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Difference methods for the Darboux problem

for functional partial differential equations

by Tomasz Cz lapiński (Gdańsk)

Abstract. We consider the following Darboux problem:

Dxyz(x, y) = f(x, y, z(x,y), (Dxz)(x,y), (Dyz)(x,y)),(1)

z(x, y) = φ(x, y) on [−a0, a]× [−b0, b] \ (0, a]× (0, b],(2)

where a0, b0 ∈ R+, a, b > 0. The operator [0, a] × [0, b] ∋ (x, y) 7→ ω(x,y) ∈ C([−a0, 0] ×
[−b0, 0],R) defined by ω(x,y)(t, s) = ω(t+x, s+y) represents the functional dependence on
the unknown function and its derivatives. We construct a wide class of difference methods
for problem (1), (2). We prove the existence of solutions of implicit functional systems
by means of a comparative method. We get two convergence theorems for implicit and
explicit schemes, in the latter case with a nonlinear estimate with respect to the third
variable. We give numerical examples to illustrate these results.

1. Introduction. Given a, b > 0 and a0, b0 ∈ R+ = [0,∞), we define

E = (0, a] × (0, b], E0 = [−a0, a] × [−b0, b] \ (0, a] × (0, b],

and B = [−a0, 0]× [−b0, 0]. For any function ω : E0∪E → R and (x, y) ∈ E
we define ω(x,y) : B → R by

ω(x,y)(t, s) = ω(x + t, y + s), (t, s) ∈ B.

Consider the following Darboux problem for a second order functional
partial differential equation:

Dxyz(x, y) = f(x, y, z(x,y), (Dxz)(x,y), (Dyz)(x,y)), (x, y) ∈ E,(1)

z(x, y) = φ(x, y), (x, y) ∈ E0,(2)

where f : E×C(B, R)3 → R and φ ∈ C1(E0, R) are given functions. We call
z ∈ C1(E0∪E, R) a solution of (1), (2) if z has a continuous mixed derivative
and satisfies (1) on E, and z fulfills the Darboux condition (2) on E0. In
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other words we will consider difference methods for classical solutions of
problem (1), (2). A model of functional dependence in (1), (2) based on the
operator (x, y) 7→ ω(x,y) contains as particular cases differential equations
with deviated argument and integral-differential problems.

Example 1. Consider the differential equation with deviated argument

(3) Dxyz(x, y) = f̃(x, y, z(γ0(x, y)),Dxz(γ1(x, y)),Dyz(γ2(x, y))),

where f̃ : E ×R
3 → R and γ0, γ1, γ2 : E → E0 ∪E are given functions such

that γi(x, y) − (x, y) ∈ B, i = 0, 1, 2, for (x, y) ∈ E. If we define f by

f(x, y,w,w1, w2)

= f̃(x, y,w(γ0(x, y) − (x, y)), w1(γ1(x, y) − (x, y)), w2(γ2(x, y) − (x, y)))

for (x, y,w,w1, w2) ∈ E × C(B, R)3 then (3) becomes a special case of (1).

Example 2. The differential-integral equation

(4) Dxyz(x, y) = f̃
(
x, y,

\
B

G0(t, s, z(x + t, y + s)) dt ds,\
B

G1(t, s,Dxz(x + t, y + s)) dt ds,
\
B

G2(t, s,Dyz(x + t, y + s)) dt ds
)
,

where f̃ : E × R
3 → R and G0, G1, G2 : B × R → R are given functions, is

also a special case of (1) if we take

f(x, y,w,w1, w2) = f̃
(
x, y,

\
B

G0(t, s, w(t, s)) dt ds,\
B

G1(t, s, w1(t, s)) dt ds,
\
B

G2(t, s, w2(t, s)) ds dt
)

for (x, y,w0, w1, w2) ∈ E × C(B, R)3.

We construct a wide class of implicit and explicit difference schemes for
the hyperbolic problem (1), (2). A general theory of convergence of such
schemes for hyperbolic problems without partial derivatives on the right-
hand side of (1) was developed in [8]. Explicit difference schemes for (1), (2)
were also considered in [10].

Difference methods for nonlinear parabolic functional differential prob-
lems were studied in [7], [9], [11]–[13]. Those investigations focused on find-
ing a stable difference approximation which satisfies consistency conditions
with respect to the original problem. Stability of corresponding nonlinear
functional difference equations was proved by using difference inequalities
or simple theorems on linear recurrent inequalities.

Difference methods for first order functional differential equations with
initial or initial-boundary conditions were studied in [1], [4], the latter paper
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with rich bibliographical information. Convergence of these methods was
proved by means of functional difference inequalities and a comparative
method. We also refer the reader to [16] for a survey on difference methods
for ordinary differential functional equations.

In this paper we construct difference schemes for (1), (2) under the as-
sumption that f is Lipschitzean with respect to the last two variables. In the
case of implicit schemes we also assume that f is Lipschitzean with respect
to the third variable while for explicit schemes we only assume that f satis-
fies a nonlinear estimate of the Perron type. In the latter case we also prove
the existence and uniqueness for implicit functional difference problems that
arise in discretization of (1), (2).

Existence results for the Darboux problem for functional differential
problems can be found in [2], [3], [14].

2. The difference problem. For any two sets X and Y , we denote by
F [X,Y ] the set of all functions from X to Y .

We construct a mesh in E0 ∪ E in the following way. Let h ∈ (0, a] and
k ∈ (0, b] denote the steps of the mesh with respect to x and y. Write

xi = ih, yj = jk, xi+1/2 = ih + h/2, yj+1/2 = jk + k/2, i, j ∈ Z.

We denote by I0 the set of all (h, k) ∈ (0, a] × (0, b] for which there exist
M0, N0 ∈ N such that M0h = a0, N0k = b0 and such that k/c ≤ h ≤ kc
for a fixed constant c ≥ 1. We assume that I0 is nonempty and that there
exists a sequence {(hn, kn)} ⊂ I0 such that limn→∞(hn, kn) = (0, 0). For
(h, k) ∈ I0 put Zhk = {(xi, yj) : i, j ∈ Z} and

E0
hk = Zhk ∩ E0, Ehk = Zhk ∩ E, Ehk = Zhk ∩ E.

There exist M,N ∈ N such that Mh ≤ a < (M+1)h and Nk ≤ b < (N+1)k.
Then

Ehk = {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}.

Furthermore, let

E1
hk = {(xi, yj) : 1 ≤ i ≤ M − K, 1 ≤ j ≤ N},

E2
hk = {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N − K},

where K = 0 or K = 1. With the same K we write

Bhk = {(xi, yj) : −M0 ≤ i ≤ K, −N0 ≤ j ≤ K},

B1
hk = {(xi, yj) : −M0 ≤ i ≤ 0, −N0 ≤ j ≤ K},

B2
hk = {(xi, yj) : −M0 ≤ i ≤ K, −N0 ≤ j ≤ 0}.

Given ω ∈ F [E0
hk ∪ Ehk, R] and (xi, yj) we write ω(i,j) instead of ω(xi, yj)

for simplicity, and we use the same convention for F [E0
hk ∪ E1

hk, R] and
F [E0

hk ∪ E2
hk, R].



