ANNALES POLONICI MATHEMATICI LXXI.3 (1999)

Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side

by DIEGO AVERNA (Palermo) and GABRIELE BONANNO (Reggio Calabria)

Abstract. Let $F : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be a multifunction with possibly non-convex and unbounded values. The main result of this paper (Theorem 1) asserts that, given the multivalued boundary value problem

$$(\mathbf{P}_F) \qquad \begin{cases} u'' \in F(t, u, u'), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n} \end{cases}$$

if an appropriate restriction of the multifunction F has non-empty and closed values and satisfies the lower Scorza Dragoni property and a weak integrable boundedness type condition, then we can substitute the problem (P_F) with another one (P_G), with a suitable convex right-hand side G, such that every generalized solution of (P_G) is also a generalized solution of (P_F) (see also Remark 1 and Corollary 1).

As a consequence of our results, in conjunction with those in [13] and [18], some existence theorems for multivalued boundary value problems are then presented (see Theorem 2, Corollary 2 and Theorem 3).

Finally, some applications are given to the existence of generalized solutions for two implicit boundary value problems (Theorems 4–6).

1. Introduction. Let $([a, b], \mathcal{L}, \mu)$ be the Lebesgue measure space on the compact real interval [a, b]; \mathbb{R}^n the euclidean *n*-space, whose zero element is denoted by $\vartheta_{\mathbb{R}^n}$; $s \in [1, \infty]$; $W^{2,s}([a, b], \mathbb{R}^n) := \{u : [a, b] \to \mathbb{R}^n \mid u \in C^1([a, b], \mathbb{R}^n), u' \in AC([a, b], \mathbb{R}^n), u'' \in L^s([a, b], \mathbb{R}^n)\}; F : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ a multifunction.

Consider the problem

$$(\mathbf{P}_F) \qquad \qquad \begin{cases} u'' \in F(t, u, u'), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}. \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification: 34A60, 34B15, 34A09.

Key words and phrases: multivalued differential inclusions, boundary value problems, non-convex and unbounded right-hand side, directional continuous selections, implicit equations.

This research was supported by 60% MURST.

^[253]

A function $u : [a,b] \to \mathbb{R}^n$ is said to be a generalized solution of the problem (\mathbf{P}_F) in $W^{2,s}([a,b],\mathbb{R}^n)$ if $u \in W^{2,s}([a,b],\mathbb{R}^n)$, $u(a) = u(b) = \vartheta_{\mathbb{R}^n}$, and $u''(t) \in F(t, u(t), u'(t))$ a.e. in [a,b].

This paper is arranged as follows. After some notations and preliminary results given in Section 2, in Section 3 we prove our main result (Theorem 1) which states that, if F(t, x, z) is a multifunction, with possibly non-convex and unbounded values, such that an appropriate restriction of F satisfies the lower Scorza Dragoni property and a weak integrable boundedness type condition with a function $m \in L^s([a, b], \mathbb{R}^+_0)$, then there exists another multifunction $G : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$, with non-empty, closed and convex values, such that $G(\cdot, x, z)$ is measurable, $G(t, \cdot, \cdot)$ has closed graph, G is integrably bounded by m, and every generalized solution of the problem

$$(\mathbf{P}_G) \qquad \qquad \begin{cases} u'' \in G(t, u, u'), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n} \end{cases}$$

in $W^{2,s}([a,b],\mathbb{R}^n)$ is also a generalized solution of (\mathbb{P}_F) in $W^{2,s}([a,b],\mathbb{R}^n)$ (see also Remark 1 and Corollary 1).

The technical approach consists in the substitution of the multifunction F with another one H, which is integrably bounded by m and has the lower Scorza Dragoni property, and in the use of Bressan's directional continuous selections ([6]) in order to obtain G by means of a convexification.

In Section 4, some existence theorems for problem (P_F) follow as a simple consequence of our theorems and Theorem 2.1 of [13] (see Theorem 2 and Corollary 2). They both improve Theorem 3 of [8]. Moreover, by using a result of [18] and our Theorem 2, an existence theorem for the problem

$$(\mathbf{P}_{F \circ G}) \qquad \qquad \begin{cases} u'' \in F(G(t, u, u')), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}, \end{cases}$$

is given (Theorem 3), where the multifunction $F \circ G$ is not required to be lower or upper semicontinuous, and its values can be non-convex, non-closed and unbounded (see also Remark 4).

In Section 5, some applications are given of our results to the existence of generalized solutions in $W^{2,s}([a,b],\mathbb{R}^n)$ for a boundary value problem for second-order implicit equations f(t, u, u', u'') = 0. Usually, in the literature, very strong conditions are required for $f(t, u, u', \cdot)$ to assure existence of solutions for such a problem (such as lipschitzianity, with Lipschitz constant strictly less than 1). The first attempt to obtain existence theorems where rather general conditions on the function f with respect to the last variable are required seems to be [14], to which we refer for other bibliographical references.

We give three theorems.

The first one (Theorem 4) is an existence theorem for the boundary value problem

$$(\mathbf{P}_f^i) \qquad \qquad \begin{cases} f(t, u, u', u'') = 0, \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}, \end{cases}$$

where, given a non-empty, connected, locally connected, but possibly nonclosed and unbounded subset Y of \mathbb{R}^n , $f : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \times Y \to \mathbb{R}$ is a function which, besides other conditions, is continuous in its last variable (for suitable values of (t, u, u')) and satisfies with respect to the other variables a condition weaker than the Scorza Dragoni property.

The second one (Theorem 5) is another existence theorem for the boundary value problem (\mathbb{P}_f^i) , where Y is a non-empty, bounded, connected and locally connected, but possibly non-closed subset of \mathbb{R}^n , and f is again continuous in u''. This theorem, just as Theorem 2.1 of [14], in which Y is also closed, gives existence of solutions in $W^{2,\infty}([a, b], \mathbb{R}^n)$.

The last one (Theorem 6) is an existence theorem for the boundary value problem

$$(\mathbf{P}_{f,g}^{i}) \qquad \qquad \begin{cases} f(u'') = g(t, u, u'), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^{n}} \end{cases}$$

where, given a non-empty subset Y of \mathbb{R}^n , $f : Y \to \mathbb{R}$ is not required to be continuous, and a suitable restriction of $g : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ has the Scorza Dragoni property. Theorem 6 improves Theorem 2.2 of [14], in which the continuity of f and g is required, Y is a non-empty, compact, connected and locally connected subset of \mathbb{R}^n , and only generalized solutions in $W^{2,\infty}([a,b],\mathbb{R}^n)$ can be obtained.

Finally, we give an example which shows that our Theorems 4 and 6 can be used to obtain existence of solutions also for boundary value problems with no solutions in $W^{2,\infty}([a,b],\mathbb{R}^n)$.

2. Notations and preliminaries. Let A, B be two non-empty sets. A multifunction $\Phi : A \to 2^B$ is a function from A into the family of all subsets of B. The graph of Φ is the set $\operatorname{gr}(\Phi) := \{(a,b) \in A \times B : b \in \Phi(a)\}$. If Ω is a subset of B, we put $\Phi^-(\Omega) := \{a \in A : \Phi(a) \cap \Omega \neq \emptyset\}$ and $\Phi^+(\Omega) := \{a \in A : \Phi(a) \subset \Omega\}$. If C is a non-empty subset of A, we put $\Phi(C) := \bigcup_{c \in C} \Phi(c)$, and we denote by $\Phi_{|C}$ the restriction of Φ to C.

