢(00; F') + 40 (00; G) — 9.
Hence there exist constants ¢y, ca, ¢z, not all zero, such that
(11) c1F1 + coF5 + c3F3 = 0.
Clearly ¢; # 0. For, otherwise from (11) we get H(cs — coG) = 0, which is
impossible because F' and G are nonconstant.
Now eliminating F; from (7) and (11) we get
(12) cFy +dF3 =1,
where c=1—cy/c; and d=1—c3/cy.
If possible let ¢d # 0. Then from (12) we get (¢/d)(G)+1/(dH) = 1. So
by Lemma 3 we get

TO(T7 G) < NU(T707G) + NO(T7OO;H) + NO(T7OO;G) + 50(73 G)7

~—

ie.
(13) To(r,G) < No(r,0; G) + Ny(r,00; F) + Noy(r,00; G) + So(r, G).
By the second fundamental theorem we get on integration
To(r, F) < No(r,0; F) + No(r, 1; F) + No(r,00; F) + So(r; F)

= No(r,0; F) + No(r,1;G) + No(r,00; F) + So(r, F)

< No(r,0; F) + To(r, G) + No(r, 00; F) + So(r, F).
So by (13) we obtain
(14) To(r, F) < No(r,0; F) + No(r,0; G) + 2Ny (r, 00; F)

+ No(r,00; G) + So(r, F) + So(r, G).
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From (13) and (14) we get
maX{TO(n F)7TU(T7 G)} < NU(T70;F) + No(T‘,O;G) + 2N0(T7 OOaF)
+ No(r, 00; G) + o(max{Ty(r, F), To(r,G)})

and so 9 (0; F') 4+ 60(0; G) 4 2600(00; F') 4+ Op(00; G) < 4.
Now by (5) we see that

9 < 60(0; F) + 09(0; G) + 460 (00; F') + 460y (00; G)
< 4426 (00; F) + 3609 (00; G) <9,

which is a contradiction. Therefore ¢d = 0. From (12) we see that ¢ and d
are not simultaneously zero. So we consider the following cases.

CAsE I. Let d = 0. Then from (12) we get —cF'+1/G=1—c. If c# 1,
we obtain (—c¢/(1—¢))F +1/((1 —¢)G) = 1. So by Lemma 3 it follows that

To(r, F) < No(r,0; F) + No(r, 00; G) + No(r, 00; F) + So(r, F)
and
To(r,G) = Ty(r,1/G) + So(r, G)
< Ny(r,0; F) + No(r,0; G) + No(r,00; G) + So(r, G).
Hence
max{Ty(r, F), Ty (r,G)} < No(r,0; F) + No(r,0; G) + No(r,00; F)
+ No(r, 00; G) + o(max{Ty(r, F), To(r, G)}),

and so 9o (0; F') 4+ 60(0; G) 4+ Og(o0; F') + Og(00; G) < 3.
From (5) we see that

9 < 60(0; F) + 09(0; G) + 460 (00; F) + 460y (00; G)
<3+ 3@0(OO;F) + 3@0(OO,G) <9,

which is a contradiction. Therefore ¢ = 1 and so FG = 1, i.e., [¥(D)f]-
[W(D)g] = 1.

CAsE II. Let ¢ = 0. Then from (12) we get dFF —G=d—1. If d # 1 it
follows that (d/(d —1))F — (1/(d — 1))G = 1. Now by Lemma 3 we obtain

To(r, F) < No(r,0; F) + No(r,0; G) + No(r, 00; F) + So(r, F),
To(r, G) < No(r,0; F) + No(r,0; G) + No(r, 00; G) + So(r, G).
So we get
max{Ty(r, F), Ty(r,G)} < No(r,0; F) + No(r,0; G) + Ny(r, 00; F)
+ No(r, 00; G) + o(max{Ty(r, F), To(r, G)})

and as in Case I this leads to a contradiction. So d = 1 and hence F = G,
ie, U(D)(f —g) =0. Therefore f — g = s where s = s(z) is a solution of
¥(D)w = 0. This proves the theorem.
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Proof of Theorem 2. If f and g are of finite order, we can prove along
the lines of Lemmas 5 and 8 that

. 2 azso 065 f) . _ _1=6(c0sf)
5(0;w(D)f) > 5 p(— 6(00 )’ O(o0; ¥(D)f) > 1 S (e f)

and the corresponding results for g. Let F = ¥(D)f and G = ¥(D)g. Then
by the condition (ii) of the theorem we get

0(0; F) 4+ 6(0; G) + 20(o0; F) + 20(00; G) > 5.

