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by William Ma (Williamsport, Penn.) and
David Minda (Cincinnati, Ohio)

Abstract. Unlike those for euclidean convex functions, the known characterizations
for hyperbolically convex functions usually contain terms that are not holomorphic. This
makes hyperbolically convex functions much harder to investigate. We give a geometric
proof of a two-variable characterization obtained by Mejia and Pommerenke. This char-
acterization involves a function of two variables which is holomorphic in one of the two
variables. Various applications of the two-variable characterization result in a number of
analogies with the classical theory of euclidean convex functions. In particular, we obtain a
uniform upper bound on the Schwarzian derivative. We also obtain the sharp lower bound
on |f ′(z)| for all z in the unit disk, and the sharp upper bound on |f ′(z)| when |z| ≤

√
2−1.

1. Introduction. A holomorphic and univalent function f defined on
the unit disk D = {z : |z| < 1} is called hyperbolically convex if its im-
age f(D) is a hyperbolically convex subset of D. A subregion Ω of D is
called hyperbolically convex (relative to hyperbolic geometry on D) if for
all points a, b ∈ Ω the arc of the hyperbolic geodesic in D connecting a
and b (the arc of the circle joining a and b which is orthogonal to the unit
circle) lies in Ω. The classical theory of euclidean convex functions f de-
fined on D is well developed partially because of the simple characterization
Re{1 + zf ′′(z)/f ′(z)} > 0. Much less is known about hyperbolically convex
functions. In [3], we established a number of characterizations for hyperbol-
ically convex functions. For example,∣∣∣∣ (1− |z|2)f ′′(z)

2f ′(z)
+

(1− |z|2)f(z)f ′(z)
1− |f(z)|2

− z
∣∣∣∣ ≤ 1−

(
(1− |z|2)|f ′(z)|

1− |f(z)|2

)2

.

Even though we were able to derive sharp upper and lower bounds on
(1 − |z|2)|f ′(z)|/(1 − |f(z)|2) and |f(z)| from this characterization, it is
not easy to use, partly because it contains the nonholomorphic term
(1− |z|2)f(z)f ′(z)/(1− |f(z)|2).
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Another characterization for hyperbolically convex functions we had in
[3] is

(1.1) Re
{

1 +
zf ′′(z)
f ′(z)

+
2f(z)zf ′(z)
1− |f(z)|2

}
> 0 (z ∈ D).

This is similar to the well known characterization Re{1 + zf ′′(z)/f ′(z)} > 0
for euclidean convex functions. Again, the term 2f(z)zf ′(z)/(1− |f(z)|2) is
not holomorphic in D.

In this paper, we first give a geometric proof of a two-variable charac-
terization for hyperbolically convex functions obtained by Mejia and Pom-
merenke [6]; this characterization is easier to use in certain cases since it is
holomorphic in one of the variables. We provide several applications of this
two-variable characterization.

First, we generalize the result that f(z)2/z is starlike in D if f(z) is hyper-
bolically convex with f(0) = 0, obtained recently by Mejia and Pommerenke
[6]. They used this fact to give a simpler proof of the first characterization
we mentioned earlier.

Then we prove that Re{a2f(z)/α2} > −1, z ∈ D, if f(z) = αz +
a2z

2 + . . . is hyperbolically convex. A similar result holds for euclidean con-
vex functions [2].

We also use the two-variable characterization to get a uniform upper
bound on the Schwarzian derivative of hyperbolically convex functions.

Finally, we obtain the sharp lower bound on |f ′(z)| for all z ∈ D, and the
sharp upper bound on |f ′(z)| when |z| ≤

√
2− 1 by using the sharp growth

theorem given in [3]. This sharp upper bound was first obtained by Mejia,
Pommerenke and Vasil’ev [5].

2. Preliminaries. The hyperbolic metric on the unit disk D is given by
λD(z)|dz| = |dz|/(1−|z|2). The unique hyperbolic geodesic in D connecting
a and b is the arc γ of the circle through a and b that is orthogonal to the
unit circle.