If (A, τ_A) is a topological space and $E \subset A$, then int(E) and \overline{E} denote, as usual, the interior and the closure of the set E respectively; $\mathcal{B}(A)$ denotes the σ -algebra generated by τ_A .

If (B, τ_B) is a topological space, then $\overline{\Phi}$ denotes the multifunction from A into 2^B defined by $\overline{\Phi}(a) = \overline{\Phi(a)}$.

If (A, \mathcal{F}_A) is a measurable space and (B, τ_B) a topological space, we say that Φ is *measurable* (or \mathcal{F}_A -measurable) if $\Phi^-(\Omega) \in \mathcal{F}_A$ for every $\Omega \in \tau_B$. If (A, τ_A) and (B, τ_B) are two topological spaces, we say that Φ is *lower* (resp. *upper*) semicontinuous if $\Phi^-(\Omega) \in \tau_A$ (resp. $\Phi^+(\Omega) \in \tau_A$) for every $\Omega \in \tau_B$; Φ is said to be continuous if it is simultaneously lower and upper semicontinuous. We say that a multifunction $\Psi : [a, b] \times A \to 2^B$ has the *lower Scorza Dragoni property* if for every $\varepsilon > 0$ there exists a compact set $T_{\varepsilon} \subset [a, b]$, with $\mu([a, b] \setminus T_{\varepsilon}) < \varepsilon$, such that $\Psi_{|T_{\varepsilon} \times A}$ is lower semicontinuous; we say that a function $f : [a, b] \times A \to B$ has the *Scorza Dragoni property* if for every $\varepsilon > 0$ there exists a compact set $T_{\varepsilon} \subset [a, b]$, with $\mu([a, b] \setminus T_{\varepsilon}) < \varepsilon$, such that $f_{|T_{\varepsilon} \times A}$ is lower semicontinuous; we have that a function $f : [a, b] \times A \to B$ has the *Scorza Dragoni property* if for every $\varepsilon > 0$ there exists a compact set $T_{\varepsilon} \subset [a, b]$, with $\mu([a, b] \setminus T_{\varepsilon}) < \varepsilon$, such that $f_{|T_{\varepsilon} \times A}$ is continuous.

Let (A, ϱ) be a metric space. For every $a \in A$ and every $r \geq 0$, we denote by $B_{\varrho}(a, r) := \{a' \in A : \varrho(a, a') \leq r\}$ the closed ball of center a and radius r and by $B_{\varrho}^{\circ}(a, r) := \{a' \in A : \varrho(a, a') < r\}$ the corresponding open ball. If $x \in A$ and C is a non-empty subset of A, we put $\varrho(x, A) := \inf\{\varrho(x, c) : c \in C\}$. As usual, when the metric is clear from the context, we use the notations B(a, r) and $B^{\circ}(a, r)$ respectively.

For all $(t, \sigma) \in [a, b] \times [a, b]$, put

$$K(t,\sigma) := \begin{cases} \frac{(b-t)(\sigma-a)}{b-a} & \text{if } a \leq \sigma \leq t \leq b, \\ \frac{(b-\sigma)(t-a)}{b-a} & \text{if } a \leq t \leq \sigma \leq b. \end{cases}$$

LEMMA 1 (cf. [13]). If $u \in W^{2,p}([a,b],\mathbb{R}^n)$, $p \in [1,\infty]$, and $u(a) = u(b) = \vartheta_{\mathbb{R}^n}$, then

(1)
$$u(t) = -\int_{a}^{b} K(t,\sigma)u''(\sigma) \, d\sigma$$

(2)
$$u'(t) = -\int_{a}^{b} \frac{\partial K(t,\sigma)}{\partial t} u''(\sigma) \, d\sigma.$$

To simplify the notations, in the following Lemmas 2 and 3 we assume the indeterminate expressions, when p = 1 or $p = \infty$, to be read as $\lim_{p\to 1^+}$ or $\lim_{p\to\infty}$ respectively.

LEMMA 2 (cf. [13], Lemma 1.1). Let $p \in [1, \infty]$. Then, for every $t \in [a, b]$, we have

(3)
$$\|K(t,\cdot)\|_{L^p([a,b],\mathbb{R})} \le \frac{(b-a)^{1+1/p}}{4(p+1)^{1/p}},$$

(4)
$$\left\|\frac{\partial K(t,\sigma)}{\partial t}\right\|_{L^p([a,b],\mathbb{R})} \le \frac{(b-a)^{1/p}}{(p+1)^{1/p}}.$$

In the following, $\|\cdot\|$ denotes a fixed norm on \mathbb{R}^n and d the metric induced by $\|\cdot\|$.

LEMMA 3. If $u \in W^{2,p}([a,b],\mathbb{R}^n)$, $p \in [1,\infty]$, and $u(a) = u(b) = \vartheta_{\mathbb{R}^n}$, then, for every $t \in [a,b]$, we have

(5)
$$||u(t)|| \leq \frac{b-a}{4} \left[\frac{(b-a)(p-1)}{2p-1} \right]^{1-1/p} ||u''||_{L^p([a,b],\mathbb{R}^n)},$$

(6)
$$||u'(t)|| \le \left[\frac{(b-a)(p-1)}{2p-1}\right]^{1-1/p} ||u''||_{L^p([a,b],\mathbb{R}^n)}$$

Moreover, for every $t,t^* \in [a,b]$ with $a \leq t < t^* \leq b,$ we have

(7)
$$||u(t^*) - u(t)|| \le \left[\frac{(b-a)(p-1)}{2p-1}\right]^{1-1/p} ||u''||_{L^p([a,b],\mathbb{R}^n)}(t^*-t).$$

Proof. By using (1), Hölder's inequality and (3), we obtain

$$\begin{split} \|u(t)\| &= \left\| \int_{a}^{b} K(t,\sigma) u''(\sigma) \, d\sigma \right\| \leq \int_{a}^{b} |K(t,\sigma)| \cdot \|u''(\sigma)\| \, d\sigma \\ &\leq \|K(t,\cdot)\|_{L^{p/(p-1)}([a,b],\mathbb{R})} \|u''\|_{L^{p}([a,b],\mathbb{R}^{n})} \\ &\leq \frac{b-a}{4} \left[\frac{(b-a)(p-1)}{2p-1} \right]^{1-1/p} \|u''\|_{L^{p}([a,b],\mathbb{R}^{n})}. \end{split}$$

Similarly, by using (2), Hölder's inequality and (4), we obtain

$$\begin{aligned} \|u'(t)\| &= \left\| \int_{a}^{b} \frac{\partial K(t,\sigma)}{\partial t} u''(\sigma) \, d\sigma \right\| \leq \int_{a}^{b} \left| \frac{\partial K(t,\sigma)}{\partial t} \right| \|u''(\sigma)\| \, d\sigma \\ &\leq \left\| \frac{\partial K(t,\cdot)}{\partial t} \right\|_{L^{p/(p-1)}([a,b],\mathbb{R})} \|u''\|_{L^{p}([a,b],\mathbb{R}^{n})} \\ &\leq \left[\frac{(b-a)(p-1)}{2p-1} \right]^{1-1/p} \|u''\|_{L^{p}([a,b],\mathbb{R}^{n})}.\end{aligned}$$

Finally, (7) is an immediate consequence of (6) and the weak form of the mean value theorem. \blacksquare

We recall that, given a set $L \in \mathcal{L}$, a point t is a *point of density* for L if

$$\lim_{\eta \to 0^+} \frac{\mu(L \cap [t - \eta, t + \eta])}{2\eta} = 1.$$

The "density theorem" (cf., for instance, [16], p. 17) asserts that almost every point of a set $L \in \mathcal{L}$ is a point of density for L.