This implies

lim N(r,0; F) + lim N(r,0;G)
B S 7 W e P )|
) N(r,00; F) ) N(r,00; G)
21 —= 421 —= <1
+ lfis;ip T(r, F) + 1illsgp Tr.G) <1,

ie.,

- No(r,0; F) + Na(r,0; G) + Na(r,00; F') + Na(r, 00; G)
rﬂoop max{T(r, F),T(r,G)}
and so by Lemma 9 the theorem follows.
Considering f = —27"e?**+€7, g(2) = —(—1)"2""e"2*+(—1)"e~* where
n is a positive integer, Yi and Yang [16] claimed that for n > 1 the condition

0(0; f)+6(0;g) > 1 of Theorem G is necessary. In the following example we
see that this claim is not justified.

EXAMPLE 2. Let f =e* —1 and g = 1+ (—1)"e *. Then 6(0; f) =
5(0;9) =0 and £, ¢ share 1 CM. Also f(™g(™ =1.

<1

In the first corollary we improve Theorem G for n > 1.

COROLLARY 1. Let f, g be two meromorphic function with ©(co; f) =
O(oc0;g) = 1. If for n > 1 the derivatives f™ and g™ are nonconstant and
share 1 CM with

(1) Za;éoo 5(&, f) + Za;éoo 5((17 g) > 17
(i) ©(0; f) + ©(0;9) > 1,
then either (a) f™Mg™ =1 or (b) f=g.
Proof. Choosing ¥(D) = D", from Theorem 1 it follows that either

fMgm) =1 or f—g=Q, where Q is a polynomial of degree at most n — 1.
If possible, let @ # 0. Then from [3, Theorem 2.5, p. 47] it follows that

T(r, f) < N(r,0; f) + N(r,Q; f) + N(r,00; f) + S(r, f)
= N(r,0; f) + N(r,0;9) + N(r,00; f) + S(r, f).



126 I. Lahiri

Since f — g = Q, it follows that T'(r, f) = T(r,g) + O(logr). So we get
O(0; f)+6(0;¢g) < 1, which is a contradiction. Therefore @ =0 and so f=g.

The following examples show that the condition ©(0; f) + ©(0;¢g) > 1 is
necessary for the validity of case (b).

EXAMPLE 3. Let f =e* + 1 and g = ¢*. Then ©(0; f) =0, ©(0;9) =1,
Yoo 0(a; F) + Y 0ino 0(a; 9) = 2, O(00; f) = O(o0;g) = 1 and f™), g
share 1 CM but f —g=1.

EXAMPLE 4. Let f = e*+ 1 and g = (—1)"e *. Then O(0; f) = 0,
f . g share 1 CM but f(" g™ = 1.

Answering the question of C. C. Yang [9], mentioned in the introduction,
H. X. Yi [12] proved the following theorem.

THEOREM H [12]. Let f and g be two nonconstant entire functions. As-
sume that f, g share 0 CM and f™, ¢ share 1 CM, where n is a non-
negative integer. If 5(0; f) > 1/2 then either f = g or f™M g™ =1,

Considering f = —27"e?* 4 (—=1)"T127"¢* and g = (—1)" 127" 2% —
27"e~ %, Yi [12] claimed that the condition 6(0; f) > 1/2 is necessary. The
following example shows that for n > 1 this is not always the case.

EXAMPLE 5. Let f = e¢* — 1 nad g = (—1)""! + (=1)"e™?. Then f, g
share 0 CM and f™, g(™ (n > 1) share 1 CM, §(0; f) = 0 but f(™g(™ =1,

In the following corollary we provide an answer to a question of Yang [9].