As in [3], we use two differential operators for holomorphic functions
f : D→ D. Set

Dh1f(z) =
(1− |z|2)f ′(z)

1− |f(z)|2
and

Dh2f(z) =
(1− |z|2)2f ′′(z)

1− |f(z)|2
+

2(1− |z|2)2f(z)f ′(z)2

(1− |f(z)|2)2
− 2z(1− |z|2)f ′(z)

1− |f(z)|2
.

The use of these two differential operators simplifies many formulas. For
more information about these two operators, see [4]. They satisfy the in-
variance property |Dhj(R ◦ f ◦ S)| = |Dhjf | ◦ S (j = 1, 2) which holds for



Hyperbolically convex functions II 275

all conformal automorphisms R, S of D. Note that Dh1f(0) = f ′(0) and
Dh2f(0) = f ′′(0) if f(0) = 0. Also, Dh1f(a) = f ′a(0), Dh2f(a) = f ′′a (0) if

fa(z) =
f((z + a)/(1 + az))− f(a)
1− f(a)f((z + a)/(1 + az))

.

Recall that if f(z) is holomorphic and locally univalent in D, then the
Schwarzian derivative of f(z) is

Sf (z) =
f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

.

An important example of a hyperbolically convex function is (see [3])

kα(z) =
2αz

1− z +
√

(1− z)2 + 4α2z

= αz + α(1− α2)z2 + α(1− α2)(1− 2α2)z3 + . . . ,

which maps D conformally onto the hyperbolic half-plane

kα(D) = D \
{
w :
∣∣∣∣w +

1
α

∣∣∣∣ ≤ 1
α

√
1− α2

}
.

Next, we prove a lemma about the class P that we need later. Here P con-
sists of the holomorphic functions p(z) in D with p(0) = 1 and Re{p(z)} > 0.

Lemma 2.1. Let p(z) ∈ P. Then we have the sharp estimates: for 0<
|z| < 1,

(2.1) |2zp′(z) + 1− p(z)2|+
∣∣∣∣p(z)− 1 + |z|2

1− |z|2

∣∣∣∣2 ≤ ( 2|z|
1− |z|2

)2

,

and for z = 0,

(2.2) |p′′(0)− p′(0)2|+ |p′(0)|2 ≤ 4.

P r o o f. Let

w(z) =
p(z)− 1
p(z) + 1

and h(z) = w(z)/z. Note that w(z) is holomorphic in D with w(0) = 0 and
|w(z)| < 1 in D. Therefore, h(z) is also holomorphic on D with h(0) = w′(0)
and |h(z)| ≤ 1 for z ∈ D. The Schwarz–Pick Lemma gives

|h′(z)|
1− |h(z)|2

≤ 1
1− |z|2

or
(1− |z|2)|h′(z)|+ |h(z)|2 ≤ 1.

Since
h(0) = w′(0) = 1

2p
′(0)
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and
h′(0) = 1

2w
′′(0) = 1

4 (p′′(0)− p′(0)2),
the inequality (2.2) follows.

For z 6= 0, we get

(1− |z|2)|zw′(z)− w(z)|+ |w(z)|2 ≤ |z|2.
The definition of w(z) together with

2zp′(z) + 1− p(z)2

(p(z) + 1)2
= zw′(z)− w(z)

then yields

(1− |z|2)|2zp′(z) + 1− p(z)2|+ |p(z)− 1|2 ≤ |z|2|p(z) + 1|2.
Because

|p(z)− 1|2 − |z|2|p(z) + 1|2 = (1− |z|2)
∣∣∣∣p(z)− 1 + |z|2

1− |z|2

∣∣∣∣2 − 4|z|2

1− |z|2
,

we now obtain (2.1).
Clearly, equality holds in (2.2) for p(z) = (1 + z)/(1− z) and in (2.1) for

p(z) = (1 + z)/(1− z) when z ∈ (−1, 1).