LEMMA 4. Let $G : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$. Let $E \in \mathcal{L}$, $s \in [1,\infty]$, and $u \in W^{2,s}([a,b],\mathbb{R}^n)$ be such that $u''(t) \in G(t,u(t),u'(t))$ a.e. in E. Let T be the set of all $t \in E$ such that:

1) $u''(t) \in G(t, u(t), u'(t));$

2) there exists a strictly decreasing sequence $(t_i)_i$ in E such that

$$t_j \xrightarrow{j} t, \quad u''(t_j) \xrightarrow{j} u''(t), \quad u''(t_j) \in G(t_j, u(t_j), u'(t_j))$$

Then $\mu(T) = \mu(E)$.

Proof. Let $T_1 := \{t \in E : u''(t) \in G(t, u(t), u'(t))\}$. By hypothesis, $\mu(T_1) = \mu(E)$.

Since $u'' \in L^s([a, b], \mathbb{R}^n)$, in particular it satisfies the assumption of Lusin's theorem. Thus, for every $\varepsilon > 0$ there exists $T_{\varepsilon} \subset [a, b]$ such that $\mu(T_{\varepsilon}) > b - a - \varepsilon$ and $u''|_{T_{\varepsilon}}$ is continuous.

Put $T_2 := T_1 \cap T_{\varepsilon}$. Then $\mu(T_2) = \mu(E \cap T_{\varepsilon}) > \mu(E) - \varepsilon$, $u''_{|T_2|}$ is continuous, and $u''(t) \in G(t, u(t), u'(t))$ for every $t \in T_2$.

Let T_3 be the set of all points of T_2 which are points of density for T_2 . By the density theorem and the definition of point of density, we obtain $\mu(T_3) = \mu(T_2) > \mu(E) - \varepsilon$, and for every $t \in T_3$ there exists a strictly decreasing sequence $(t_j)_j$ in T_2 , such that $t_j \xrightarrow{j} t$. Thus, $T_3 \subset T$, so that $\mu(T) \ge \mu(T_3) > \mu(E) - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, the conclusion follows.

LEMMA 5. Let (A, τ_A) be a topological space and (Y, ϱ) a metric space. Let $F : A \to 2^Y$ be a lower semicontinuous multifunction, $m : A \to \mathbb{R}_0^+$ a lower semicontinuous function, and $y \in Y$. Then the multifunction $I_y :$ $A \to 2^Y$ defined by $I_y(t) := F(t) \cap B^\circ(y, m(t))$ is lower semicontinuous.

Proof. Let Ω be an open subset of Y and $t_0 \in I_y^-(\Omega)$. Then there is $y_0 \in F(t_0) \cap B^{\circ}(y, m(t_0)) \cap \Omega$. In particular, $\varrho(y_0, y) < m(t_0)$. Let $\delta > 0$ be such that $\varrho(y_0, y) + \delta < m(t_0)$. Obviously, $y_0 \in F(t_0) \cap B^{\circ}(y_0, \delta) \cap \Omega$. By the hypotheses on F and m, there exists an open neighborhood U of t_0 such that $F(t) \cap B^{\circ}(y_0, \delta) \cap \Omega \neq \emptyset$ and $\varrho(y_0, y) + \delta < m(t)$ for every $t \in U$. Then, for every $t \in U$, since $B^{\circ}(y_0, \delta) \subset B^{\circ}(y, m(t))$, we have $F(t) \cap B^{\circ}(y, m(t)) \cap \Omega \neq \emptyset$.

LEMMA 6. Let (A, \mathcal{F}_A) be a measurable space, (X, τ_X) a second-countable topological space and (Y, ϱ) a metric space in which bounded sets are relatively compact. Let $G : A \times X \to 2^Y$ be a multifuction, with non-empty values, such that:

(i₁) $\overline{G}(t, \cdot)$ has closed graph for every $t \in A$;

(i₂) { $x \in X : G(\cdot, x)$ is \mathcal{F}_A -measurable} is dense in X.

Then, for each $y \in Y$ and for each $B \subset X$ such that $\overline{B} = \overline{\operatorname{int}(B)} \neq \emptyset$, the extended real function $t \mapsto \sup_{x \in B} \varrho(y, G(t, x))$ is \mathcal{F}_A -measurable.

Proof. Let $\{B_i : i \in \mathbb{N}\}$ be a countable base for τ_X . Put $\mathbb{N}_B := \{i \in \mathbb{N} : B_i \cap B \neq \emptyset\}$. By (i₂), for each $i \in \mathbb{N}_B$ there exists $x_i \in B_i \cap \operatorname{int}(B)$ such

that $\varrho(y, G(\cdot, x_i))$ is \mathcal{F}_A -measurable. The countable set $D := \{x_i : i \in \mathbb{N}_B\}$ is dense in B.

The extended real function $t \mapsto \sup_{i \in \mathbb{N}_B} \varrho(y, G(., x_i))$ is \mathcal{F}_A -measurable; thus the conclusion follows if we prove that

$$\sup_{x \in B} \varrho(y, G(t, x)) = \sup_{i \in \mathbb{N}_B} \varrho(y, G(t, x_i)) \quad \text{ for every } t \in A.$$

Let $t \in A$. For every $x \in B$ and every $\varepsilon > 0$, by using Proposition 1 of [15] and the density of D in B, there exists $i_0 \in \mathbb{N}_B$ such that

$$\varrho(y, G(t, x)) - \varepsilon < \varrho(y, G(t, x_{i_0})) \le \sup_{i \in \mathbb{N}_B} \varrho(y, G(t, x_i));$$

thus, $\varepsilon > 0$ being arbitrary,

$$\sup_{x \in B} \varrho(y, G(t, x)) \le \sup_{i \in \mathbb{N}_B} \varrho(y, G(t, x_i))$$

The opposite inequality is obvious.

3. Main result. Let $\|\cdot\|_1, \|\cdot\|_2$ be two fixed norms on \mathbb{R}^n (besides the already fixed norm $\|\cdot\|$, whose induced metric we have denoted by d). Define the norm $\|\cdot\|_{\mathbb{R}^n\times\mathbb{R}^n}$ on $\mathbb{R}^n\times\mathbb{R}^n$ by putting, for every $(x,z)\in\mathbb{R}^n\times\mathbb{R}^n$,

$$\begin{aligned} \|(x,z)\|_{\mathbb{R}^n \times \mathbb{R}^n} &:= \max\left\{ \max\left\{1, \frac{4}{b-a}\right\} \|x\|_1, \max\left\{1, \frac{b-a}{4}\right\} \|z\|_2 \right\} \\ &= \begin{cases} \max\left\{\frac{4}{b-a} \|x\|_1, \|z\|_2\right\} & \text{if } b-a \le 4, \\ \max\left\{\|x\|_1, \frac{b-a}{4} \|z\|_2\right\} & \text{if } b-a > 4. \end{cases} \end{aligned}$$

If c_1 , c_2 are two positive constants such that

$$\begin{split} \|x\|_1 \leq c_1 \|x\| \quad \text{and} \quad \|z\|_2 \leq c_2 \|z\| \quad \text{ for all } (x,z) \in \mathbb{R}^n \times \mathbb{R}^n, \\ \text{put } \gamma := \gamma(p) := \max\{c_1,c_2\}\gamma', \text{ where} \end{split}$$

$$\gamma' := \gamma'(p) := \begin{cases} \max\left\{1, \frac{b-a}{4}\right\} \left[\frac{(b-a)(p-1)}{2p-1}\right]^{1-1/p} & \text{if } 1$$

Recall that, if M > 0 is given and Γ^M denotes the cone $\{(t, x, z) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n : ||(x, z)||_{\mathbb{R}^n \times \mathbb{R}^n} \le Mt\}$, a function $h : E \to \mathbb{R}^n$, $E \subset \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, is said to be Γ^M -continuous in E if for every $(t, x, z) \in E$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(h(t^*, v, w), h(t, x, z)) < \varepsilon$ for every $(t^*, v, w) \in E$ such that $t < t^* < t + \delta$ and $||(v, w) - (x, z)||_{\mathbb{R}^n \times \mathbb{R}^n} \le M(t^* - t)$.

