Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points

by Indrajit Lahiri (Calcutta and Kalyani)

Abstract

We prove a uniqueness theorem for meromorphic functions involving linear differential polynomials generated by them. As consequences of the main result we improve some previous results.

1. Introduction. Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. If for $a \in \mathbb{C} \cup \infty, f-a$ and $g-a$ have the same set of zeros with the same multiplicities, we say that f and g share the value a $C M$ (counting multiplicities), and if we do not consider the multiplicities, f and g are said to share the value a IM (ignoring multiplicities). It is assumed that the reader is familiar with the standard notations and definitions of value distribution theory (cf. [3]).
M. Ozawa [6] proved the following result:

Theorem A [6]. If two nonconstant entire functions f, g share the value $1 C M$ with $\delta(0 ; f)>0$ and 0 being lacunary for g then either $f \equiv g$ or $f g \equiv 1$.

Improving the above result H. X. Yi [10] proved the following:
Theorem B [10]. Let f and g be two nonconstant meromorphic functions satisfying $\delta(\infty ; f)=\delta(\infty ; g)=1$. If f, g share the value $1 C M$ and $\delta(0 ; f)+$ $\delta(0 ; g)>1$ then either $f \equiv g$ or $f g \equiv 1$.

In [9] C. C. Yang asked: What can be said if two nonconstant entire functions f and g share the value 0 CM and their first derivatives share the value 1 CM ?

As an attempt to solve this question K. Shibazaki [7] proved the following:

[^0]Theorem C [7]. Let f and g be two entire functions of finite order. If f^{\prime} and g^{\prime} share the value $1 C M$ with $\delta(0 ; f)>0$ and 0 being lacunary for g then either $f \equiv g$ or $f^{\prime} g^{\prime} \equiv 1$.

Improving Theorem C, H. X. Yi [13] obtained the following result:
Theorem D [13]. Let f and g be two entire functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\delta(0 ; f)+\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Considering meromorphic functions H. X. Yi and and C. C. Yang [15] improved Theorem C as follows:

Theorem E [15]. Let f and g be two meromorphic functions satisfying $\delta(\infty ; f)=\delta(\infty ; g)=1$. If f^{\prime} and g^{\prime} share the value 1 CM with $\delta(0 ; f)+$ $\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{\prime} g^{\prime} \equiv 1$.

In [15] it is asked whether it is possible to replace the first derivatives f^{\prime}, g^{\prime} in Theorem E by the nth derivatives $f^{(n)}$ and $g^{(n)}$.

In this direction the following two theorems can be noted.
Theorem F [13]. Let f and g be two meromorphic functions sharing the value ∞ CM. If $f^{(n)}$ and $g^{(n)}$ share the value $1 C M$ with $\delta(0 ; f)+\delta(0 ; g)+$ $(n+2) \Theta(\infty ; f)>n+3$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem G [16]. Let f and g be two meromorphic functions such that $\Theta(\infty ; f)=\Theta(\infty ; g)=1$. If $f^{(n)}$ and $g^{(n)}$ share the value $1 C M$ and $\delta(0 ; f)+$ $\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

So it is not irrelevant to ask: What can be said if two linear differential polynomials generated by two meromorphic functions f and g share the value 1 CM ?

In the paper we answer this question. Also as a consequence of the main theorem we prove a result which improves Theorem G and so some previous results.
2. Definitions and notations. In this section we present some necessary notations and definitions.

Notation 1. We denote by $\Psi(D)$ a linear differential operator with constant coefficients of the form $\Psi(D)=\sum_{i=1}^{p} \alpha_{i} D^{i}$, where $D \equiv d / d z$.

Definition 1. For a meromorphic function f and a positive integer k, $N_{k}(r, a ; f)$ denotes the counting function of a-points of f where an a-point with multiplicity m is counted m times if $m \leq k$ and k times if $m>k$.

Definition 2 (cf. [1]). For a meromorphic function f we put

$$
\begin{aligned}
T_{0}(r, f) & =\int_{1}^{r} \frac{T(t, f)}{t} d t, \\
N_{0}(r, a ; f) & =\int_{1}^{r} \frac{N(t, a ; f)}{t} d t, \quad N_{k}^{0}(r, a ; f)=\int_{1}^{r} \frac{N_{k}(t, a ; f)}{t} d t, \\
m_{0}(r, f) & =\int_{1}^{r} \frac{m(t, f)}{t} d t, \quad S_{0}(r, f)=\int_{1}^{r} \frac{S(t, f)}{t} d t \quad \text { etc. }
\end{aligned}
$$

Definition 3. If f is a meromorphic function, then

$$
\delta_{k}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{k}(r, a ; f)}{T(r, f)} .
$$

Clearly $0 \leq \delta(a ; f) \leq \delta_{k}(a ; f) \leq \delta_{k-1}(a ; f) \leq \ldots \leq \delta_{2}(a ; f) \leq \delta_{1}(a ; f)=$ $\Theta(a ; f) \leq 1$.

Definition 4 (cf. [8]). For a meromorphic function f we put
$\delta_{0}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{0}(r, a ; f)}{T_{0}(r, f)}, \quad \Theta_{0}(a ; f)=1-\underset{r \rightarrow \infty}{\limsup } \frac{\bar{N}_{0}(r, a ; f)}{T_{0}(r, f)}$,
$\delta_{k}^{0}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{k}^{0}(r, a ; f)}{T_{0}(r, f)} \quad$ where $a \in \mathbb{C} \cup \infty$.
3. Lemmas. In this section we discuss some lemmas which will be required in the sequel.

Lemma 1 [1]. For meromorphic f,

$$
\lim _{r \rightarrow \infty} \frac{S_{0}(r, f)}{T_{0}(r, f)}=0
$$

through all values of r.
Lemma 2. Let f be a meromorphic function and $a \in \mathbb{C} \cup \infty$. Then $\delta(a ; f) \leq \delta_{0}(a ; f), \Theta(a ; f) \leq \Theta_{0}(a ; f)$ and $\delta_{k}(a ; f) \leq \delta_{k}^{0}(a ; f)$.