174 T. Cz lapiński

Now, we define a discrete version of the operator (x, y) 7→ ω(x,y). If
ω : E0

hk ∪ Ehk → R and 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1 then we define
ω[i,j] : Bhk → R by

ω[i,j](t, s) = ω(xi + t, yj + s), (t, s) ∈ Bhk.

If K = 1 we analogously define ω[i,j] on B1
hk and B2

hk for ω : E0
hk ∪E1

hk → R

or ω : E0
hk ∪ E2

hk → R.

We define the following difference operators:

δω(i,j) =
1

hk
[ω(i+1,j+1) − ω(i+1,j) − ω(i,j+1) + ω(i,j)],

δ1ω
(i,j) =

1

h
[ω(i+1,j) − ω(i,j)], δ2ω

(i,j) =
1

k
[ω(i,j+1) − ω(i,j)].

Let fhk : Ehk ×F [Bhk, R]×F [B1
hk, R]×F [B2

hk, R] → R and φhk, αhk, βhk :
E0

hk → R be given functions. We will approximate solutions of problem
(1), (2) by solutions of the following system of functional difference equa-
tions:

δz(i,j) = fhk(xi, yj , z[i,j], u[i,j], v[i,j]), (xi, yj) ∈ Ehk − {(h, k)},

δ2u
(i,j) = fhk(xi, yj , z[i,j], u[i,j], v[i,j]), (xi, yj) ∈ E1

hk − {(k, 0)},(5)

δ1v
(i,j) = fhk(xi, yj , z[i,j], u[i,j], v[i,j]), (xi, yj) ∈ Ehk − {(0, h)},

where “−” denotes the algebraic difference of sets, with initial conditions

(6) z = φhk, u = αhk, v = βhk, on E0
hk.

More precisely a solution w of (1), (2) will be approximated by z while the
derivatives Dxw, Dyw by u, v, respectively.

Remark 1. If K =1 then problem (5), (6) becomes an implicit difference
method. More precisely, for fixed (i, j) the right-hand side of (5) depends
not only on z(µ,ν), u(µ,ν), v(µ,ν) for µ ≤ i, ν ≤ j, but also on z(i+1,j+1),
z(i+1,j), z(i,j+1), u(i,j+1) and v(i+1,j). Note that in this method we do not
compute the values of u(i,j) for i = M and the values of v(i,j) for j = N .
If K = 0 then we have an explicit method and problem (5), (6) represents
a simple functional difference system of the Volterra type which obviously
has exactly one solution.

In the case K = 1 the existence theorem for the functional difference
problem (5), (6) is proved by the use of the comparison method. This method
consists in associating with the operator fhk another operator σhk and inves-
tigating a suitable comparison equation. If the latter equation has adequate
properties, then problem (5), (6) has exactly one solution which is the limit
of the sequence of successive approximations.
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The general idea of the method used here is given in the fundamen-
tal paper of Ważewski [15]. This method has been used under various as-
sumptions in many papers, for initial or initial-boundary value problems for
partial or ordinary, differential and functional differential equations [3], [5],
[6], [14].

Define the following discrete operators:

V0fhk[z, u, v](i,j) = hk
i−1∑

µ=0

j−1∑

ν=0

fhk[z, u, v](µ,ν) on Ehk,

V1fhk[z, u, v](i,j) = k

j−1∑

ν=0

fhk[z, u, v](i,ν) on E1
hk,

V2fhk[z, u, v](i,j) = h

i−1∑

µ=0

fhk[z, u, v](µ,j) on E2
hk,

where fhk[z, u, v](i,j) = fhk(xi, yj , z[i,j], u[i,j], v[i,j]).

Lemma 1. Problem (5), (6) is equivalent to

z(i,j) = V0fhk[z, u, v](i,j) + φ
(i,0)
hk + φ

(0,j)
hk − φ

(0,0)
hk on Ehk,

u(i,j) = V1fhk[z, u, v](i,j) + α
(i,0)
hk on E1

hk,(7)

v(i,j) = V2fhk[z, u, v](i,j) + β
(0,j)
hk on E2

hk,

(8) z = φhk, u = αhk, v = βhk, on E0
hk.

We omit the proof of this lemma.

Remark 2. The proposed difference method is generated by the method
of proving the existence of solutions of the Darboux problem in which (1), (2)
is transformed into a system of integral equations

z(x, y) =

x\
0

y\
0

f(s, t, z(s,t), u(s,t), v(s,t)) ds dt + φ(x, 0) + φ(0, y) − φ(0, 0),

u(x, y) =

y\
0

f(x, t, z(x,t), u(x,t), v(x,t)) dt + Dxφ(x, 0),

v(x, y) =

x\
0

f(s, y, z(s,y), u(s,y), v(s,y))ds + Dyφ(0, y), on E,

z = φ, u = Dxφ, v = Dyφ, on E0,

that corresponds to (7), (8).
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In the sequel we denote by Ξ the set of all triples (z, u, v) where z : E0
hk∪

Ehk → R, u : E0
hk ∪E1

hk → R, v : E0
hk ∪E2

hk → R, and by Ξ+ the analogous
set with the functions taking values in R+. If (z, u, v), (z, u, v) ∈ Ξ, and

z ≤ z on Ehk, u ≤ u on E1
hk, v ≤ v on E2

hk,

then we write (z, u, v) ≤ (z, u, v) on (Ehk, E1
hk, E2

hk) for simplicity. If all
these inequalities hold on the same set E0

hk then we use the usual notation
(z, u, v) ≤ (z, u, v) on E0

hk. Analogously we define the relation (z, u, v) =
(z, u, v) on (Ehk, E1

hk, E2
hk).

For (z, u, v) ∈ Ξ define

Vfhk[z, u, v] = (V0fhk[z, u, v],V1fhk[z, u, v],V2fhk[z, u, v]).

Then we may write problem (7), (8) in a simple form

(z, u, v) = Vfhk[z, u, v] + T (φhk, αhk, βhk) on (Ehk, E1
hk, E2

hk),

(z, u, v) = (φhk, αhk, βhk) on E0
hk,

where T is defined by

T (φhk, αhk, βhk)(i,j) = (φ
(i,0)
hk + φ

(0,j)
hk − φ

(0,0)
hk , α

(i,0)
hk , β

(0,j)
hk ).

For any ωhk : E0
hk → R let ω̃hk : E0

hk ∪ Ehk → R be defined by

ω̃hk(x, y) =

{
ωhk(x, y) for (x, y) ∈ E0

hk,
0 for (x, y) ∈ Ehk,

and analogously define ω̃hk on E0
hk ∪ E1

hk or E0
hk ∪ E2

hk.
We define the sequence {(zn, un, vn)} ⊂ Ξ in the following way:

(i) (z0, u0, v0) = (φ̃hk, α̃hk, β̃hk) on (E0
hk ∪ Ehk, E0

hk ∪ E1
hk, E0

hk ∪ E2
hk);

(ii) if (zn, un, vn) ∈ Ξ is already defined then

(9) (zn+1, un+1, vn+1) = Vfhk[zn, un, vn] + T (φhk, αhk, βhk)

on (Ehk, E1
hk, E2

hk), and

(10) (zn+1, un+1, vn+1) = (φhk, αhk, βhk) on E0
hk.