The following is our main result.

THEOREM 1. Let $F : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$. Suppose that there exist $p, s \in [1,\infty]$ with $p \leq s$, a non-negative function $m \in L^s([a,b],\mathbb{R})$, and a positive number $r \geq ||m||_{L^p([a,b],\mathbb{R})}$ such that

(i) $F_{|[a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ has the lower Scorza Dragoni property;

(ii) for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set F(t, x, z) is closed and $F(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t)) \neq \emptyset$.

Then there exists a multifunction $G: [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ with nonempty, closed and convex values such that

(j) $G(\cdot, x, z)$ is \mathcal{L} -measurable for every $(x, z) \in \mathbb{R}^n \times \mathbb{R}^n$,

(jj) $G(t, \cdot, \cdot)$ has closed graph for every $t \in [a, b]$,

(jjj) $G(t, x, z) \subset B(\vartheta_{\mathbb{R}^n}, m(t))$ for every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$,

and every generalized solution u of the problem (\mathbf{P}_G) in $W^{2,s}([a,b], \mathbb{R}^n)$ is also a generalized solution of (\mathbf{P}_F) and satisfies $||u''(t)|| \leq m(t)$ a.e. in [a,b].

Proof. Put $(X, \|\cdot\|_X) := (\mathbb{R}^n \times \mathbb{R}^n, \|\cdot\|_{\mathbb{R}^n \times \mathbb{R}^n}), (Y, \|\cdot\|_Y) := (\mathbb{R}^n, \|\cdot\|)$ and denote by ϑ_X and ϑ_Y the zero elements of X and Y respectively. Moreover, identify $(t, (x, z)) \in [a, b] \times X$ with $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$ and $((x, z), y) \in X \times Y$ with $(x, z, y) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$.

Let N be the set of all $t \in [a, b]$ such that, for some $(x, z) \in B(\vartheta_X, \gamma r)$, the set F(t, x, z) is not closed or $F(t, x, z) \cap B^{\circ}(\vartheta_Y, m(t)) = \emptyset$. By (ii), we have $\mu(N) = 0$.

Define $H: [a,b] \times X \to 2^Y$ by putting, for every $(t,x,z) \in [a,b] \times X$,

$$H(t,x,z) := \begin{cases} \overline{F(t,x,z) \cap B^{\circ}(\vartheta_{Y},m(t))} \\ & \text{if } (t,x,z) \in ([a,b] \setminus N) \times B(\vartheta_{X},\gamma r), \\ B(\vartheta_{Y},m(t)) & \text{if } (t,x,z) \notin ([a,b] \setminus N) \times B(\vartheta_{X},\gamma r). \end{cases}$$

We claim that H, which obviously has non-empty and closed values, has the lower Scorza Dragoni property.

For $\varepsilon > 0$ fixed, let T_{ε} be a compact subset of $[a, b] \setminus N$, with $\mu([a, b] \setminus T_{\varepsilon}) < \varepsilon$, such that $F_{|T_{\varepsilon} \times B(\vartheta_X, \gamma r)}$ is lower semicontinuous and $m_{|T_{\varepsilon}}$ is continuous. Such a set exists since $F_{|[a,b] \times B(\vartheta_X, \gamma r)}$ has the lower Scorza Dragoni property, m satisfies the assumption of Lusin's theorem, and $\mu(N) = 0$.

Let Ω be an open subset of Y. Then

$$H_{|T_{\varepsilon} \times X}^{-}(\Omega) = \{(t, x, z) \in T_{\varepsilon} \times B(\vartheta_{X}, \gamma r) : F(t, x, z) \cap B^{\circ}(\vartheta_{Y}, m(t)) \cap \Omega \neq \emptyset \}$$
$$\cup [\{t \in T_{\varepsilon} : B^{\circ}(\vartheta_{Y}, m(t)) \cap \Omega \neq \emptyset\} \times (X \setminus B(\vartheta_{X}, \gamma r))]$$

and, as $(t, x, z) \mapsto F(t, x, z) \cap B^{\circ}(\vartheta_Y, m(t))$ is lower semicontinuous in $T_{\varepsilon} \times B(\vartheta_X, \gamma r)$ by Lemma 5, and $m_{|T_{\varepsilon}}$ is continuous, it is simple to show that the last set is open in $T_{\varepsilon} \times X$. Thus H has the lower Scorza Dragoni property.

Now, by using a standard argument, we can find a sequence $(E_i)_i$, $i = 0, 1, \ldots$, of pairwise disjoint subsets of [a, b] such that $[a, b] = \bigcup_{i=0}^{\infty} E_i$, $\mu(E_0) = 0$, and, for every $i = 1, 2, \ldots, E_i$ is compact, $H_{|E_i \times X}$ is lower semicontinuous and $m_{|E_i}$ is continuous.

For each $i = 1, 2, ..., put m_i := max\{m(t) : t \in E_i\}$ and choose $M_i > 0$ such that (if p = 1 or $p = \infty$, we assume the indeterminate expressions to be read as $\lim_{p \to 1^+}$ or $\lim_{p \to \infty}$ respectively)

(8)
$$M_{i} > \max\left\{c_{1}\left[\frac{(b-a)(p-1)}{2p-1}\right]^{1-1/p}r, \frac{4c_{1}}{(b-a)^{1/p}}\left(\frac{p-1}{2p-1}\right)^{1-1/p}r, c_{2}(1+m_{i}), \frac{c_{2}(b-a)}{4}(1+m_{i})\right\}$$

By Theorem 2.1 of [6], $H_{|E_i \times X}$ has a Γ^{M_i} -continuous selection h_i . Moreover, for i = 0, by the axiom of choice, $H_{|E_0 \times X}$ has a selection h_0 . Define $h : [a, b] \times X \to Y$ by putting, for every $(t, x, z) \in [a, b] \times X$,

$$h(t, x, z) := h_i(t, x, z) \quad \text{if } t \in E_i, i \in \mathbb{N}.$$

The definition is correct, since the sets E_i , i = 0, 1, ..., are pairwise disjoint and $[a, b] = \bigcup_{i=0}^{\infty} E_i$.

Now, define
$$G: [a, b] \times X \to 2^Y$$
 by putting, for every $(t, x, z) \in [a, b] \times X$,

$$G(t,x,z) := \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \{ h(t,v,w) : \| (v,w) - (x,z) \|_X < \varepsilon \},$$

where, as usual, \overline{co} denotes the closed convex closure operator.

G, obviously, has non-empty, closed and convex values and satisfies (jjj).

Moreover, arguing for example as in [9], pp. 69–70, it can be easily proved that G also satisfies (j) and (jj).

Now, let u be a generalized solution of the problem (\mathbf{P}_G) in $W^{2,s}([a,b],Y)$. Obviously, $||u''(t)|| \le m(t)$ a.e. in [a,b]. Thus, in particular,

(9)
$$||u''||_{L^p([a,b],Y)} \le r.$$

Let us prove that u''(t) = h(t, u(t), u'(t)) a.e. in [a, b] and $(u(t), u'(t)) \in B(\vartheta_X, \gamma r)$ a.e. in [a, b], from which it follows that u is a generalized solution of (\mathbf{P}_F) .