This lemma can be proved along the lines of [7, Proposition 6].
Lemma 3. Let f_{1}, f_{2} be nonconstant meromorphic functions such that $a f_{1}+b f_{2} \equiv 1$, where a, b are nonzero constants. Then

$$
T_{0}\left(r, f_{1}\right) \leq \bar{N}_{0}\left(r, 0 ; f_{1}\right)+\bar{N}_{0}\left(r, 0 ; f_{2}\right)+\bar{N}_{0}\left(r, \infty ; f_{1}\right)+S_{0}\left(r, f_{1}\right) .
$$

Proof. By the second fundamental theorem we get

$$
\begin{aligned}
T\left(r, f_{1}\right) & \leq \bar{N}\left(r, 0 ; f_{1}\right)+\bar{N}\left(r, a^{-1} ; f_{1}\right)+\bar{N}\left(r, \infty ; f_{2}\right)+S\left(r, f_{1}\right) \\
& =\bar{N}\left(r, 0 ; f_{1}\right)+\bar{N}\left(r, 0, f_{2}\right)+\bar{N}\left(r, \infty ; f_{1}\right)+S\left(r, f_{1}\right) .
\end{aligned}
$$

From this inequality the lemma follows on integration.

Lemma 4 [4]. For a meromorphic function f and any $a \in \mathbb{C}$,

$$
N(r, 0 ; \Psi(D) f \mid f=a, \geq p) \geq N\left(r, 0 ; f^{(p)} \mid f=a, \geq p\right)+S(r, f)
$$

where $N(r, b ; g \mid f=c, \geq k)$ is the counting function of those b-points of g, counted with proper multiplicities, which are the c-points of f with multiplicities not less than k.

Lemma 5. Let f be a meromorphic function. Then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{T_{0}(r, \Psi(D) f)}{T_{0}(r, f)} \geq \sum_{a \neq \infty} \delta_{p}^{0}(a ; f) \tag{i}
\end{equation*}
$$

(ii)

$$
\delta_{0}(0 ; \Psi(D) f) \geq \frac{\sum_{a \neq \infty} \delta_{0}(a ; f)}{1+p\left(1-\Theta_{0}(\infty ; f)\right)} .
$$

Proof. For distinct finite complex numbers a_{1}, \ldots, a_{n} we put

$$
A=\sum_{i=1}^{n} \frac{1}{f-a_{i}} .
$$

Then by [3, inequality $2.1, \mathrm{p} .33]$ we get

$$
\begin{aligned}
\sum_{i=1}^{n} m\left(r, a_{i} ; f\right) & \leq m(r, A)+O(1) \\
& \leq m(r, 0 ; \Psi(D) f)+m(r, A \Psi(D) f) \\
& \leq m(r, 0 ; \Psi(D) f)+\sum_{i=1}^{n} m\left(r, \frac{\Psi(D) f}{f-a_{i}}\right) \\
& =m(r, 0 ; \Psi(D) f)+\sum_{i=1}^{n} m\left(r, \frac{\Psi(D)\left(f-a_{i}\right)}{f-a_{i}}\right) \\
& =m(r, 0 ; \Psi(D) f)+S(r, f),
\end{aligned}
$$

by the Milloux theorem [3, p. 55], i.e.,
(1) $n T(r, f) \leq T(r, \Psi(D) f)+\sum_{i=1}^{n} N\left(r, a_{i} ; f\right)-N(r, 0 ; \Psi(D) f)+S(r, f)$

$$
\begin{aligned}
\leq & T(r, \Psi(D) f) \\
& +\sum_{i=1}^{n}\left\{N\left(r, a_{i} ; f\right)-N\left(r, 0 ; \Psi(D) f \mid f=a_{i}, \geq p\right)\right\} \\
& +S(r, f)
\end{aligned}
$$

So by Lemma 4 we get

$$
\begin{aligned}
n T(r, f) \leq & T(r, \Psi(D) f)+\sum_{i=1}^{n}\left\{N\left(r, a_{i} ; f\right)-N\left(r, 0 ; f^{(p)} \mid f=a_{i}, \geq p\right)\right\} \\
& +S(r, f) \\
\leq & T(r, \Psi(D) f)+\sum_{i=1}^{n} N_{p}\left(r, a_{i} ; f\right)+S(r, f)
\end{aligned}
$$

This gives on integration

$$
n T_{0}(r, f) \leq T_{0}(r, \Psi(D) f)+\sum_{i=1}^{n} N_{p}^{0}\left(r, a_{i} ; f\right)+S_{0}(r, f)
$$

Hence by Lemma 1 we get

$$
\liminf _{r \rightarrow \infty} \frac{T_{0}(r, \Psi(D) f)}{T_{0}(r, f)} \geq \sum_{i=1}^{n} \delta_{p}^{0}\left(a_{i} ; f\right)
$$

Since n is arbitrary, it follows that

$$
\liminf _{r \rightarrow \infty} \frac{T_{0}(r, \Psi(D) f)}{T_{0}(r, f)} \geq \sum_{a \neq \infty} \delta_{p}^{0}(a ; f)
$$

Again by the Milloux theorem,

$$
\begin{aligned}
T(r, \Psi(D) f) \leq & m\left(r, \frac{\Psi(D) f}{f}\right)+m(r, f)+N(r, f) \\
& +p \bar{N}(r, f)+O(1) \\
= & T(r, f)+p \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

This gives on integration

$$
\begin{equation*}
T_{0}(r, \Psi(D) f) \leq T_{0}(r, f)+p \bar{N}_{0}(r, f)+S_{0}(r, f) \tag{2}
\end{equation*}
$$

Also from (1) we get by integration

$$
\begin{aligned}
n T_{0}(r, f) \leq & T_{0}(r, \Psi(D) f)+\sum_{i=1}^{n} N_{0}\left(r, a_{i} ; f\right) \\
& -N_{0}(r, 0 ; \Psi(D) f)+S_{0}(r, f)
\end{aligned}
$$

So by (2) we obtain

$$
\begin{aligned}
n \leq & \left(1-\frac{N_{0}(r, 0 ; \Psi(D) f)}{T_{0}(r, \Psi(D) f)}\right) \cdot \frac{T_{0}(r, f)+p \bar{N}_{0}(r, f)+S_{0}(r, f)}{T_{0}(r, f)} \\
& +\sum_{i=1}^{n} \frac{N_{0}\left(r, a_{i} ; f\right)}{T_{0}(r, f)}+\frac{S_{0}(r, f)}{T_{0}(r, f)}
\end{aligned}
$$

In view of Lemma 1 this gives

$$
\left.\sum_{i=1}^{n} \delta_{0}\left(a_{i} ; f\right) \leq \delta_{0}(0 ; \Psi(D) f)\left\{1-\Theta_{0}(\infty ; f)\right)\right\}
$$

from which (ii) follows because n is arbitrary. This proves the lemma.
Lemma 6 [11]. Let f_{1}, f_{2}, f_{3} be nonconstant meromorphic functions satisfying $f_{1}+f_{2}+f_{3} \equiv 1$. If f_{1}, f_{2}, f_{3} are linearly independent then $g_{1}=$ $-f_{2} / f_{3}, g_{2}=1 / f_{3}$ and $g_{3}=-f_{1} / f_{3}$ are also linearly independent.