We prove that under suitable assumptions on fhk, the sequence {(zn, un, vn)}
converges to the unique solution of problem (7), (8).

For ω ∈ F [Bhk, R] we define a norm |ω|hk by

|ω|hk = max{|ω(x, y)| : (x, y) ∈ Bhk}.

We let θhk be the zero function in F [Bhk, R]. We use the same notation for
functions defined on B1

hk or B2
hk.

Finally, if ω, ω : E0
hk → R then |ω| : Ehk → R is defined by

|ω|(i,j) = |ω(i,j)| on E0
hk,

and the relation ω ≤ ω means that ω(i,j) ≤ ω(i,j) on E0
hk.
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Assumption H1. Suppose that

(i) for each fixed (x, y) ∈ Ehk the function σhk(x, y, ·, ·, ·) : F [Bhk, R] ×
F [B1

hk, R] ×F [B2
hk, R] → R+ is continuous and nondecreasing with respect

to all its arguments, and σhk(x, y, θhk, θhk, θhk) = 0 for (x, y) ∈ Ehk;

(ii) for all (x, y) ∈ Ehk, w,w ∈ F [Bhk, R], w1, w1 ∈ F [B1
hk, R], w2, w2 ∈

F [B2
hk, R] we have

(11) |fhk(x, y,w,w1, w2) − fhk(x, y,w,w1, w2)|

≤ σhk(x, y, |w − w|hk, |w1 − w1|hk, |w2 − w2|hk);

(iii) there exists a solution (ghk, phk, qhk) ∈ Ξ of the problem

(z, u, v) ≥ Vσhk[z, u, v] + (ηhk, ξhk, λhk) on (Ehk, E1
hk, E2

hk),(12)

(z, u, v) = (|φhk|, |αhk|, |βhk|) on E0
hk,(13)

where (ηhk, ξhk, λhk) is such that

η
(i,j)
hk ≥ hk

i−1∑

µ=0

j−1∑

ν=0

|fhk[θhk, θhk, θhk](µ,ν)| + |φ
(i,0)
hk | + |φ

(0,j)
hk | + |φ

(0,0)
hk |,

ξ
(i,j)
hk ≥ k

j−1∑

ν=0

|fhk[θhk, θhk, θhk](i,ν)| + |α
(i,0)
hk |,(14)

λ
(i,j)
hk ≥ h

i−1∑

µ=0

|fhk[θhk, θhk, θhk](µ,j)| + |β
(0,j)
hk |,

on Ehk, E1
hk, E2

hk, respectively;

(iv) the function (z, u, v), where z(x, y) ≡ 0, u(x, y) ≡ 0, v(x, y) ≡ 0, is
a unique solution of the problem

(z, u, v) = Vσhk[z, u, v] on (Ehk, E1
hk, E2

hk),(15)

(z, u, v) = 0 on E0
hk,(16)

in the class of all (z, u, v) ∈ Ξ such that

0 ≤ (z, u, v) ≤ (ghk, phk, qhk) on (Ehk, E1
hk, E2

hk).

Theorem 2. If Assumption H1 is satisfied then there is a solution (z, u, v)
∈ Ξ of problem (5), (6), and it is unique in the class of all (z, u, v) ∈ Ξ such

that

(|z|, |u|, |v|) ≤ (ghk, phk, qhk) on (Ehk, E1
hk, E2

hk).

P r o o f. We consider the sequence {(gn, pn, qn)} ⊂ Ξ defined in the fol-
lowing way:

(i) g0 = ghk, p0 = phk, q0 = qhk;
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(ii) if (gn, pn, qn) ∈ Ξ is already defined then

(gn+1, pn+1, qn+1) = Vσhk[gn, pn, qn] on (Ehk, E1
hk, E2

hk),(17)

(gn+1, pn+1, qn+1) = 0 on E0
hk.(18)

We prove that on (Ehk, E1
hk, E2

hk) we have

(gn+1, pn+1, qn+1) ≤ (gn, pn, qn),(19)

lim
n→∞

(gn, pn, qn) = 0,(20)

(|zn|, |un|, |vn|) ≤ (ghk, phk, qhk),(21)

(|zn+1 − zn|, |un+1 − un|, |vn+1 − vn|) ≤ (gn, pn, qn).(22)

It follows from (12) that (g1, p1, q1) ≤ (g0, p0, q0) on (Ehk, E1
hk, E2

hk).
If for fixed n ∈ N we have (gn, pn, qn) ≤ (gn−1, pn−1, qn−1), then from the
monotonicity of σhk with respect to the function variables we get (gn+1, pn+1,
qn+1) ≤ (gn, pn, qn) and (19) follows by induction on n. Since we also have
(gn, pn, qn) ≥ 0 on (Ehk, E1

hk, E2
hk), the limit (g, p, q) = limn→∞(gn, pn, qn)

exists, and it follows from (17) and (18) that (g, p, q) ∈ Ξ is a solution of
problem (15), (16), which implies (g, p, q) = 0.

Note that inequality (21) is obvious for n = 0. If we assume that
(|zn|, |un|, |vn|) ≤ (ghk, phk, qhk), then from (11) and (14) and from the
monotonicity of σhk we get

|z
(i,j)
n+1 | ≤ hk

i−1∑

µ=0

j−1∑

ν=0

|fhk[zn, un, vn](µ,ν) − fhk[θhk, θhk, θhk](µ,ν)|

+ hk

i−1∑

µ=0

j−1∑

ν=0

|fhk[θhk, θhk, θhk](µ,ν)| + |φ
(i,0)
hk | + |φ

(0,j)
hk | + |φ

(0,0)
hk |

≤ hk

i−1∑

µ=0

j−1∑

ν=0

σhk

(
xµ, yν , (ghk)[µ,ν], (phk)[µ,ν], (qhk)[µ,ν]

)
+ η

(i,j)
hk

≤ g
(i,j)
hk

on Ehk, and analogously

|u
(i,j)
n+1| ≤ k

j−1∑

ν=0

σhk

(
xi, yν , (ghk)[i,ν], (phk)[i,ν], (qhk)[i,ν]

)
+ ξ

(i,j)
hk ≤ p

(i,j)
hk ,

|v
(i,j)
n+1 | ≤ h

i−1∑

µ=0

σhk(xµ, yj , (ghk)[µ,j], (phk)[µ,j], (qhk)[µ,j]) + λ
(i,j)
hk ≤ q

(i,j)
hk ,

on E1
hk, E2

hk, respectively. Thus (21) follows by induction for all n, and con-
sequently (22) holds for n=0. If we assume that (|zn+r − zn|, |un+r − un|,
|vn+r −vn|) ≤ (gn, pn, qn), then from (11) and from the monotonicity of σhk
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we get

|z
(i,j)
n+r+1 − z

(i,j)
n+1 |

≤ hk

i−1∑

µ=0

j−1∑

ν=0

∣∣∣fhk[zn+r, un+r, vn+r]
(µ,ν) − fhk[zn, un, vn](µ,ν)

∣∣∣

≤ hk
i−1∑

µ=0

j−1∑

ν=0

σhk(xµ, yν , |(zn+r − zn)[µ,ν]|hk,

|(un+r − un)[µ,ν]|hk, |(vn+r − vn)[µ,ν]|hk)

≤ hk

i−1∑

µ=0

j−1∑

ν=0

σhk(xµ, yν , (gn)[µ,ν], (pn)[µ,ν], (qn)[µ,ν]) = g
(i,j)
n+1 on Ehk,

and analogously

|u
(i,j)
n+r+1 − u

(i,j)
n+1| ≤ p

(i,j)
n+1 on E1

hk, |v
(i,j)
n+r+1 − v

(i,j)
n+1 | ≤ q

(i,j)
n+1 on E2

hk,

from which (22) follows by induction again.