As the second assertion is an easy consequence of (5) and (6), we only prove the first. Since $b-a=\mu(\bigcup_{i=1}^{\infty} E_i)$, it is sufficient to prove that $u''(t) = h_i(t, u(t), u'(t))$ a.e. in E_i for every i = 1, 2, ... Let T be the set of all $t \in E_i$ such that:

1) $u''(t) \in G(t, u(t), u'(t));$

2) there exists a strictly decreasing sequence $(t_i)_i$ in E_i such that

$$t_j \xrightarrow{j} t, \quad u''(t_j) \xrightarrow{j} u''(t), \quad u''(t_j) \in G(t_j, u(t_j), u'(t_j))$$

Then, by Lemma 4, $\mu(T) = \mu(E_i)$.

We prove that, for every $t \in T$, $u''(t) = h_i(t, u(t), u'(t))$.

Fix $\varepsilon > 0$. By the Γ^{M_i} -continuity of $h_{|E_i}$ in (t, u(t), u'(t)), there exists $\delta > 0$ such that, for every $(t^*, v, w) \in E_i \times X$ with $t < t^* < t + \delta$ and $\|(v, w) - (u(t), u'(t))\|_X \le M_i(t^* - t)$, we have $d(h(t^*, v, w), h(t, u(t), u'(t))) < \varepsilon/2$.

Since $t_j \xrightarrow{j} t$, there exists $j_0 \in \mathbb{N}$ such that, for every $j \in \mathbb{N}$ with $j > j_0$, we have

 $t < t_j < t + \delta, \qquad d(u''(t_j), u''(t)) < \varepsilon/2, \qquad u''(t_j) \in G(t_j, u(t_j), u'(t_j))$ and

$$\left\|\frac{u'(t_j) - u'(t)}{t_j - t} - u''(t)\right\| < 1.$$

Then, for every $j \in \mathbb{N}$ with $j > j_0$, we obtain

(10)
$$\|u'(t_j) - u'(t)\| = \left\|\frac{u'(t_j) - u'(t)}{t_j - t}\right\| (t_j - t)$$

 $\leq \left(\left\|\frac{u'(t_j) - u'(t)}{t_j - t} - u''(t)\right\| + \|u''(t)\| \right) (t_j - t)$
 $\leq (1 + m_i)(t_j - t).$

Taking into account (7)–(10), it is simple to verify that

$$||(u(t_j), u'(t_j)) - (u(t), u'(t))||_X < M_i(t_j - t)$$

hence

$$G(t_j, u(t_j), u'(t_j)) \subset B(h_i(t, u(t), u'(t)), \varepsilon/2),$$

and thus

$$d(u''(t_j), h_i(t, u(t), u'(t))) \le \varepsilon/2.$$

Therefore, we obtain

 $d(u''(t), h_i(t, u(t), u'(t))) \leq d(u''(t), u''(t_j)) + d(u''(t_j), h_i(t, u(t), u'(t))) < \varepsilon,$ from which u''(t) = h(t, u(t), u'(t)) follows, since ε is arbitrary.

REMARK 1. In Theorem 1 (and in Theorem 2 below), the hypothesis (ii) can be replaced by

(ii)' for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set F(t, x, z) is closed and $\emptyset \neq F(t, x, z) \subset B(\vartheta_{\mathbb{R}^n}, m(t))$.

The proof differs from that of Theorem 1 only in the definition of H. Under (ii)' one can use $H : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ defined by putting, for

262

every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$,

$$H(t,x,z) := \begin{cases} F(t,x,z) & \text{if } (t,x,z) \in ([a,b] \setminus N') \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r), \\ B(\vartheta_{\mathbb{R}^n}, m(t)) & \text{if } (t,x,z) \notin ([a,b] \setminus N') \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r), \end{cases}$$

where N' is the set of all $t \in [a, b]$ such that, for some $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, F(t, x, z) is empty or not closed or $F(t, x, z) \not\subset B(\vartheta_{\mathbb{R}^n}, m(t))$.

It is not difficult to show that H has non-empty and closed values and has the lower Scorza Dragoni property.

REMARK 2. It is well known that $F_{|[a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ has the lower Scorza Dragoni property if, for example, it is $\mathcal{L} \otimes \mathcal{B}(B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r))$ -measurable and lower semicontinuous in (x, z), or if it is \mathcal{L} -measurable in t and continuous in (x, z).

There is extensive literature on this topic (see, for example, [2]–[4], [7], [12] and the recent survey [1]).

Also mixed properties of the multifunction guarantee the lower Scorza Dragoni property. We mention here Theorem 2 of [4].

When the multifunction F is weakly integrably bounded by a function $m^* \in L^s([a, b], \mathbb{R})$, the following result is a corollary of Theorem 1.

COROLLARY 1. Let $F : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ have the lower Scorza Dragoni property. Suppose that there exist $s \in [1,\infty]$ and a non-negative function $m^* \in L^s([a,b],\mathbb{R})$ such that

(ii)" for almost every $t \in [a, b]$ and every $(x, z) \in \mathbb{R}^n \times \mathbb{R}^n$, the set F(t, x, z) is closed and $F(t, x, z) \cap B(\vartheta_{\mathbb{R}^n}, m^*(t)) \neq \emptyset$.

Then for each $\lambda > 0$ there exists a multifunction $G_{\lambda} : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ with non-empty, closed and convex values such that

- (j) $G_{\lambda}(\cdot, x, z)$ is \mathcal{L} -measurable for every $(x, z) \in \mathbb{R}^n \times \mathbb{R}^n$,
- (jj) $G_{\lambda}(t, \cdot, \cdot)$ has closed graph for every $t \in [a, b]$,
- (jjj) $G_{\lambda}(t, x, z) \subset B(\vartheta_{\mathbb{R}^n}, m^*(t) + \lambda)$ for every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$,

and every generalized solution u of the problem $(P_{G_{\lambda}})$ in $W^{2,s}([a,b], \mathbb{R}^n)$ is also a generalized solution of (P_F) and satisfies $||u''(t)|| \leq m^*(t) + \lambda$ a.e. in [a,b].

Proof. Fix $\lambda > 0$. Then *F* satisfies (ii) of Theorem 1 with $m := m^* + \lambda$, p = s, and $r := ||m^* + \lambda||_{L^p([a,b],\mathbb{R})}$. ■

4. Existence. In this section $\|\cdot\|$, d, $\|\cdot\|_{\mathbb{R}^n \times \mathbb{R}^n}$ and γ are as at the beginning of Section 3.

The following existence theorem follows at once from Theorem 1, Lemma 6 and Theorem 2.1 of [13].

THEOREM 2. Let F be a multifunction as in Theorem 1 (in which (ii) or (ii)' can be used; see Remark 1). Then the problem (P_F) has at least one generalized solution $u \in W^{2,s}([a,b],\mathbb{R}^n)$ such that $||u''(t)|| \leq m(t)$ a.e. in [a,b].

Proof. Let G be the multifunction whose existence has been stated in Theorem 1, and $r \geq ||m||_{L^p([a,b],\mathbb{R})}$ a positive number. By Lemma 6, $t \mapsto \sup\{d(\vartheta_{\mathbb{R}^n}, G(t, x, z)) : (x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)\}$ is \mathcal{L} -measurable. Thus, by (ii) and as $d(\vartheta_{\mathbb{R}^n}, G(t, x, z)) \leq m(t)$ for every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$, it follows that $t \mapsto \sup\{d(\vartheta_{\mathbb{R}^n}, G(t, x, z)) : (x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)\}$ belongs to $L^s([a, b], \mathbb{R})$ and its norm in $L^p([a, b], \mathbb{R})$ is less than or equal to r.