Lemma 7. Let f_{1}, f_{2}, f_{3} be three linearly independent meromorphic functions such that $f_{1}+f_{2}+f_{3} \equiv 1$. Then

$$
\begin{aligned}
T_{0}\left(r, f_{1}\right) \leq & \sum_{j=1}^{3} N_{2}^{0}\left(r, 0 ; f_{j}\right)+\max _{1 \leq i \neq j \leq 3}\left\{N_{2}^{0}\left(r, \infty ; f_{i}\right)+\bar{N}_{0}\left(r, \infty ; f_{j}\right)\right\} \\
& +S_{0}(r),
\end{aligned}
$$

where $S_{0}(r)=\sum_{j=1}^{3} S_{0}\left(r, f_{j}\right)$.
Proof. We prove under the hypotheses of the lemma the following inequality which on integration proves the lemma:

$$
\begin{align*}
T\left(r, f_{1}\right) \leq & \sum_{j=1}^{3} N_{2}\left(r, 0 ; f_{j}\right)+\max _{1 \leq i \neq j \leq 3}\left\{N_{2}\left(r, \infty ; f_{i}\right)+\bar{N}\left(r, \infty ; f_{j}\right)\right\} \tag{3}\\
& +\sum_{j=1}^{3} S\left(r, f_{j}\right) .
\end{align*}
$$

From the proof of a generalisation of Borel's theorem by Nevanlinna (cf. [2, p. 70]) we get

$$
\begin{align*}
T\left(r, f_{1}\right) \leq & \sum_{j=1}^{3} N\left(r, 0 ; f_{j}\right)-N(r, 0 ; \Delta)+N(r, \Delta) \tag{4}\\
& -N\left(r, f_{2}\right)-N\left(r, f_{3}\right)+S(r),
\end{align*}
$$

where Δ is the wronskian determinant of f_{1}, f_{2}, f_{3} and $S(r)=\sum_{j=1}^{3} S\left(r, f_{j}\right)$.
Now we need the following notations from [5]: for $z \in \mathbb{C}$ and $b \in \mathbb{C} \cup\{\infty\}$ we put

$$
\begin{aligned}
& \mu_{f}^{b}(z)= \begin{cases}m & \text { if } z \text { is a } b \text {-point of } f \text { with multiplicity } m \geq 1, \\
0 & \text { if } z \text { is not a } b \text {-point of } f,\end{cases} \\
& \bar{\mu}_{f}^{b}(z)= \begin{cases}1 & \text { if } z \text { is a } b \text {-point of } f \text { with multiplicity } \geq 1, \\
0 & \text { if } z \text { is not a } b \text {-point of } f,\end{cases} \\
& \nu_{f}^{b}(z)= \begin{cases}2 & \text { if } z \text { is a } b \text {-point of } f \text { with multiplicity } m>2, \\
m & \text { if } z \text { is a } b \text {-point of } f \text { with multiplicity } m \leq 2 .\end{cases}
\end{aligned}
$$

Also we put

$$
\mu(z)=\sum_{j=1}^{3} \mu_{f_{j}}^{0}(z)-\mu_{\Delta}^{0}(z)+\mu_{\Delta}^{\infty}(z)-\mu_{f_{2}}^{\infty}(z)-\mu_{f_{3}}^{\infty}(z)
$$

and

$$
\mu^{*}(z)=\sum_{j=1}^{3} \nu_{f_{j}}^{0}(z)+\max _{1 \leq i \neq j \leq 3}\left\{\nu_{f_{i}}^{\infty}(z)+\bar{\mu}_{f_{j}}^{\infty}(z)\right\}
$$

Now (3) will follow from (4) if we can prove that for any $z \in \mathbb{C}, \mu(z) \leq \mu^{*}(z)$.
We consider the following cases.
CASE 1 . Let z be not a pole of any $f_{i}(i=1,2,3)$. Since any zero of f_{i} with multiplicity $m>2$ is a zero of Δ with multiplicity at least $m-2$, it follows that $\mu(z) \leq \mu^{*}(z)$.

CASE 2. Let z be a pole of at least one of $f_{i}(i=1,2,3)$. So the following subcases come up for consideration.

Subcase 2.1. Let z be a zero of f_{1} with multiplicity $m>2$ and a pole of f_{2}, f_{3} with multiplicity $k \geq 1$. Then z is a pole of Δ with multiplicity $k-m+3$ provided $k-m+3>0$ and otherwise z is a zero of Δ with multiplicity $m-k-3$. Hence $\mu(z)=3-k$ and $\mu^{*}(z) \geq 3$. So $\mu(z) \leq \mu^{*}(z)$.

Let z be a zero of f_{1} with multiplicity $m \leq 2$ and a pole of f_{2}, f_{3} with multiplicity $k \geq 1$. Then z is a pole Δ with multiplicity not exceeding $k+2$. Hence $\mu(z) \leq m+k+2-k-k \leq 4-k$ and $\mu^{*}(z) \geq 3$. So $\mu(z) \leq \mu^{*}(z)$.

SUBCASE 2.2. Let z be a zero of f_{2} with multiplicity $m>2$ and a pole of f_{1}, f_{3} with multiplicity $k \geq 1$. Then z is a pole of Δ with multiplicity $k-m+3$ provided $k-m+3>0$ and otherwise z is a zero of Δ with multiplicity $m-k-3$. Hence $\mu(z)=3$ and $\mu^{*}(z) \geq 3$. So $\mu(z) \leq \mu^{*}(z)$.