It follows from (20) and (22) that (z, u, v) = limn→∞(zn, un, vn) exists.
By (9) and (10) we see that (z, u, v) ∈ Ξ is a solution of problem (7), (8).
Suppose that we have another solution (ẑ, û, v̂) ∈ Ξ of (7), (8) such that
(|ẑ|, |û|, |v̂|) ≤ (ghk, phk, qhk) on (Ehk, E1

hk, E2
hk). Then as in the proof of

(22) we get (|ẑ − zn|, |û − un|, |v̂ − vn|) ≤ (gn, pn, qn), from which, by (20),
it follows that (ẑ, û, v̂) = (z, u, v).

Remark 3. Theorem 2 gives uniqueness of solutions of problem (5), (6)
only in the class of (z, u, v) ∈ Ξ such that

(|z|, |u|, |v|) ≤ (ghk, phk, qhk) on (Ehk, E1
hk, E2

hk).

We may also get global uniqueness provided that Assumption H1 is satisfied
and that (z, u, v) ≡ (0, 0, 0) is a unique solution of the problem

(z, u, v) ≤ Vσhk[z, u, v] on (Ehk, E1
hk, E2

hk),

(z, u, v) = 0 on E0
hk.

3. Convergence of explicit difference methods. The next lemma
concerns functional difference inequalities generated by monotone operators
of the Volterra type.

Lemma 3. Suppose that K = 0 and

(i) Ghk : Ehk ×F [Bhk, R]3 → R is nondecreasing with respect to the last

three variables;
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(ii) z, u, v, z, u, v : E0
hk ∪ Ehk → R satisfy the inequalities

(z, u, v) − VGhk[z, u, v] ≤ (z, u, v) − VGhk[z, u, v] on Ehk,

(z, u, v) ≤ (z, u, v) on E0
hk.

Then

(z, u, v) ≤ (z, u, v) on Ehk.

The proof is by induction and we omit it.
To state the next assumptions we denote by Θ the class of all functions

α : I0 → R+ such that lim(h,k)→(0,0) α(h, k) = 0.

Assumption H2. Suppose that K = 0 and

(i) conditions (i), (ii) and (iv) of Assumption H1 are satisfied;
(ii) the solution (z, u, v) ∈ Ξ+, where z(x, y) ≡ 0, u(x, y) ≡ 0, v(x, y)

≡ 0, of the problem

δz(i,j) = σhk[z, u, v](i,j), (xi, yj) ∈ Ehk − {(h, k)},

δ2u
(i,j) = σhk[z, u, v](i,j), (xi, yj) ∈ Ehk − {(0, k)},(23)

δ1v
(i,j) = σhk[z, u, v](i,j), (xi, yj) ∈ Ehk − {(h, 0)},

z(i,j) = u(i,j) = v(i,j) = 0, on E0
hk,(24)

is stable in the following sense: if (z̃hk, ũhk, ṽhk) ∈ Ξ+ is a solution of the
problem

δz(i,j) = σhk[z, u, v](i,j) + α0(h, k), (xi, yj) ∈ Ehk − {(h, k)},

δ2u
(i,j) = σhk[z, u, v](i,j) + α1(h, k), (xi, yj) ∈ Ehk − {(0, k)},

δ1v
(i,j) = σhk[z, u, v](i,j) + α2(h, k), (xi, yj) ∈ Ehk − {(h, 0)},

z(i,j) = ε0(h, k), u(i,j) = ε1(h, k), v(i,j) = ε2(h, k), on E0
hk,

where αi, εi ∈ Θ, i = 0, 1, 2, then there are βi ∈ Θ, i = 0, 1, 2, such that

z̃
(i,j)
hk ≤ β0(h, k), ũ

(i,j)
hk ≤ β1(h, k), ṽ

(i,j)
hk ≤ β2(h, k), on Ehk.

An example of a class of difference problems satisfying Assumption H2

is given in Theorem 5.

Theorem 4. Suppose that Assumption H2 is satisfied and

(i) (zhk, uhk, vhk) ∈ Ξ is a solution of problem (5), (6) and there are

αi ∈ Θ, i = 0, 1, 2, such that

(25)
|φ(i,j) − φ

(i,j)
hk | ≤ ε0(h, k), |(Dxφ)(i,j) − α

(i,j)
hk | ≤ ε1(h, k),

|(Dyφ)(i,j) − β
(i,j)
hk | ≤ ε2(h, k), on E0

hk;

(ii) w : E0 ∪ E → R is a solution of problem (1), (2) and w is of class

C3 on E;
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(iii) the compatibility condition

(26) |fhk(xi, yj , (whk)[i,j], (Dxwhk)[i,j], (Dywhk)[ij])

− f(xi, yj , w(xi,yj), (Dxw)(xi ,yj), (Dyw)(xi,yj))| ≤ α̃(h, k)

is satisfied on Ehk with α̃ ∈ Θ, where whk, Dxwhk, Dywhk are the restric-

tions of w, Dxw, Dyw, respectively , to E0
hk ∪ Ehk.

Under these assumptions there exist βi ∈ Θ, i = 0, 1, 2, such that

|w(i,j) − z
(i,j)
hk | ≤ β0(h, k), |(Dxw)(i,j) − u

(i,j)
hk | ≤ β1(h, k),

|(Dyw)(i,j) − v
(i,j)
hk | ≤ β2(h, k), on Ehk.

P r o o f. Let ηhk, ξhk, λhk be defined by

δw
(i,j)
hk = fhk[whk,Dxwhk,Dywhk](i,j) + η

(i,j)
hk ,

δ2Dxw
(i,j)
hk = fhk[whk,Dxwhk,Dywhk](i,j) + ξ

(i,j)
hk ,

δ1Dyw
(i,j)
hk = fhk[whk,Dxwhk,Dywhk](i,j) + λ

(i,j)
hk .

From the compatibility condition (26) and (ii) it follows that there are αi ∈
Θ, i = 0, 1, 2, such that

|η
(i,j)
hk | ≤ α0(h, k), |ξ

(i,j)
hk | ≤ α1(h, k), |λ

(i,j)
hk | ≤ α0(h, k).

Let z̃
(i,j)
hk = |z

(i,j)
hk − w(i,j)|, ũ

(i,j)
hk = |u

(i,j)
hk − (Dxw)(i,j)|, ṽ

(i,j)
hk = |v

(i,j)
hk −

(Dyw)(i,j)|. Then

z̃
(i,j)
hk ≤ V0σhk[z̃hk, ũhk, ṽhk](i,j) + hikjα0(h, k),

ũ
(i,j)
hk ≤ V1σhk[z̃hk, ũhk, ṽhk](i,j) + kjα1(h, k),

ṽ
(i,j)
hk ≤ V2σhk[z̃hk, ũhk, ṽhk](i,j) + hiα2(h, k), on Ehk,

z̃
(i,j)
hk ≤ ε0(h, k), ũ

(i,j)
hk ≤ ε1(h, k), ṽ

(i,j)
hk ≤ ε2(h, k), on E0

hk.