Hence, we can use Theorem 2.1 of [13] to obtain a generalized solution u of (\mathbf{P}_G) in $W^{2,s}([a,b],\mathbb{R}^n)$, which, by Theorem 1, is also a generalized solution of (\mathbf{P}_F) such that $||u''(t)|| \leq m(t)$ a.e. in [a,b].

COROLLARY 2. Let F be as in Corollary 1. Then for each $\lambda > 0$ the problem (P_F) has at least one generalized solution $u_{\lambda} \in W^{2,s}([a,b],\mathbb{R}^n)$ such that $||u'_{\lambda}(t)|| \leq m^*(t) + \lambda$ a.e. in [a,b].

REMARK 3. Theorem 2 and Corollary 2 both improve Theorem 3 of [8], in which F has non-empty and compact values and is measurable in t, Hausdorff continuous in (x, z) and integrably bounded.

The following existence theorem is a consequence of our Theorem 2 and Theorem 11 of [18].

THEOREM 3. Let I be a non-empty subset of \mathbb{R} and $F: I \to 2^{\mathbb{R}^n}$ a multifunction with non-empty and closed values such that:

(α) gr(F) is connected and locally connected;

 $(\alpha \alpha)$ for every open set $\Omega \subset \mathbb{R}^n$, the set $F^-(\Omega) \cap \operatorname{int}(I)$ has no isolated points.

Moreover, let $G : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}}$ be a multifunction with non-empty values, $p, s \in [1, \infty]$, with $p \leq s, m \in L^s([a, b], \mathbb{R})$ a non-negative function, and $r \geq ||m||_{L^p([a, b], \mathbb{R})}$ a positive number such that:

(β) $G_{|[a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ has the lower Scorza Dragoni property;

 $(\beta\beta)$ for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set G(t, x, z) is a compact subset of I and $G(t, x, z) \cap F^+(B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))) \neq \emptyset$.

Then there exists a generalized solution $u \in W^{2,s}([a,b],\mathbb{R}^n)$ of the problem

$$(\mathbf{P}_{F \circ G}) \qquad \qquad \begin{cases} u'' \in F(G(t, u, u')), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}, \end{cases}$$

such that $||u''(t)|| \le m(t)$ a.e. in [a, b].

Proof. Thanks to our assumptions on F, we can apply Theorem 11 of [18]. Hence, there exist $\Phi_1, \Phi_2 : I \to 2^{\mathbb{R}^n}$ such that Φ_1 is lower semicontinuous, Φ_2 is upper semicontinuous with compact values, and $\emptyset \neq \Phi_1(v) \subset \Phi_2(v) \subset F(v)$ for every $v \in I$.

Let $N_0 \subset [a, b]$ with $\mu(N_0) = 0$ be such that, for every $(t, x, z) \in ([a, b] \setminus N_0) \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set G(t, x, z) is a compact subset of I and $G(t, x, z) \cap F^+(B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))) \neq \emptyset$.

For every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$, put

$$\Gamma(t,x,z) := \begin{cases} \overline{\Phi_1(G(t,x,z))} & \text{if } (t,x,z) \in ([a,b] \setminus N_0) \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r), \\ \mathbb{R}^n & \text{if } (t,x,z) \notin ([a,b] \setminus N_0) \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r). \end{cases}$$

Obviously, the values of Γ are non-empty and closed and it is simple to see that Γ has the lower Scorza Dragoni property.

Moreover, for every $t \in ([a, b] \setminus N_0) \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, we have

$$\Gamma(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t)) \neq \emptyset.$$

In fact, we have

$$G(t, x, z) \cap \Phi_1^+(B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))) \neq \emptyset$$

hence

$$G(t, x, z) \cap \Phi_1^-(B^\circ(\vartheta_{\mathbb{R}^n}, m(t))) \neq \emptyset$$

and then

$$\Phi_1(G(t,x,z)) \cap (B^{\circ}(\vartheta_{\mathbb{R}^n},m(t))) \neq \emptyset$$

which is equivalent to

$$\overline{\Phi_1(G(t,x,z))} \cap (B^{\circ}(\vartheta_{\mathbb{R}^n},m(t))) \neq \emptyset.$$

By Theorem 2 (with the hypothesis (ii)) applied to Γ , there exists $u \in W^{2,s}([a,b],\mathbb{R}^n)$ such that

$$\begin{cases} u''(t) \in \Gamma(t, u(t), u'(t)) & \text{for a.e. } t \in [a, b], \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}, \end{cases}$$

and $||u''(t)|| \le m(t)$ a.e. in [a, b]. The function u is our solution.

In fact, by (5) and (6), we have $(u(t), u'(t)) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$ for every $t \in [a, b]$. Then

$$\begin{cases} u''(t) \in \overline{\Phi_1(G(t, u(t), u'(t)))} & \text{for a.e. } t \in [a, b], \\ u(a) = u(b) = \vartheta_{\mathbb{R}^n}, \end{cases}$$

and, for almost every $t \in [a, b]$, G(t, u(t), u'(t)) is a compact subset of I, hence, by Theorem 2.1 of [11], $\Phi_2(G(t, u(t), u'(t)))$ is compact.

Thus, for almost every $t \in [a, b]$, we have

$$\Phi_1(G(t, u(t), u'(t))) \subset \Phi_2(G(t, u(t), u'(t))) = \Phi_2(G(t, u(t), u'(t))),$$

therefore

$$\overline{\Phi_1(G(t, u(t), u'(t)))} \subset F(G(t, u(t), u'(t))),$$

from which the conclusion follows. \blacksquare

REMARK 4. In Theorem 3 the hypothesis $(\beta\beta)$ can be replaced by

 $(\beta\beta)'$ for almost every $t \in [a,b]$ and every $(x,z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set G(t,x,z) is a compact subset of I and $F(G(t,x,z)) \subset B(\vartheta_{\mathbb{R}^n}, m(t))$.

In fact the multifunction Γ defined in the proof of Theorem 3 satisfies the assumptions of Theorem 2 with (ii)' in place of (ii).

REMARK 5. An existence result for the Cauchy problem for a first order differential inclusion with right-hand side of the type $F \circ G$ has recently been given in [5].

5. Applications. In this section, we give some applications of our results to the existence of solutions for a boundary value problem for second-order implicit equations. $\|\cdot\|$, $\|\cdot\|_{\mathbb{R}^n\times\mathbb{R}^n}$ and γ are as at the beginning of Section 3.

THEOREM 4. Let Y be a non-empty, connected and locally connected subset of \mathbb{R}^n and $f : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \times Y \to \mathbb{R}$. Assume that there exist $p,s \in [1,\infty]$, with $p \leq s$, a non-negative function $m \in L^s([a,b],\mathbb{R})$, and a positive number $r \geq ||m||_{L^p([a,b],\mathbb{R})}$, such that:

(k) for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the function $f(t, x, z, \cdot)$ is continuous, $0 \in int(f(t, x, z, Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))))$, and $\{y \in Y : f(t, x, z, y) = 0\}$ has empty interior in Y;

(kk) for every $\varepsilon > 0$ there exists a compact set $T_{\varepsilon} \subset [a,b]$ with $\mu([a,b] \setminus T_{\varepsilon}) < \varepsilon$ and a set $D_{\varepsilon} \subset Y \times Y$ with $\overline{D}_{\varepsilon} \supset Y \times Y$ such that, for every $(y',y'') \in D_{\varepsilon}$, the set $\{(t,x,z) \in T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n},\gamma r) : f(t,x,z,y') < 0 < f(t,x,z,y'')\}$ is open in $T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n},\gamma r)$;

(kkk) for almost every $t \in [a, b]$, the set $Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$ is connected.