Let z be a zero of f_{2} with multiplicity $m \leq 2$ and a pole of f_{1}, f_{3} with multiplicity $k \geq 1$. Then z is a pole of Δ with multiplicity not exceeding $k+2$. Hence $\mu(z) \leq m+k+2-k=m+2$ and $\mu^{*}(z) \geq m+2$. So $\mu(z) \leq \mu^{*}(z)$.

SUBCASE 2.3. Let z be a zero of f_{3} with multiplicity $m \geq 1$ and a pole of f_{1}, f_{2} with multiplicity $k \geq 1$. Then as in Subcase 2.2 we can prove that $\mu(z) \leq \mu^{*}(z)$.

Subcase 2.4. Let z be neither a zero nor a pole of f_{1}. Since $f_{2}+f_{3}=$ $1-f_{1}$, it follows that z is not a pole of $f_{2}+f_{3}$. Since z is a pole of at least one of $f_{i}(i=1,2,3)$, it follows that z is a pole of f_{2} and f_{3} with the same multiplicity m, say (because the singularities of f_{2} and f_{3} at z cancel each other). Then z is a pole of Δ with multiplicity not exceeding $m+2$. Hence $\mu(z) \leq m+2-m-m \leq 2$ and $\mu^{*}(z) \geq 2$. So $\mu(z) \leq \mu^{*}(z)$.

SUBCASE 2.5. Let z be a pole of f_{1}, f_{2} with multiplicity $m \geq 1$ and a pole of f_{3} with multiplicity $q(1 \leq q<m)$. Then z is a pole of Δ with
multiplicity not exceeding $m+q+3$. Hence $\mu(z) \leq m+q+3-m-q=3$ and $\mu^{*}(z)=2+1=3$. So $\mu(z) \leq \mu^{*}(z)$.

SUBCASE 2.6. Let z be a pole of f_{1}, f_{2}, f_{3} with multiplicity $m \geq 1$. Then there exist two functions ϕ, ψ analytic at z and $\phi(z) \neq 0, \psi(z) \neq 0$ such that in some neighbourhood of $z, f_{2}(\omega)=(\omega-z)^{-m} \phi(\omega)$ and $f_{3}(\omega)$ $=(\omega-z)^{-m} \psi(\omega)$. Also $\Delta=f_{2}^{\prime} f_{3}^{\prime \prime}-f_{2}^{\prime \prime} f_{3}^{\prime}$ shows that z is a pole of Δ with multiplicity not exceeding $2 m+3$ but by actual calculation we see that the coefficient of $(\omega-z)^{-(2 m+3)}$ in Δ is $m^{2}(m+1) \phi \psi-m^{2}(m+1) \phi \psi \equiv 0$. So z is a pole of Δ with multiplicity not exceeding $2 m+2$. Hence $\mu(z) \leq$ $2 m+2-m-m=2$ and $\mu^{*}(z) \geq 2$. So $\mu(z) \leq \mu^{*}(z)$.

SUBCASE 2.7. Let z be a pole of f_{1}, f_{2} with multiplicity $m \geq 1$ and neither a zero nor a pole of f_{3}. Then z is a pole of Δ with multiplicity not exceeding $m+2$. Hence $\mu(z) \leq m+2-m=2$ and $\mu^{*}(z) \geq 2$. So $\mu(z) \leq \mu^{*}(z)$.

Subcase 2.8. Let z be a pole of f_{1} with multiplicity $m \geq 1$ and a pole of f_{2} with multiplicity $m+q(q \geq 1)$. Then z is also a pole of f_{3} with multiplicity $m+q$ and the terms containing $(w-z)^{-(m+i)}(i=1, \ldots, q)$ of the Laurent expansions of f_{2} and f_{3} about z cancel each other because $f_{2}+f_{3}$ has a pole at z with multiplicity m. Also we see that Δ has a pole at z with multiplicity not exceeding $2 m+q+3$. Hence $\mu(z) \leq 2 m+q+3-m-q-m-q=3-q$ and $\mu^{*}(z)=2+1=3$. So $\mu(z) \leq \mu^{*}(z)$.

Lemma 8. If $\sum_{a \neq \infty} \delta_{p}^{0}(a ; f)>0$ then

$$
\Theta_{0}(\infty ; \Psi(D) f) \geq 1-\frac{1-\Theta_{0}(\infty ; f)}{\sum_{a \neq \infty} \delta_{p}^{0}(a ; f)} .
$$

Proof. Since $\bar{N}_{0}(r, \Psi(D) f)=\bar{N}_{0}(r, f)$, the lemma follows from Lemma 5(i).

Lemma 9 [14]. Let F and G be two nonconstant meromorphic functions such that F and G share 1 CM . If

$$
\limsup _{r \rightarrow \infty, r \in I} \frac{N_{2}(r, 0 ; F)+N_{2}(r, \infty ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; G)}{T(r)}<1,
$$

where

$$
T(r)=\max \{T(r, F), T(r, G)\}
$$

and I is a set of r 's $(0<r<\infty)$ of infinite linear measure, then $F \equiv G$ or $F G \equiv 1$.
4. Theorems. In this section we present the main results of the paper.

Theorem 1. Let f, g be two meromorphic functions such that
(i) $\Psi(D) f, \Psi(D) g$ are nonconstant and share $1 C M$ and
(ii) $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}+\frac{\sum_{a \neq \infty} \delta(a ; g)}{1+p(1-\Theta(\infty ; g))}$

$$
>1+\frac{4(1-\Theta(\infty ; f))}{\sum_{a \neq \infty} \delta_{p}(a ; f)}+\frac{4(1-\Theta(\infty ; g))}{\sum_{a \neq \infty} \delta_{p}(a ; g)},
$$

where $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$ and $\sum_{a \neq \infty} \delta_{p}(a ; g)>0$. Then either $[\Psi(D) f]$. $[\Psi(D) g] \equiv 1$ or $f-g \equiv s$, where s is a solution of the differential equation $\Psi(D) w=0$.

Theorem 2. Let f, g be two meromorphic functions of finite order such that
(i) $\Psi(D) f, \Psi(D) g$ are nonconstant and share $1 C M$ and
(ii) $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}+\frac{\sum_{a \neq \infty} \delta(a ; g)}{1+p(1-\Theta(\infty ; g))}$

$$
>1+\frac{2(1-\Theta(\infty ; f))}{\sum_{a \neq \infty} \delta_{p}(a ; f)}+\frac{2(1-\Theta(\infty ; g))}{\sum_{a \neq \infty} \delta_{p}(a ; g)},
$$

where $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$ and $\sum_{a \neq \infty} \delta_{p}(a ; g)>0$. Then either $[\Psi(D) f]$. $[\Psi(D) g] \equiv 1$ or $f-g \equiv s$, where s is a solution of the differential equation $\Psi(D) w=0$.