COROLLARY 2. Let f and g be two meromorphic functions with ©(co; f)
= O(o0;g) = 1. Suppose that f™, g™ (n > 1) share 1 CM and f,g share
a value b (# oo) IM. Ifza;,,éoo d(a; f) —I—Z:a;éoo 0(a; g) > 1 then either f =g
or f(Mg(n) =1,

Proof. The condition >, d(a; f) + > 2,40 6(a;g) > 1 implies that
f and g are transcendental so that f(), ¢(™ are nonconstant. Choosing
¥ (D) = D™ we see from Theorem 1 that either f(Mg(™ =1 or f — g = Q,
where (@) is a polynomial. Now we consider the case f — g = Q. If possible,
let @ #£ 0. Also we suppose that f has at most a finite number of b-points
and so g also has a finite number of b-points. Now by [3, Theorem 2.5, p. 47]
it follows that

T(r,f) < N(rb; f) + N(r,b+ Q; f) + N(r,00; f) + S(r, f)
= N(r,b; f) + N(r,b;9) + S(r, f) = O(log ) + S(r, f),

which is a contradiction. Therefore f has infinitely many b-points and so
f — g has infinitely many zeros. This again implies a contradiction because
f—g9g=Qand Q Z0. So Q =0 and hence f = g.
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Considering f = —27"e?* 4 (—=1)"T127"¢* and g = (—1)""127"e™2* —
27 "e~* we can verify that the condition Za;éoo 0(as; f) + Za;éoo 0(a;g) > 1
of Corollary 2 is necessary.

COROLLARY 3. Let W(D) = D(D— A )(D—X2) ... (D—Ap—1) where \;’s
are monzero pairwise distinct complex numbers. Also suppose that f and g
are two meromorphic functions with the following properties:

(i) ¥(D)f, ¥(D)g are nonconstant and share 1 CM,
(i) D atoo 0(a; ) + 2 aseo 0(as g) > 1 and O(o0; f) = O(00;9) = 1,
(iii) f and g have b-points (b # o0o) with multiplicities not less than p+ 1
at the origin.

Then f = g.

Proof. From the theorem we get either [¥(D)f]-[¥(D)gl|=1lor f—g=
Co+ c1eM? 4 e 4+ cp,leAP*Z where ¢;’s are constants. Since f has
a b-point with multiplicity at least p+ 1 at the origin, it follows that ¥ (D) f
has at least a simple zero at the origin. Similarly ¥(D)g has at least a
simple zero at the origin. So the case (D) f]-[¥(D)g] = 1 does not occur.
If possible, let f # g. Then the constants cg,c1,...,cp,—1 are not all zero.
Also by condition (iii) it follows that f — ¢ has a zero at the origin with
multiplicity at least p + 1. This implies that

p—1 p—1 p—1 p—1
E C; — 0, E /\ici = 0, E )\2261 = 0, ey E )\fcl =0.
i=0 i=0 i=0 1=0

This system of equations gives c) = ¢ = c3 = ... = ¢p—1 = 0, which is a
contradiction. Therefore f = g. This proves the corollary.

The following examples show that condition (iii) of Corollary 3 is neces-
sary.
EXAMPLE 6. Let f = %, g = ¢* + 1 and ¥(D) = D(D — 1). Then

(D)f, W(D)g share 1 CM, >, 6(a; f) + 32, 200 6(a;9) = 2, O(o0; f) =
O(00;9) =1l and f—1, g—2 have zeros with multiplicity three at the origin,

but f # g.

EXAMPLE 7. Let f=e*—1,g=1—e*and ¥(D) = D. Then ¥(D)f,
¥(D)g share 1 CM, >°, . 6(a; f) + 32,200 0(a; 9) = 2, O(00; f) = O(o0; 9)
=1 and f, g have simple zeros at the origin, but f # g.

Let us conclude the paper with the following question: What can be
said if two nonlinear differential polynomials generated by two meromorphic
functions share 1 CM?
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