Then the problem

$$(\mathbf{P}_{f}^{i}) \qquad \qquad \begin{cases} f(t, u, u', u'') = 0, \\ u(a) = u(b) = \vartheta_{\mathbb{R}^{n}} \end{cases}$$

has at least one generalized solution u in $W^{2,s}([a,b],\mathbb{R}^n)$ such that $||u''(t)|| \le m(t)$ a.e. in [a,b].

Proof. Define $Q : [a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r) \to 2^Y$ by putting, for every $(t,x,z) \in [a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$,

Q(t, x, z)

 $:= \{ y \in Y : f(t, x, z, y) = 0, y \text{ is not a local extremum point for } f(t, x, z, \cdot) \}.$

For every $\varepsilon > 0$, let T_{ε} be a compact subset of [a, b] as in (kk) such that, for every $(t, x, z) \in T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the function $f(t, x, z, \cdot)$ is continuous, $0 \in \operatorname{int}(f(t, x, z, Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))))$ and the set $\{y \in Y : f(t, x, z, y) = 0\}$ has empty interior in Y.

By Théorème 1.1 of [17], $Q_{|T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ (has non-empty and closed values (in Y) and) is lower semicontinuous. Thus Q has the lower Scorza Dragoni property.

We claim that, for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the set Q(t, x, z) is closed and $Q(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t)) \neq \emptyset$.

Let T be the set of all $t \in [a, b]$ such that $Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$ is connected and such that, for every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the function $f(t, x, z, \cdot)$ is continuous, $0 \in \operatorname{int}(f(t, x, z, Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))))$, and $\{y \in Y : f(t, x, z, y) = 0\}$ has empty interior in Y and, thus, also in $Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$. Clearly, $\mu(T) = b - a$.

Let $(t, x, z) \in T \times B(\vartheta_{\mathbb{R}_n \times \mathbb{R}^n}, \gamma r).$

If $\overline{y} \in Q(t, x, z)$, then $f(t, x, z, \overline{y}) = 0$ since $f(t, x, z, \cdot)$ is continuous; moreover, for every open neighborhood Ω of \overline{y} , there is $y^* \in Q(t, x, z) \cap \Omega$. Thus, since y^* is not a local extremum point for $f(t, x, z, \cdot)$ and $f(t, x, z, \overline{y}) = f(t, x, z, y^*) = 0$, also \overline{y} is not a local extremum point for $f(t, x, z, \cdot)$, that is, $\overline{y} \in Q(t, x, z)$. Hence Q(t, x, z) is closed.

Let $y \in Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$ be such that f(t, x, z, y) = 0. If y is not a local extremum point for $f(t, x, z, \cdot)$, then $y \in Q(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$. If y is a local extremum point for $f(t, x, z, \cdot)$, then, by Lemma 3.1 of [19], there exists another point $y^* \in Y \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$ such that $f(t, x, z, y^*) = 0$ and y^* is not a local extremum point for $f(t, x, z, \cdot)$, that is, $y^* \in Q(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$. Hence, $Q(t, x, z) \cap B^{\circ}(\vartheta_{\mathbb{R}^n}, m(t))$ is non-empty and the claim is proved.

Finally, define $F : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ by putting, for every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$,

$$F(t, x, z) := \begin{cases} Q(t, x, z) & \text{if } (x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r), \\ \mathbb{R}^n & \text{if } (x, z) \notin B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r). \end{cases}$$

F satisfies the hypotheses of Theorem 2. Thus, (\mathbf{P}_F) has at least one generalized solution *u* in $W^{2,s}([a,b],\mathbb{R}^n)$ such that $||u''(t)|| \leq m(t)$ a.e. in [a,b]. Taking into account (5), (6), it is simple to show that $(u(t), u'(t)) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$ for every $t \in [a,b]$, so that $u''(t) \in Q(t, u(t), u'(t))$ a.e. in [a,b], that is, f(t, u(t), u'(t), u''(t)) = 0 a.e. in [a,b].

In the following Theorem 5, we put $p = s = \infty$ and $\gamma := \gamma(\infty)$.

THEOREM 5. Let Y be a non-empty, connected and locally connected subset of \mathbb{R}^n , and $f : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \times Y \to \mathbb{R}$. Assume that there exists r > 0 such that $Y \subset B(\vartheta_{\mathbb{R}^n}, r)$ and: (k)' for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, the function $f(t, x, z, \cdot)$ is continuous, $0 \in int(f(t, x, z, Y))$, and $\{y \in Y : f(t, x, z, y) = 0\}$ has empty interior in Y;

(kk) for every $\varepsilon > 0$ there exists a compact set $T_{\varepsilon} \subset [a, b]$ with $\mu([a, b] \setminus T_{\varepsilon}) < \varepsilon$ and a set $D_{\varepsilon} \subset Y \times Y$ with $\overline{D}_{\varepsilon} \supset Y \times Y$ such that, for every $(y', y'') \in D_{\varepsilon}$, the set $\{(t, x, z) \in T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r) : f(t, x, z, y') < 0 < f(t, x, z, y'')\}$ is open in $T_{\varepsilon} \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$.

Then the problem (\mathbf{P}_f^i) has at least one generalized solution u in the space $W^{2,\infty}([a,b],\mathbb{R}^n)$ such that $||u''(t)|| \leq r$ a.e. in [a,b].

Proof. Put m(t) := r for every $t \in [a, b]$, define Q and F as in Theorem 4, and use Theorem 2 with (ii)' instead of (ii).

REMARK 6. In Theorems 4 and 5, the hypothesis (kk) is satisfied, in particular, when $f(\cdot, \cdot, \cdot, y)_{|[a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ has the Scorza Dragoni property for every y in a dense subset of Y.

We observe that the hypothesis (kk) in Theorem 5 could be substituted with (ii) and (iii) of Theorem 2.1 of [14]; in fact, with these hypotheses the multifunction Q is $\mathcal{L} \otimes \mathcal{B}(B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r))$ -measurable and lower semicontinuous in (x, z), thus (see Remark 2) it has the lower Scorza Dragoni property. In any case, in Theorem 2.1 of [14] the set Y is also compact.

THEOREM 6. Let Y be a non-empty subset of \mathbb{R}^n and $f: Y \to \mathbb{R}$ such that:

(α) gr(f) is connected and locally connected;

 $(\alpha \alpha)'$ for every $v \in int(f(Y))$, the set $f^{-1}(v)$ has empty interior in Y; $(\alpha \alpha \alpha)$ for every $v \in f(Y)$, the set $f^{-1}(v)$ is closed in \mathbb{R}^n .

Moreover, let $g : [a,b] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $p,s \in [1,\infty]$, with $p \leq s$, $m \in L^s([a,b],\mathbb{R})$ a non-negative function, and $r \geq ||m||_{L^p([a,b],\mathbb{R})}$ a positive number such that:

(β) $g_{|[a,b] \times B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)}$ has the Scorza Dragoni property;

 $(\beta\beta)'$ for almost every $t \in [a, b]$ and every $(x, z) \in B(\vartheta_{\mathbb{R}^n \times \mathbb{R}^n}, \gamma r)$, we have $\emptyset \neq f^{-1}(g(t, x, z)) \subset B(\vartheta_{\mathbb{R}^n}, m(t))$.