Let (z, u, v) ∈ Ξ be a solution of the problem

z(i,j) = V0σhk[z, u, v](i,j) + abα0(h, k),

u(i,j) = V1σhk[z, u, v](i,j) + bα1(h, k),

v(i,j) = V2σhk[z, u, v](i,j) + aα2(h, k), on Ehk,

z(i,j) = ε0(h, k), u(i,j) = ε1(h, k), v(i,j) = ε2(h, k), on E0
hk.

Lemma 3 implies that

z̃
(i,j)
hk ≤ z (i,j), ũ

(i,j)
hk ≤ u (i,j), ṽ

(i,j)
hk ≤ v (i,j), on Ehk.

The stability of problem (23), (24) completes the proof of Theorem 4.
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We consider the difference method

δz(i,j) = f(xi, yj , Thkz[i,j], Thku[i,j], Thkv[i,j]),

δ2u
(i,j) = f(xi, yi, Thkz[i,j], Thku[i,j], Thkv[i,j]),(27)

δ1v
(i,j) = f(xi, yj , Thkz[i,j], Thku[i,j], Thkv[i,j]),

on Ehk − {(h, k)}, Ehk − {(0, k)}, Ehk − {(h, 0)}, respectively, and

(28) z = φhk, u = αhk, v = βhk, on E0
hk,

where Thk : F [Bhk, R] → C(B, R) is an interpolating operator defined by

(29) Thkw(t, s) = w(i+1,j+1) t − xi

h

s − yj

k
+ w(i,j+1)

[
1 −

t − xi

h

]
s − yj

k

+ w(i+1,j) t − xi

h

[
1 −

s − yj

k

]
+ w(i,j)

[
1 −

t − xi

h

][
1 −

s − yj

k

]
,

for (t, s) ∈ B, where i, j < 0 are integers such that xi ≤ t ≤ xi+1 and
yj ≤ s ≤ yj+1.

The above problem may be considered as a generalization of the Euler
method for ordinary functional differential equations.

Assumption H3. Suppose that f : E×C(B, R)3 → R is continuous and

(i) there is a continuous and nondecreasing function σ : E × R+ → R+

such that σ(x, y, 0) = 0 for (x, y) ∈ E;

(ii) the function ω(x, y) = 0, (x, y) ∈ E, is a unique solution of the
problem

Dxyz(x, y) = σ(x, y, z(x, y)) + L1Dxz(x, y) + L2Dyz(x, y), (x, y) ∈ E,

z(x, 0) = 0 for x ∈ [0, a], z(0, y) = 0 for y ∈ [0, b],

where L1, L2 are nonnegative constants;

(iii) the estimate

|f(x, y,w,w1, w2) − f(x, y,w,w1, w2)|

≤ σ(x, y, ‖w − w‖B) + L1‖w1 − w1‖B + L2‖w2 − w2‖B

is satisfied on E × C(B, R)3, where ‖ · ‖B denotes the supremum norm in
C(B, R).

Theorem 5. Suppose that K = 0, Assumption H3 is satisfied and

(i) (zhk, uhk, vhk) ∈ Ξ is a solution of problem (27), (28) and there are

εi ∈ Θ, i = 0, 1, 2, such that (25) holds;

(ii) w : E0 ∪ E → R is a solution of problem (1), (2) and w is of class

C4 on E.
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Then there are βi ∈ Θ, i = 0, 1, 2, such that

|z
(i,j)
hk − w(i,j)| ≤ β0(h, k), |u

(i,j)
hk − (Dxw)(i,j)| ≤ β1(h, k),

|v
(i,j)
hk − (Dyw)(i,j)| ≤ β2(h, k), on Ehk.

P r o o f. Since K = 0 we have Bhk = B1
hk = B2

hk. Let

fhk(x, y,w,w1, w2) = f(x, y, Thkw, Thkw1, Thkw2)

for (x, y,w,w1, w2) ∈ Ehk ×F [Bhk, R]3. Then

|fhk(x, y,w,w1, w2) − fhk(x, y,w,w1, w2)|

≤ σ(x, y, ‖Thk(w − w)‖B) + L1‖Thk(w1 − w1)‖B + L2‖Thk(w2 − w2)‖B

= σ(x, y, |w − w|hk) + L1|w1 − w1|hk + L2|w2 − w2|hk

on Ehk × F [Bhk, R]3. The operator Thk has the following property: if w ∈

F(B, R) is of class C3 then there is C̃ > 0 such that

(30) ‖Thkwhk − w‖B ≤ C̃(h2 + k2),

from which it follows that fhk satisfies the compatibility condition (26).
Consider the problem

δz(i,j) = σ(xi, yj , z
(i,j)) + L1u

(i,j) + L2v
(i,j),

δ2u
(i,j) = σ(xi, yj , z

(i,j)) + L1u
(i,j) + L2v

(i,j),(31)

δ1v
(i,j) = σ(xi, yj , z

(i,j)) + L1u
(i,j) + L2v

(i,j),

on Ehk − {(h, k)}, Ehk − {(0, k)}, Ehk − {(h, 0)}, respectively, and

(32) z(i,j) = u(i,j) = v(i,j) = 0, on E0
hk.

We prove that the zero solution of this problem is stable.

Let (z̃hk, ũhk, ṽhk) ∈ Ξ+ be a solution of the problem

δz(i,j) = σ(xi, yj , z
(i,j)) + L1u

(i,j) + L2v
(i,j) + α0(h, k),

δ2u
(i,j) = σ(xi, yj , z

(i,j)) + L1u
(i,j) + L2v

(i,j) + α1(h, k),

δ1v
(i,j) = σ(xi, yj , z

(i,j)) + L1u
(i,j) + L2v

(i,j) + α2(h, k),

on Ehk − {(h, k)}, Ehk − {(0, k)}, Ehk − {(h, 0)}, respectively, and

z(i,j) = ε0(h, k), u(i,j) = ε1(h, k), v(i,j) = ε2(h, k), on E0
hk,

where αi, εi ∈ Θ, i = 0, 1, 2. Consider the Darboux problem

Dxyz(x, y) = σ(x, y, z(x, y)) + L1Dxz(x, y) + L2Dyz(x, y)

+ α0(h, k) + α1(h, k) + α2(h, k) (x, y) ∈ E,

z(x, 0) = ε0(h, k) + ε1(h, k)x for x ∈ [0, a],

z(0, y) = ε0(h, k) + ε2(h, k)y for y ∈ [0, b].
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There is ̺ > 0 such that if h+k < ̺ then there exists a solution zhk : E → R

of this problem and

lim
(h,k)→(0,0)

zhk(x, y) = lim
(h,k)→(0,0)

Dxzhk(x, y)(33)

= lim
(h,k)→(0,0)

Dyzhk(x, y) = 0,

uniformly on E. It is obvious that the following functions are nondecreasing:
zhk in (x, y), Dxzhk in y and Dyzhk in x. The relations

Dxzhk(x, y) = ε1(h, k)