The following example shows that the theorems are sharp.
Example 1. Let $f=\frac{1}{2} e^{z}\left(e^{z}-1\right), g=\frac{1}{2} e^{-z}\left(\frac{1}{2}-\frac{1}{5} e^{-z}\right)$ and $\Psi(D)=D^{2}-$ $3 D$. Then $\sum_{a \neq \infty} \delta(a ; f)=\sum_{a \neq \infty} \delta(a ; g)=1 / 2, \Theta(\infty ; f)=\Theta(\infty ; g)=1$ and $\sum_{a \neq \infty} \delta_{2}(a ; f)>0, \sum_{a \neq \infty} \delta_{2}(a ; g)>0$. Also $\Psi(D) f=e^{z}\left(1-e^{z}\right)$ and $\Psi(D) g=e^{-z}\left(1-e^{-z}\right)$ share 1 CM but neither $[\Psi(D) f] \cdot[\Psi(D) g] \equiv 1$ nor $f-g \equiv c_{1}+c_{2} e^{3 z}$ for any constants c_{1} and c_{2}.

Proof of Theorem 1. Let $F=\Psi(D) f$ and $G=\Psi(D) g$. Then in view of Lemmas 2,5 and 8 the condition (ii) implies

$$
\begin{equation*}
\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+4 \Theta_{0}(\infty ; F)+4 \Theta_{0}(\infty ; G)>9 . \tag{5}
\end{equation*}
$$

We put

$$
\begin{equation*}
H=\frac{F-1}{G-1} . \tag{6}
\end{equation*}
$$

Since F, G share 1 CM , the poles and zeros of H occur only at the poles of F and G respectively. Also $\bar{N}_{0}(r, \infty ; H) \leq \bar{N}_{0}(r, \infty ; F)$ and $\bar{N}_{0}(r, 0 ; H) \leq$ $\bar{N}_{0}(r, \infty ; G)$.

Let $F_{1}=F, F_{2}=-G H$ and $F_{3}=H$. Then from (6) it follows that

$$
\begin{equation*}
F_{1}+F_{2}+F_{3} \equiv 1 \tag{7}
\end{equation*}
$$

First we suppose that $F_{3}=H \equiv k$, a constant. Then from (7) we get $F-k G=1-k$. If $k \neq 1$, we see that

$$
\frac{1}{1-k} F-\frac{k}{1-k} G \equiv 1 .
$$

Since $k \neq 0$, from Lemma 3 it follows that

$$
\begin{aligned}
& T_{0}(r, F) \leq N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F), \\
& T_{0}(r, G) \leq N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; G)+S_{0}(r, G) .
\end{aligned}
$$

So

$$
\begin{aligned}
\max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F) \\
& +\bar{N}_{0}(r, \infty ; G)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right) .
\end{aligned}
$$

This gives $\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+\Theta_{0}(\infty ; F)+\Theta_{0}(\infty ; G) \leq 3$ and so from (5) we see that $9<3 \Theta_{0}(\infty ; F)+3 \Theta_{0}(\infty ; G)+3 \leq 9$, a contradiction. So $k=1$ and hence $F \equiv G$. Therefore $\Psi(D)(f-g) \equiv 0$ and so $f-g \equiv s$, where $s=s(z)$ is a solution of $\Psi(D) w=0$.

Similarly if $F_{2} \equiv k$, a constant, we can show that $[\Psi(D) f] \cdot[\Psi(D) g] \equiv 1$.
Now we suppose that F_{1}, F_{2} and F_{3} are nonconstant. If possible, let F_{1}, F_{2}, F_{3} be linearly independent. Then from Lemma 7 we get
(8) $\quad T_{0}(r, F) \leq N_{2}^{0}(r, 0 ; F)+N_{2}^{0}(r, 0 ; G)+2 N_{2}^{0}(r, 0 ; H)$

$$
\begin{aligned}
& +\max _{1 \leq i \neq j \leq 3}\left\{N_{2}^{0}\left(r, \infty ; F_{i}\right)+\bar{N}_{0}\left(r, \infty ; F_{j}\right)\right\}+\sum_{j=1}^{3} S_{0}\left(r, F_{j}\right) \\
\leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+4 \bar{N}_{0}(r, \infty ; G) \\
& +\max _{1 \leq 1 \neq j \leq 3}\left\{N_{2}^{0}\left(r, \infty ; F_{i}\right)+\bar{N}_{0}\left(r, \infty ; F_{j}\right)\right\}+\sum_{j=1}^{3} S_{0}\left(r, F_{j}\right) .
\end{aligned}
$$

Now in view of (6) we see that

$$
\sum_{j=1}^{3} S_{0}\left(r, F_{j}\right)=o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right)
$$

and

$$
\begin{aligned}
N_{2}^{0}\left(r, \infty ; F_{1}\right)+\bar{N}_{0}\left(r, \infty ; F_{2}\right) & =N_{2}^{0}(r, \infty ; F)+\bar{N}_{0}(r, \infty ; H(G-1)) \\
& =N_{2}^{0}(r, \infty ; F)+\bar{N}_{0}(r, \infty ; F) \leq 3 \bar{N}_{0}(r, \infty ; F), \\
N_{2}^{0}\left(r, \infty ; F_{2}\right)+\bar{N}_{0}\left(r, \infty ; F_{3}\right) & =N_{2}^{0}(r, \infty ; H(G-1))+N_{0}(r, \infty ; H) \\
& \leq N_{2}^{0}(r, \infty ; F)+\bar{N}_{0}(r, \infty ; F) \leq 3 \bar{N}_{0}(r, \infty ; F), \\
N_{2}^{0}\left(r, \infty ; F_{3}\right)+\bar{N}_{0}\left(r, \infty ; F_{1}\right) & =N_{2}^{0}(r, \infty ; H)+\bar{N}_{2}^{0}(r, \infty ; F) \\
& \leq 2 \bar{N}_{0}(r, \infty ; H)+\bar{N}_{0}(r, \infty ; F) \leq 3 \bar{N}_{0}(r, \infty ; F)
\end{aligned}
$$

and similarly for the other three terms. So from (8) we get

$$
\begin{align*}
T_{0}(r, F) \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+3 \bar{N}_{0}(r, \infty ; F) \tag{9}\\
& +4 \bar{N}_{0}(r, \infty ; G)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right) .
\end{align*}
$$