Then the problem

$$(\mathbf{P}_{f,g}^{i}) \qquad \qquad \begin{cases} f(u'') = g(t, u, u'), \\ u(a) = u(b) = \vartheta_{\mathbb{R}^{n}}, \end{cases}$$

has at least one generalized solution u in $W^{2,s}([a,b],\mathbb{R}^n)$ such that $||u''(t)|| \le m(t)$ a.e. in [a,b].

Proof. Put I := f(Y), $F(v) := f^{-1}(v)$ for every $v \in I$, and $G(t, x, z) := \{g(t, x, z)\}$ for every $(t, x, z) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$.

The multifunctions F and G satisfy all the assumptions of Theorem 3, in which $(\beta\beta)'$ is used instead of $(\beta\beta)$.

This follows easily in the particular case when f is constant.

If f is not constant, then we can suppose that $\operatorname{int}(f(Y))$ is a non-empty open interval, and the only thing to prove is $(\alpha\alpha)$, which is equivalent to saying that, for every open set $\Omega \subset \mathbb{R}^n$, the set $f(\Omega \cap Y)$ has no isolated points. Suppose, on the contrary, that there exist $x_0 \in \Omega \cap Y$ and $\varepsilon > 0$ such that $]f(x_0) - \varepsilon, f(x_0) + \varepsilon[\cap f(\Omega \cap Y) = \{f(x_0)\}$. Let Ω' and Ω'' be open subsets of \mathbb{R}^n such that $x_0 \in \Omega' \subset \overline{\Omega'} \subset \overline{\Omega''} \subset \overline{\Omega''} \subset \Omega$. Taking into account $(\alpha\alpha)'$, it is simple to verify that the sets $((\Omega' \cap Y) \times]f(x_0) - \varepsilon/3, f(x_0) + \varepsilon/3[) \cap \operatorname{gr}(f)$ and $[(Y \times \mathbb{R}) \setminus ((\overline{\Omega''} \cap Y) \times [f(x_0) - \varepsilon/2, f(x_0) + \varepsilon/2])] \cap \operatorname{gr}(f)$ are open in $\operatorname{gr}(f)$ and form a partition of $\operatorname{gr}(f)$, which is a contradiction.

Thus, the problem $(\mathcal{P}_{F \circ G})$ has a generalized solution u in $W^{2,s}([a,b], \mathbb{R}^n)$ such that $||u''(t)|| \leq m(t)$ a.e. in [a,b]. The function u is solution.

REMARK 7. We point out that, as the example on p. 227 of [18] shows, there are discontinuous functions f satisfying the hypotheses (α) , $(\alpha\alpha)'$ and $(\alpha\alpha\alpha)$ of Theorem 6.

REMARK 8. Theorem 6 improves Theorem 2.2 of [14], in which the continuity of f and g is required, Y is a non-empty, compact, connected and locally connected subset of \mathbb{R}^n and generalized solutions in $W^{2,\infty}([a,b],\mathbb{R}^n)$ can only be obtained.

Finally, we stress that Theorems 4 and 6 can give existence of solutions also for boundary value problems with no solutions in $W^{2,\infty}([a,b],\mathbb{R}^n)$ as the following example shows.

EXAMPLE 1. Consider the following boundary value problem:

(P)
$$\begin{cases} u''(2+\sin u'') = \frac{1}{4\sqrt{t}} \left(|u| + \frac{3}{4} \right) \left(\frac{|u'| + 1}{2} \right), \\ u(0) = u(1) = \vartheta_{\mathbb{R}}. \end{cases}$$

Put $\|\cdot\| = \|\cdot\|_1 = \|\cdot\|_2 = |\cdot|$ and $c_1 = c_2 = 1$. Theorem 4 or Theorem 6 can be used to prove existence of generalized solutions in $W^{2,1}([0,1],\mathbb{R})$.

In fact, put $Y := \mathbb{R}, p := s := 1$,

$$m(t) := \begin{cases} 1/(2\sqrt{t}) & \text{if } t \in [0,1], \\ 0 & \text{if } t = 0, \end{cases}$$

and $r := ||m||_{L^1([0,1],\mathbb{R})}$.

It is not difficult to verify that Theorem 4 can be used if we define, for every $(t, x, z, y) \in [0, 1] \times \mathbb{R} \times \mathbb{R} \times Y$,

$$f(t, x, z, y) := \begin{cases} y(2 + \sin y) - \frac{1}{2\sqrt{t}} \left(|u| + \frac{3}{4} \right) \left(\frac{|u'| + 1}{2} \right) & \text{if } t \in [0, 1], \\ y(2 + \sin y) & \text{if } t = 0. \end{cases}$$

In a similar way, Theorem 6 can be used if we define $f(y) := y(2 + \sin y)$ for every $y \in Y$ and we put, for every $(t, x, z) \in [0, 1] \times \mathbb{R}^n \times \mathbb{R}^n$,

$$g(t, x, z) := \begin{cases} \frac{1}{2\sqrt{t}} \left(|u| + \frac{3}{4} \right) \left(\frac{|u'| + 1}{2} \right) & \text{if } t \in]0, 1], \\ 0 & \text{if } t = 0. \end{cases}$$

Nevertheless, $\lim_{t\to 0^+} u''(t) = \infty$ for every generalized solution of problem (P), thus problem (P) has no generalized solutions in $W^{2,\infty}([0,1],\mathbb{R})$.

References

- J. Appell, E. De Pascale, H. T. Nguyêñ and P. P. Zabreĭko, *Multi-valued superpositions*, Dissertationes Math. 345 (1995).
- [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540–547.
- [3] D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. (7) 8-A (1994), 193–202.
- G. Bonanno, Two theorems on the Scorza Dragoni property for multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 83 (1989), 51-56.
- [5] —, Differential inclusions with nonconvex right hand side and applications to implicit integral and differential equations, Rend. Accad. Naz. Sci. (detta dei XL) 20 (1996), 193–203.
- [6] A. Bressan, Upper and lower semicontinuous differential inclusions: A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), Dekker, New York, 1989, 21–31.
- [7] C. Castaing, A propos de l'existence des sections séparément mesurables et séparément continues d'une multiapplication séparément mesurable et séparément semicontinue inférieurement, Sém. Analyse Convexe, Montpellier 1976, Exp. no. 6.
- [8] F. S. De Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303-313.
- [9] K. Deimling, Multivalued Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl. 1, de Gruyter, Berlin, 1992.
- [10] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
- J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407–422.
- [12] A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197–203.
- S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249–260.
- [14] —, On a boundary value problem for the differential equation f(t, x, x', x'') = 0, J. Math. Anal. Appl. 182 (1994), 309–319.
- [15] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$ and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259–270.
- [16] J. Oxtoby, Measure and Category, Springer, New York, 1971.
- B. Ricceri, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris Sér. I 295 (1982), 75–78.
- [18] —, On multifunctions of one real variable, J. Math. Anal. Appl. 295 (1987), 225–236.

[19] B. Ricceri and A. Villani, Openness properties of continuous real functions on connected spaces, Rend. Mat. 2 (1982), 679–687.

Dipartimento di Matematica ed Applicazioni Facoltà di Ingegneria Università di Palermo Viale delle Scienze 90128 Palermo, Italy E-mail: averna@mbox.unipa.it Dipartimento di Informatica, Matematica, Elettronica e Trasporti Facoltà di Ingegneria Università di Reggio Calabria Via Graziella (Feo di Vito) 89100 Reggio Calabria, Italy E-mail: bonanno@ing.unirc.it

Reçu par la Rédaction le 4.2.1998 Révisé le 8.6.1998