+

y\
0

eL1(y−s)σ(x, s, z(x, s)) ds + L2

y\
0

eL1(y−s)Dyzhk(x, s) ds,

Dyzhk(x, y) = ε2(h, k)

+

x\
0

eL2(x−t)σ(t, y, z(t, y)) dt + L1

x\
0

eL2(x−t)Dxzhk(t, y) dt

yield that Dxzhk is nondecreasing in x and Dyzhk in y. Thus for h + k < ̺
we have

z
(i,j)
hk =

xi\
0

yj\
0

[σ(t, s, zhk(t, s)) + L1Dxzhk(t, s) + L2Dyzhk(t, s)

+ α0(h, k) + α1(h, k) + α2(h, k)] dt ds

+ ε0(h, k) + xiε1(h, k) + yjε2(h, k)

≥ hk

i−1∑

µ=0

j−1∑

ν=0

[σ(xµ, yν , z
(µ,ν)
hk ) + L1Dxz

(µ,ν)
hk + L2Dyz

(µ,ν)
hk

+ α0(h, k)] + ε0(h, k),

(Dxzhk)(i,j) =

yj\
0

[σ(xi, s, zhk(xi, s)) + L1Dxzhk(xi, s) + L2Dyzhk(xi, s)

+ α0(h, k) + α1(h, k) + α2(h, k)] ds + ε1(h, k)

≥ k

j−1∑

ν=0

[σ(xi, yν , z
(i,ν)
hk ) + L1Dxz

(i,ν)
hk + L2Dyz

(i,ν)
hk

+ α1(h, k)] + ε1(h, k),

(Dyzhk)(i,j) =

xi\
0

[σ(t, yj , zhk(t, yj)) + L1Dxzhk(t, yj) + L2Dyzhk(t, yj)

+ α0(h, k) + α1(h, k) + α2(h, k)] dt + ε2(h, k)

≥ h

i−1∑

µ=0

[σ(xµ, yj , z
(µ,j)
hk ) + L1Dxz

(µ,j)
hk + L2Dyz

(µ,j)
hk

+ α2(h, k)] + ε2(h, k),
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on Ehk. Since on the same set we have

z̃
(i,j)
hk = hk

i−1∑

µ=0

j−1∑

ν=0

[σ(xµ, yν , z̃
(µ,ν)
hk ) + L1ũ

(µ,ν)
hk + L2ṽ

(µ,ν)
hk

+ α0(h, k)] + ε0(h, k),

ũ
(i,j)
hk = k

j−1∑

ν=0

[σ(xi, yν , z̃
(i,ν)
hk ) + L1ũ

(i,ν)
hk + L2ṽ

(i,ν)
hk + α1(h, k)] + ε1(h, k),

ṽ
(i,j)
hk = h

i−1∑

µ=0

[σ(xµ, yj , z̃
(µ,j)
hk ) + L1ũ

(µ,j)
hk + L2ṽ

(µ,j)
hk + α2(h, k)] + ε2(h, k),

it follows from Lemma 3 that z̃
(i,j)
hk ≤ z

(i,j)
hk , ũ

(i,j)
hk ≤ (Dxzhk)(i,j), ṽ

(i,j)
hk ≤

(Dyzhk)(i,j). Thus stability of (31), (32) follows from (33).

4. Convergence of implicit difference methods. Let K = 1 in
the definition of Bhk, B1

hk, B2
hk. The operator Thk that we have used in

the previous section may be defined by the same formula (29) on the sets
[−a0, h]× [−b0, k], [−a0, h]× [−b0, 0], [−a0, 0]× [−b0, k]. Using formula (29)
on these three domains respectively we define three new operators by

Shkw(t, s) = Thkw(t + h/2, s + k/2), (t, s) ∈ B,

Shkw(t, s) = Thkw(t + h/2, s), (t, s) ∈ B,

Shkw(t, s) = Thkw(t, s + k/2), (t, s) ∈ B.

Consider the difference problem

δz(i,j) = f(xi+1/2, yj+1/2, Shkz[i,j], Shku[i,j], Shkv[i,j]),

δ2u
(i,j) = f(xi+1/2, yi+1/2, Shkz[i,j], Shku[i,j], Shkv[i,j]),(34)

δ1v
(i,j) = f(xi+1/2, yj+1/2, Shkz[i,j], Shku[i,j], Shkv[i,j]),

on Ehk − {(h, k)}, E1
hk − {(0, k)}, E2

hk − {(h, 0)}, respectively, and

(35) z = φhk, u = αhk, v = βhk, on E0
hk.

Assumption H4. Suppose that f : E×C(B, R)3 → R is continuous and
there are L,L1, L2 ∈ R+ such that

|f(x, y,w,w1, w2) − f(x, y,w,w1, w2)|

≤ L‖w − w‖B + L1‖w1 − w1‖B + L2‖w2 − w2‖B on E × C(B, R)3.

Theorem 6. Suppose that Assumption H4 is satisfied and

(i) w : E0 ∪ E → R is a solution of problem (1), (2), and w is of class

C4 on E;
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(ii) Lab + L1b + L2a < 1, and there are εi ∈ Θ, i = 0, 1, 2, such that

inequalities (25) hold true.

Then there exists exactly one solution (zhk, uhk, vhk) ∈ Ξ of problem

(34), (35) and there are C,C1, C2 ∈ R+ such that

|z
(i,j)
hk − w(i,j)| ≤ xiyjΥ (h, k)(i,j) + xiyjC(h2 + k2) + 3ε0(h, k),

|u
(i,j)
hk − (Dxw)(i,j)| ≤ yjΥ (h, k)(i+1,j) + yjC1(h + k) + ε1(h, k),

|v
(i,j)
hk − (Dyw)(i,j)| ≤ xiΥ (h, k)(i,j+1) + xiC2(h + k) + ε2(h, k),

on Ehk, E1
hk, E2

hk, respectively , where

Υ (h, k)(i,j) =
1

1 − Lxiyj − L1yj − L2xi
[3Lε0(h, k) + L1ε1(h, k)

+ L2ε2(h, k) + LxiyjC(h2 + k2)

+ L1yjC1(h + k) + L2xiC2(h + k)].

P r o o f. Define

fhk(xi, yj , w,w1, w2) = f(xi+1/2, yj+1/2, Shkw,Shkw1, Shkw2).

Then

(36) |fhk(xi, yj , w,w1, w2) − fhk(xi, yj , w,w1, w2)|

≤ L‖Shkw − Shkw‖B + L1‖Shkw1 − Shkw1‖B + L2‖Shkw2 − Shkw2‖B

= L|w − w|hk + L1|w1 − w1|hk + L2|w2 − w2|hk.

Let

σhk(x, y,w,w1, w2) = L|w|hk + L1|w1|hk + L2|w2|hk

for (x, y,w,w1, w2) ∈ Ehk × F [Bhk, R+] × F [B1
hk, R+] × F [B2

hk, R+]. Then
problem (15), (16) with the above defined σhk is equivalent to

z(i,j) = hk

i−1∑

µ=0

j−1∑

ν=0

[Lz(µ+1,ν+1) + L1u
(µ,ν+1) + L2v

(µ+1,ν)] on Ehk,

u(i,j) = k

j−1∑

ν=0

[Lz(i+1,ν+1) + L1u
(i,ν+1) + L2v

(i+1,ν)] on E1
hk,(37)

v(i,j) = h

i−1∑

µ=0

[Lz(µ+1,j+1) + L1u
(µ,j+1) + L2v

(µ+1,j)] on E2
hk,

z(i,j) = u(i,j) = v(i,j) = 0 on E0
hk.(38)
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It follows from (ii) that problem (37), (38) satisfies conditions (iii) and (iv)
of Assumption H1. The uniqueness of the trivial solution of this problem
follows from Remark 3.