Now we put $G_{1}=-F_{2} / F_{3}=G, G_{2}=1 / F_{3}=1 / H$ and $G_{3}=-F_{1} / F_{3}=$ $-F / H$. Then by Lemma $6, G_{1}, G_{2}, G_{3}$ are linearly independent and so proceeding as above we get

$$
\begin{align*}
T_{0}(r, G) \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+3 \bar{N}_{0}(r, \infty ; G) \tag{10}\\
& +4 \bar{N}_{0}(r, \infty ; F)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right) .
\end{align*}
$$

From (9) and (10) we get

$$
\begin{aligned}
\max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \leq & \left(10-\delta_{0}(0 ; F)-\delta_{0}(0 ; G)-4 \Theta_{0}(\infty ; F)\right. \\
& \left.-4 \Theta_{0}(\infty ; G)+o(1)\right) \max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \\
< & (1-\varepsilon+o(1)) \max \left\{T_{0}(r, F), T_{0}(r, G)\right\},
\end{aligned}
$$

which is a contradiction, where by (5) we choose

$$
0<\varepsilon<\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+4 \Theta_{0}(\infty ; F)+4 \Theta_{0}(\infty ; G)-9
$$

Hence there exist constants c_{1}, c_{2}, c_{3}, not all zero, such that

$$
\begin{equation*}
c_{1} F_{1}+c_{2} F_{2}+c_{3} F_{3} \equiv 0 \tag{11}
\end{equation*}
$$

Clearly $c_{1} \neq 0$. For, otherwise from (11) we get $H\left(c_{3}-c_{2} G\right) \equiv 0$, which is impossible because F and G are nonconstant.

Now eliminating F_{1} from (7) and (11) we get

$$
\begin{equation*}
c F_{2}+d F_{3} \equiv 1, \tag{12}
\end{equation*}
$$

where $c=1-c_{2} / c_{1}$ and $d=1-c_{3} / c_{1}$.
If possible let $c d \neq 0$. Then from (12) we get $(c / d)(G)+1 /(d H) \equiv 1$. So by Lemma 3 we get

$$
T_{0}(r, G) \leq N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; H)+\bar{N}_{0}(r, \infty ; G)+S_{0}(r, G),
$$

i.e.

$$
\begin{equation*}
T_{0}(r, G) \leq N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F)+\bar{N}_{0}(r, \infty ; G)+S_{0}(r, G) \tag{13}
\end{equation*}
$$

By the second fundamental theorem we get on integration

$$
\begin{aligned}
T_{0}(r, F) & \leq N_{0}(r, 0 ; F)+N_{0}(r, 1 ; F)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r ; F) \\
& =N_{0}(r, 0 ; F)+N_{0}(r, 1 ; G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& \leq N_{0}(r, 0 ; F)+T_{0}(r, G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) .
\end{aligned}
$$

So by (13) we obtain

$$
\begin{align*}
T_{0}(r, F) \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+2 \bar{N}_{0}(r, \infty ; F) \tag{14}\\
& +\bar{N}_{0}(r, \infty ; G)+S_{0}(r, F)+S_{0}(r, G)
\end{align*}
$$

From (13) and (14) we get

$$
\begin{aligned}
\max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+2 \bar{N}_{0}(r, \infty ; F) \\
& +\bar{N}_{0}(r, \infty ; G)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right)
\end{aligned}
$$

and so $\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+2 \Theta_{0}(\infty ; F)+\Theta_{0}(\infty ; G) \leq 4$.
Now by (5) we see that

$$
\begin{aligned}
9 & <\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+4 \Theta_{0}(\infty ; F)+4 \Theta_{0}(\infty ; G) \\
& \leq 4+2 \Theta_{0}(\infty ; F)+3 \Theta_{0}(\infty ; G) \leq 9,
\end{aligned}
$$

which is a contradiction. Therefore $c d=0$. From (12) we see that c and d are not simultaneously zero. So we consider the following cases.

Case I. Let $d=0$. Then from (12) we get $-c F+1 / G \equiv 1-c$. If $c \neq 1$, we obtain $(-c /(1-c)) F+1 /((1-c) G) \equiv 1$. So by Lemma 3 it follows that

$$
T_{0}(r, F) \leq N_{0}(r, 0 ; F)+\bar{N}_{0}(r, \infty ; G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F)
$$

and

$$
\begin{aligned}
T_{0}(r, G) & =T_{0}(r, 1 / G)+S_{0}(r, G) \\
& \leq N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; G)+S_{0}(r, G)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F) \\
& +\bar{N}_{0}(r, \infty ; G)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right)
\end{aligned}
$$

and so $\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+\Theta_{0}(\infty ; F)+\Theta_{0}(\infty ; G) \leq 3$.
From (5) we see that

$$
\begin{aligned}
9 & <\delta_{0}(0 ; F)+\delta_{0}(0 ; G)+4 \Theta_{0}(\infty ; F)+4 \Theta_{0}(\infty ; G) \\
& \leq 3+3 \Theta_{0}(\infty ; F)+3 \Theta_{0}(\infty ; G) \leq 9
\end{aligned}
$$

which is a contradiction. Therefore $c=1$ and so $F G \equiv 1$, i.e., $[\Psi(D) f]$. $[\Psi(D) g] \equiv 1$.

CASE II. Let $c=0$. Then from (12) we get $d F-G \equiv d-1$. If $d \neq 1$ it follows that $(d /(d-1)) F-(1 /(d-1)) G \equiv 1$. Now by Lemma 3 we obtain

$$
\begin{aligned}
& T_{0}(r, F) \leq N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F), \\
& T_{0}(r, G) \leq N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; G)+S_{0}(r, G)
\end{aligned}
$$

So we get

$$
\begin{aligned}
\max \left\{T_{0}(r, F), T_{0}(r, G)\right\} \leq & N_{0}(r, 0 ; F)+N_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F) \\
& +\bar{N}_{0}(r, \infty ; G)+o\left(\max \left\{T_{0}(r, F), T_{0}(r, G)\right\}\right)
\end{aligned}
$$

and as in Case I this leads to a contradiction. So $d=1$ and hence $F \equiv G$, i.e., $\Psi(D)(f-g) \equiv 0$. Therefore $f-g \equiv s$ where $s=s(z)$ is a solution of $\Psi(D) w=0$. This proves the theorem.