Let ηhk, ξhk, λhk be defined by

δw
(i,j)
hk = f(xi+1/2, yj+1/2, Shk(whk)[i,j],

Shk(Dxwhk)[i,j], Shk(Dywhk)[i,j]) + η
(i,j)
hk ,

δ2(Dxwhk)(i,j) = f(xi+1/2, yj+1/2, Shk(whk)[i,j],

Shk(Dxwhk)[i,j], Shk(Dywhk)[i,j]) + ξ
(i,j)
hk ,

δ1(Dywhk)(i,j) = f(xi+1/2, yj+1/2, Shk(whk)[i,j],

Shk(Dxwhk)[i,j], Shk(Dywhk)[i,j]) + λ
(i,j)
hk .

From (i) and (30) it follows that there are C,C1, C2 ∈ R+ such that

|η
(i,j)
hk | ≤ C(h2 + k2), |ξ

(i,j)
hk | ≤ C1(h + k), |λ

(i,j)
hk | ≤ C2(h + k).

Let

z̃
(i,j)
hk = max

−M0≤µ≤i
−N0≤ν≤j

|z
(µ,ν)
hk − w

(µ,ν)
hk |,

ũ
(i,j)
hk = max

−M0≤µ≤i
−N0≤ν≤j

|u
(µ,ν)
hk −Dxw

(µ,ν)
hk |, ṽ

(i,j)
hk = max

−M0≤µ≤i
−N0≤ν≤j

|v
(µ,ν)
hk −Dyw

(µ,ν)
hk |.

Since these functions are nondecreasing we have by (36) the inequalities

z̃
(i,j)
hk ≤ hk

i−1∑

µ=0

j−1∑

ν=0

[Lz̃
(µ+1,ν+1)
hk + L1ũ

(µ,ν+1)
hk + L2ṽ

(µ+1,ν)
hk

+ C(h2 + k2)] + 3ε0(h, k),

ũ
(i,j)
hk ≤ k

j−1∑

ν=0

[Lz̃
(i+1,ν+1)
hk + L1ũ

(i,ν+1)
hk + L2ṽ

(i+1,ν)
hk(39)

+ C1(h + k)] + ε1(h, k),

ṽ
(i,j)
hk ≤ h

i−1∑

µ=0

[Lz̃
(µ+1,j+1)
hk + L1ũ

(µ,j+1)
hk + L2ṽ

(µ+1,j)
hk

+ C2(h + k)] + ε2(h, k),

on Ehk, E1
hk, E2

hk, respectively, and

z̃
(i,j)
hk ≤ ε0(h, k), ũ

(i,j)
hk ≤ ε1(h, k), ṽ

(i,j)
hk ≤ ε2(h, k), on E0

hk.
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Let the functions z
(i,j)
hk , u

(i,j)
hk , v

(i,j)
hk , be defined by

z
(i,j)
hk =

{
xiyjΥ (h, k)(i,j) + xiyjC(h2 + k2) + 3ε0(h, k) on Ehk,

3ε0(h, k) on E0
hk,

u
(i,j)
hk =

{
yjΥ (h, k)(i+1,j) + yjC1(h + k) + ε1(h, k) on E1

hk,

ε1(h, k) on E0
hk,

(40)

v
(i,j)
hk =

{
xiΥ (h, k)(i,j+1) + xiC2(h + k) + ε2(h, k) on E1

hk,

ε2(h, k) on E0
hk.

We will prove by induction that

(41) z̃
(i,j)
hk ≤ z

(i,j)
hk , ũ

(i,j)
hk ≤ u

(i,j)
hk , ṽ

(i,j)
hk ≤ v

(i,j)
hk ,

on Ehk, E1
hk, E2

hk, respectively. The relations (41) obviously hold on E0
hk.

Suppose that for all µ, ν such that µ < i, ν < j, we have

z̃
(µ,ν)
hk ≤ z

(µ,ν)
hk , ũ

(µ−1,ν)
hk ≤ u

(µ−1,ν)
hk , ṽ

(µ,ν−1)
hk ≤ v

(µ,ν−1)
hk .

By (39) we see that z̃hk, ũhk, ṽhk satisfy the inequalities

z(i,j) − hk[Lz(i,j) + L1u
(i−1,j) + L2v

(i,j−1)]

≤ hk

i−1∑

µ=0

j−1∑

ν=0

(µ,ν)6=(i−1,j−1)

[Lz(µ+1,ν+1) + L1u
(µ,ν+1) + L2v

(µ+1,ν)

+ C(h2 + k2)] + 3ε0(h, k),

u(i−1,j) − k[Lz(i,j) + L1u
(i−1,j) + L2v

(i,j−1)]

≤ k

j−2∑

ν=0

[Lz(i,ν+1) + L1u
(i−1,ν+1) + L2v

(i,ν) + C1(h + k)] + ε1(h, k),

v(i,j−1) − h[Lz(i,j) + L1u
(i−1,j) + L2v

(i,j−1)]

≤ h
i−2∑

µ=0

[Lz(µ+1,j) + L1u
(µ,j) + L2v

(µ+1,j−1) + C2(h + k)] + ε2(h, k),

while the functions zhk, uhk, vhk defined by (40) satisfy the reverse inequal-
ities. Thus by the inductive assumption we get

z̃
(i,j)
hk − hk[Lz̃

(i,j)
hk + L1ũ

(i−1,j)
hk + L2ṽ

(i,j−1)
hk ]

≤ z
(i,j)
hk − hk[Lz

(i,j)
hk + L1u

(i−1,j)
hk + L2v

(i,j−1)
hk ],

ũ
(i−1,j)
hk − k[Lz̃

(i,j)
hk + L1ũ

(i−1,j)
hk + L2ṽ

(i,j−1)
hk ]

≤ u
(i−1,j)
hk − k[Lz

(i,j)
hk + L1u

(i−1,j)
hk + L2v

(i,j−1)
hk ],
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ṽ
(i,j−1)
hk − h[Lz̃

(i,j)
hk + L1ũ

(i−1,j)
hk + L2ṽ

(i,j−1)
hk ]

≤ v
(i,j−1)
hk − h[Lz

(i,j)
hk + L1u

(i−1,j)
hk + L2v

(i,j−1)
hk ],

from which we obtain

z̃
(i,j)
hk ≤ z

(i,j)
hk , ũ

(i−1,j)
hk ≤ u

(i−1,j)
hk , ṽ

(i,j−1)
hk ≤ v

(i,j−1)
hk .

Thus (41) follows by induction, which completes the proof of Theorem 6.

5. Numerical examples. Equation (3) with deviated argument is an
example of a functional equation (1). As a special case of (3) consider the
equation

(42) Dxyz(x, y) = z(x, y) − xDxz(x/2, y) − yDyz(x, y/2) + g1(x, y)

on E = [0, 1/2] × [0, 1/2], where

g1(x, y) = 1 + 4xy + 3y2 + x2y2 + 3
4xy3.

Since the delays x/2 and y/2 are nonnegative for (x, y) ∈ E, for the initial
set E0 we may take [0, 1/2]×{0}∪{0}× [0, 1/2]. For the Darboux condition
for (42) we take

(43) z(x, 0) = −1 + x for x ∈ [0, 1/2], z(0, y) = −1 for y ∈ [0, 1/2].

The explicit difference scheme (27), (28) for (42), (43) takes the form

δz(i,j) = z(i,j) − xiThku(xi/2, yj) − yjThkv(xi, yj/2) + g1(xi, yj),

δ2u
(i,j) = z(i,j) − xiThku(xi/2, yj) − yjThkv(xi, yj/2) + g1(xi, yj),

δ1v
(i,j) = z(i,j) − xiThku(xi/2, yj) − yjThkv(xi, yj/2) + g1(xi, yj),

z(i,j) = −1 + xi, u(i,j) = 1, v(i,j) = 0 if j = 0,

z(i,j) = −1, u(i,j) = 1 + y3
j , v(i,j) = 0 if i = 0.

Note that

Thku(xi/2, yj) =

{
u(i/2,j) if i is even,
1
2
(u((i−1)/2,j) + u((i+1)/2,j)) if i is odd,

Thkv(xi, yj/2) =

{
v(i,j/2) if j is even,
1
2 (v(i,(j−1)/2) + v(i,(j+1)/2)) if j is odd.

The exact solution to (42), (43) is w(x, y) = −1+x+x2y2 +xy3. If h = k =
0.005 then the diagonal values of the errors at every tenth diagonal knot of
our mesh are given in Table 1.
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Table 1

xi = yi z
(i,i) − w(xi, xi) u

(i,i) −Dxw(xi, xi) v
(i,i) −Dyw(xi, xi)

0.05 −0.00000209 −0.00004312 −0.00002500
0.10 −0.00001712 −0.00017374 −0.00009999
0.15 −0.00005822 −0.00039185 −0.00022496
0.20 −0.00013849 −0.00069744 −0.00039990
0.25 −0.00027108 −0.00109051 −0.00062481
0.30 −0.00046910 −0.00157105 −0.00089967
0.35 −0.00074566 −0.00213905 −0.00122447
0.40 −0.00111390 −0.00279452 −0.00159923
0.45 −0.00158694 −0.00353745 −0.00202388
0.50 −0.00217789 −0.00436783 −0.00249852

If for comparison we consider the implicit difference scheme (34), (35)
for problem (42), (43) then we get

δz(i,j) = Shkz(xi, yj) − xi+1/2Shku(xi/2, yj)

− yj+1/2Shkv(xi, yj/2) + g1(xi+1/2, yj+1/2),

δ2u
(i,j) = Shkz(xi, yj) − xi+1/2Shku(xi/2, yj)

− yj+1/2Shkv(xi, yj/2) + g1(xi+1/2, yj+1/2),

δ1v
(i,j) = Shkz(xi, yj) − xi+1/2Shku(xi/2, yj)

− yj+1/2Shkv(xi, yj/2) + g1(xi+1/2, yj+1/2),

z(i,j) = −1 + xi, u(i,j) = 1, v(i,j) = 0, if j = 0,

z(i,j) = −1, u(i,j) = 1 + y3
j , v(i,j) = 0, if i = 0.

In this case we have

Shkz(xi, yj) = 1
4 (z(i,j) + z(i+1,j) + z(i,j+1) + z(i+1,j+1)),

Shku(xi/2, yj) =

{
1
2 (u(i/2,j) + u(i/2+1,j)) if i is even,

u((i+1)/2,j) if i is odd,

Shkv(xi, yj/2) =

{
1
2 (v(i,j/2) + v(i,j/2+1)) if j is even,

v(i,(j+1)/2) if j is odd.

The errors for h = k = 0.005 are given in Table 2.
As an example of a differential-integral equation (4) consider the equa-

tion

(44) Dxyz(x, y) = Dxz(x, y) + 2Dyz(x, y)

+ 16

x\
x−1/2

y\
y−1/2

z(t, s) dt ds + g2(x, y) on E = [0, 1/2] × [0, 1/2],



Darboux problem 191

Table 2

xi = yi z
(i,i) − w(xi, xi) u

(i,i) −Dxw(xi, xi) v
(i,i) −Dyw(xi, xi)

0.05 −0.00000002 0.00001217 0.00005093
0.10 −0.00000007 0.00004910 0.00020171
0.15 −0.00000021 0.00011015 0.00045192
0.20 −0.00000054 0.00019426 0.00080080
0.25 −0.00000128 0.00029996 0.00124732
0.30 −0.00000280 0.00042537 0.00179014
0.35 −0.00000564 0.00056822 0.00242765
0.40 −0.00001055 0.00072584 0.00315796
0.45 −0.00001852 0.00089523 0.00397896
0.50 −0.00003081 0.00107304 0.00488826

where g2(x, y) = 5−9y +4xy +24xy2, together with the Darboux condition

(45) z(x, y) = −1 + 2xy − 6xy2

on E0 = [−1/2, 1/2] × [−1/2, 1/2] \ (0, 1/2] × (0, 1/2].

The explicit difference scheme (27), (28) for (44), (45) takes the form

δz(i,j) = u(i,j) + 2v(i,j) + 16

x\
x−1/2

y\
y−1/2

Thkz(t, s) dt ds + g2(xi, yj),

δ2u
(i,j) = u(i,j) + 2v(i,j) + 16

x\
x−1/2

y\
y−1/2

Thkz(t, s) dt ds + g2(xi, yj),

δ1v
(i,j) = u(i,j) + 2v(i,j) + 16

x\
x−1/2

y\
y−1/2

Thkz(t, s) dt ds + g2(xi, yj),

and

z(i,j) = −1 + 2xiyj − 6xiy
2
j , u(i,j) = 2yj − 6y2

j , v(i,j) = 2xi − 12xiyj ,

on E0
hk. Note that the integrals in the above scheme may be computed easily

if we use the relation

xi+1\
xi

yj+1\
yj

Thkz(t, s) dt ds =
hk

2
(z(i,j) + z(i+1,j) + z(i,j+1) + z(i+1,j+1)).

The exact solution to (42), (43) is w(x, y) = −1+2xy−6xy2. The errors for
h = k = 0.005 are given in Table 3.
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Table 3

xi = yi z
(i,i) − w(xi, xi) u

(i,i) −Dxw(xi, xi) v
(i,i) −Dyw(xi, xi)

0.05 0.00007685 0.00153899 0.00008161
0.10 0.00031647 0.00318277 0.00035100
0.15 0.00073559 0.00497368 0.00085878
0.20 0.00135639 0.00697171 0.00167348
0.25 0.00220865 0.00926232 0.00288914
0.30 0.00333269 0.01196712 0.00463545
0.35 0.00478371 0.01525837 0.00709152
0.40 0.00663757 0.01937877 0.01050441
0.45 0.00899891 0.02466848 0.01521429
0.50 0.01201233 0.03160205 0.02168859
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