Proof of Theorem 2. If f and g are of finite order, we can prove along the lines of Lemmas 5 and 8 that
$\delta(0 ; \Psi(D) f) \geq \frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}, \quad \Theta(\infty ; \Psi(D) f) \geq 1-\frac{1-\Theta(\infty ; f)}{\sum_{a \neq \infty} \delta_{p}(a ; f)}$,
and the corresponding results for g. Let $F=\Psi(D) f$ and $G=\Psi(D) g$. Then by the condition (ii) of the theorem we get

$$
\delta(0 ; F)+\delta(0 ; G)+2 \Theta(\infty ; F)+2 \Theta(\infty ; G)>5 .
$$

This implies

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{N(r, 0 ; F)}{T(r, F)}+\underset{r \rightarrow \infty}{\limsup } \frac{N(r, 0 ; G)}{T(r, G)} \\
&+2 \limsup _{r \rightarrow \infty} \frac{\bar{N}(r, \infty ; F)}{T(r, F)}+2 \limsup _{r \rightarrow \infty} \frac{\bar{N}(r, \infty ; G)}{T(r, G)}<1,
\end{aligned}
$$

i.e.,

$$
\limsup _{r \rightarrow \infty} \frac{N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)}{\max \{T(r, F), T(r, G)\}}<1
$$

and so by Lemma 9 the theorem follows.
Considering $f=-2^{-n} e^{2 z}+e^{z}, g(z)=-(-1)^{n} 2^{-n} e^{-2 z}+(-1)^{n} e^{-z}$ where n is a positive integer, Yi and Yang [16] claimed that for $n \geq 1$ the condition $\delta(0 ; f)+\delta(0 ; g)>1$ of Theorem G is necessary. In the following example we see that this claim is not justified.

Example 2. Let $f=e^{z}-1$ and $g=1+(-1)^{n} e^{-z}$. Then $\delta(0 ; f)=$ $\delta(0 ; g)=0$ and $f^{(n)}, g^{(n)}$ share 1 CM . Also $f^{(n)} g^{(n)} \equiv 1$.

In the first corollary we improve Theorem G for $n \geq 1$.
Corollary 1. Let f, g be two meromorphic function with $\Theta(\infty ; f)=$ $\Theta(\infty ; g)=1$. If for $n \geq 1$ the derivatives $f^{(n)}$ and $g^{(n)}$ are nonconstant and share 1 CM with
(i) $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)>1$,
(ii) $\Theta(0 ; f)+\Theta(0 ; g)>1$,
then either (a) $f^{(n)} g^{(n)} \equiv 1$ or (b) $f \equiv g$.
Proof. Choosing $\Psi(D)=D^{n}$, from Theorem 1 it follows that either $f^{(n)} g^{(n)} \equiv 1$ or $f-g \equiv Q$, where Q is a polynomial of degree at most $n-1$. If possible, let $Q \not \equiv 0$. Then from [3, Theorem 2.5, p. 47] it follows that

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, Q ; f)+\bar{N}(r, \infty ; f)+S(r, f) \\
& =\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r, f) .
\end{aligned}
$$

Since $f-g \equiv Q$, it follows that $T(r, f)=T(r, g)+O(\log r)$. So we get $\Theta(0 ; f)+\Theta(0 ; g) \leq 1$, which is a contradiction. Therefore $Q \equiv 0$ and so $f \equiv g$.

The following examples show that the condition $\Theta(0 ; f)+\Theta(0 ; g)>1$ is necessary for the validity of case (b).

Example 3. Let $f=e^{z}+1$ and $g=e^{z}$. Then $\Theta(0 ; f)=0, \Theta(0 ; g)=1$, $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)=2, \Theta(\infty ; f)=\Theta(\infty ; g)=1$ and $f^{(n)}, g^{(n)}$ share 1 CM but $f-g \equiv 1$.

Example 4. Let $f=e^{z}+1$ and $g=(-1)^{n} e^{-z}$. Then $\Theta(0 ; f)=0$, $\Theta(0 ; g)=1, \sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)=2, \Theta(\infty ; f)=\Theta(\infty ; g)=1$ and $f^{(n)}, g^{(n)}$ share 1 CM but $f^{(n)} g^{(n)} \equiv 1$.

Answering the question of C. C. Yang [9], mentioned in the introduction, H. X. Yi [12] proved the following theorem.

Theorem H [12]. Let f and g be two nonconstant entire functions. Assume that f, g share $0 C M$ and $f^{(n)}, g^{(n)}$ share $1 C M$, where n is a nonnegative integer. If $\delta(0 ; f)>1 / 2$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Considering $f=-2^{-n} e^{2 z}+(-1)^{n+1} 2^{-n} e^{z}$ and $g=(-1)^{n+1} 2^{-n} e^{-2 z}-$ $2^{-n} e^{-z}$, Yi [12] claimed that the condition $\delta(0 ; f)>1 / 2$ is necessary. The following example shows that for $n \geq 1$ this is not always the case.

Example 5. Let $f=e^{z}-1 \operatorname{nad} g=(-1)^{n+1}+(-1)^{n} e^{-z}$. Then f, g share 0 CM and $f^{(n)}, g^{(n)}(n \geq 1)$ share $1 \mathrm{CM}, \delta(0 ; f)=0$ but $f^{(n)} g^{(n)} \equiv 1$.

In the following corollary we provide an answer to a question of Yang [9].
Corollary 2. Let f and g be two meromorphic functions with $\Theta(\infty ; f)$ $=\Theta(\infty ; g)=1$. Suppose that $f^{(n)}, g^{(n)}(n \geq 1)$ share $1 C M$ and f, g share a value $b(\neq \infty)$ IM. If $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)>1$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Proof. The condition $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)>1$ implies that f and g are transcendental so that $f^{(n)}, g^{(n)}$ are nonconstant. Choosing $\Psi(D)=D^{n}$ we see from Theorem 1 that either $f^{(n)} g^{(n)} \equiv 1$ or $f-g \equiv Q$, where Q is a polynomial. Now we consider the case $f-g \equiv Q$. If possible, let $Q \not \equiv 0$. Also we suppose that f has at most a finite number of b-points and so g also has a finite number of b-points. Now by [3, Theorem 2.5, p. 47] it follows that

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, b ; f)+\bar{N}(r, b+Q ; f)+\bar{N}(r, \infty ; f)+S(r, f) \\
& =\bar{N}(r, b ; f)+\bar{N}(r, b ; g)+S(r, f)=O(\log r)+S(r, f),
\end{aligned}
$$

which is a contradiction. Therefore f has infinitely many b-points and so $f-g$ has infinitely many zeros. This again implies a contradiction because $f-g \equiv Q$ and $Q \not \equiv 0$. So $Q \equiv 0$ and hence $f \equiv g$.

Considering $f=-2^{-n} e^{2 z}+(-1)^{n+1} 2^{-n} e^{z}$ and $g=(-1)^{n+1} 2^{-n} e^{-2 z}-$ $2^{-n} e^{-z}$ we can verify that the condition $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)>1$ of Corollary 2 is necessary.

Corollary 3. Let $\Psi(D)=D\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right) \ldots\left(D-\lambda_{p-1}\right)$ where λ_{i} 's are nonzero pairwise distinct complex numbers. Also suppose that f and g are two meromorphic functions with the following properties:
(i) $\Psi(D) f, \Psi(D) g$ are nonconstant and share $1 C M$,
(ii) $\sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)>1$ and $\Theta(\infty ; f)=\Theta(\infty ; g)=1$,
(iii) f and g have b-points $(b \neq \infty)$ with multiplicities not less than $p+1$ at the origin.

Then $f \equiv g$.
Proof. From the theorem we get either $[\Psi(D) f] \cdot[\Psi(D) g] \equiv 1$ or $f-g \equiv$ $c_{0}+c_{1} e^{\lambda_{1} z}+c_{2} e^{\lambda_{2} z}+\ldots+c_{p-1} e^{\lambda_{p-1} z}$ where c_{i} 's are constants. Since f has a b-point with multiplicity at least $p+1$ at the origin, it follows that $\Psi(D) f$ has at least a simple zero at the origin. Similarly $\Psi(D) g$ has at least a simple zero at the origin. So the case $[\Psi(D) f] \cdot[\Psi(D) g] \equiv 1$ does not occur. If possible, let $f \not \equiv g$. Then the constants $c_{0}, c_{1}, \ldots, c_{p-1}$ are not all zero. Also by condition (iii) it follows that $f-g$ has a zero at the origin with multiplicity at least $p+1$. This implies that

$$
\sum_{i=0}^{p-1} c_{i}=0, \quad \sum_{i=0}^{p-1} \lambda_{i} c_{i}=0, \quad \sum_{i=0}^{p-1} \lambda_{i}^{2} c_{i}=0, \ldots, \quad \sum_{i=0}^{p-1} \lambda_{i}^{p} c_{i}=0 .
$$

This system of equations gives $c_{0}=c_{1}=c_{2}=\ldots=c_{p-1}=0$, which is a contradiction. Therefore $f \equiv g$. This proves the corollary.

The following examples show that condition (iii) of Corollary 3 is necessary.

Example 6. Let $f=e^{z^{3}}, g=e^{z^{3}}+1$ and $\Psi(D)=D(D-1)$. Then $\Psi(D) f, \Psi(D) g$ share $1 \mathrm{CM}, \sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)=2, \Theta(\infty ; f)=$ $\Theta(\infty ; g)=1$ and $f-1, g-2$ have zeros with multiplicity three at the origin, but $f \not \equiv g$.

Example 7. Let $f=e^{z}-1, g=1-e^{-z}$ and $\Psi(D)=D$. Then $\Psi(D) f$, $\Psi(D) g$ share $1 \mathrm{CM}, \sum_{a \neq \infty} \delta(a ; f)+\sum_{a \neq \infty} \delta(a ; g)=2, \Theta(\infty ; f)=\Theta(\infty ; g)$ $=1$ and f, g have simple zeros at the origin, but $f \not \equiv g$.

Let us conclude the paper with the following question: What can be said if two nonlinear differential polynomials generated by two meromorphic functions share 1 CM ?

Acknowledgements. The author is grateful to the referee for his valuable suggestions.

References

[1] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan 25 (1973), 667-679.
[2] F. Gross, Factorization of Meromorphic Functions, U.S. Govt. Math. Res. Center, Washington, D.C., 1972.
[3] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[4] I. Lahiri and D. K. Sharma, The characteristic function and exceptional value of the differential polynomial of a meromorphic function, Indian J. Pure Appl. Math. 24 (1993), 779-790.
[5] P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18 (1995), 437-450.
[6] M. Ozawa, Unicity theorems for entire functions, J. Anal. Math. 30 (1976), 411420.
[7] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. National Defense Acad. Japan 21 (1981), no. 3, 67-71.
[8] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J. 22 (1970), 635-658.
[9] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), 1-6.
[10] H. X. Yi, Meromorphic functions with two deficient values, Acta Math. Sinica 30 (1987), 588-597.
[11] -, Meromorphic functions that share two or three values, Kodai Math. J. 13 (1990), 363-372.
[12] -, A question of C. C. Yang on the uniqueness of entire functions, ibid. 13 (1990), 39-46.
[13] -, Unicity theorems for entire or meromorphic functions, Acta Math. Sinica (N.S.) 10 (1994), 121-131.
[14] -, Meromorphic functions that share one or two values, Complex Variables Theory Appl. 28 (1995), 1-11.
[15] H. X. Yi and C. C. Yang, Unicity theorems for two meromorphic functions with their first derivatives having the same 1-points, Acta Math. Sinica 34 (1991), 675680.
[16] -, -, A uniqueness theorem for meromorphic functions whose nth derivative share the same 1-points, J. Anal. Math. 62 (1994), 261-270.

Department of Mathematics
Jadavpur University
Calcutta 700032, India

Present address:
Department of Mathematics
University of Kalyani
Kalyani 741235
West Bengal, India
E-mail: indrajit@cal2.vsnl.net.in

[^0]: 1991 Mathematics Subject Classification: Primary 30D35.
 Key words and phrases: uniqueness, sharing values, differential polynomial.