3. A two-variable characterization of hyperbolically convex
functions. Sheil-Small [8] and Suffridge [9] obtained a useful two-variable
characterization

Re
{

2zf ′(z)
f(z)− f(a)

− z + a

z − a

}
> 0

for euclidean convex functions, which implies that Re{1+zf ′′(z)/f ′(z)} > 0
and

F (z) =
za

f(a)
f(z)− f(a)

z − a
is starlike of order 1/2 for every a ∈ D. We now give a geometric proof of
a similar two-variable characterization for hyperbolically convex functions.
This characterization was obtained by Mejia and Pommerenke. Their ex-
pression is not written similarly as the expression above for euclidean convex
functions and their proof is rather different from what we have here (see [5,
Cor. 3.4]). This characterization is easier to use in some cases as it involves
a holomorphic function in z.

Theorem 3.1 (Mejia–Pommerenke). Let f(z) be holomorphic and locally
univalent in D with f(D) ⊂ D. Then f(z) is hyperbolically convex if and
only if

(3.1) Re
{

2zf ′(z)
f(z)− f(a)

− z + a

z − a
+

2f(a)zf ′(z)
1− f(a)f(z)

}
> 0 (z ∈ D, a ∈ D).
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P r o o f. First, we assume that f(z) is hyperbolically convex. The hyper-
bolic geodesic γ from A to B ∈ D can be expressed by

w(t) =
t(B −A)/(1−AB) +A

1 + tA(B −A)/(1−AB)
, 0 ≤ t ≤ 1.

At A, the tangent vector to γ is

w′(0) =
B −A
1−AB

(1− |A|2).

For a = reiθ ∈ D and z = reiϕ, θ < ϕ < θ + 2π, we consider the hyperbolic
geodesic γϕ connecting f(a) and f(z). The tangent vector to γϕ at f(a) is

w′ϕ(0) =
f(reiϕ)− f(a)
1− f(a)f(reiϕ)

(1− |f(a)|2).

Since f(|z| = r) is a hyperbolically convex curve,

L(ϕ) = arg{w′ϕ(0)} = arg
{
f(reiϕ)− f(a)
1− f(a)f(reiϕ)

(1− |f(a)|2)
}

is increasing in (θ, θ + 2π) and therefore

L′(ϕ) =
∂

∂ϕ
arg[f(reiϕ)− f(a)]− ∂

∂ϕ
arg[1− f(a)f(reiϕ)]

= Im
{
f ′(reiϕ)ireiϕ

f(reiϕ)− f(a)

}
+ Im

{
f(a)f ′(reiϕ)ireiϕ

1− f(a)f(reiϕ)

}
= Re

{
zf ′(z)

f(z)− f(a)
+

f(a)zf ′(z)
1− f(a)f(z)

}
≥ 0.

Let

(3.2) p(z, a) =
2zf ′(z)

f(z)− f(a)
− z + a

z − a
+

2f(a)zf ′(z)
1− f(a)f(z)

.

As Re{(z + a)/(z − a)} = 0 for |z| = |a| = r, z 6= a we conclude that

Re{p(z, a)} ≥ 0 (|z| = |a| = r);

for z = a this follows from continuity. Because Re{p(z, a)} is harmonic in
both z and a, the maximum principle yields Re{p(z, a)}≥0 for |z| < r and
|a| < r. If we let→1 we see that Re{p(z, a)} ≥ 0 for z, a∈D. The maximum
principle for harmonic functions again implies Re{p(z, a)} > 0 for z, a ∈ D
since p(0, a) = 1, which means that Re{p(z, a)} cannot be identically 0.

Now we show that if f satisfies the two-variable inequality (3.1), then

Re
{

1 +
af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

}
> 0
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for all a ∈ D since this characterizes hyperbolically convex functions [3]. The
assumption is that Re{p(z, a)} > 0 for all z, a ∈ D. Since

p(a, a) = 1 +
af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

,

the proof is complete.

As we mentioned earlier, we cannot easily get properties for hyperboli-
cally convex functions from (1.1) since it has a term that is not holomorphic.
With the help of Theorem 3.1, this difficulty is overcome in some cases. To
illustrate our point, we show in the proof of the following corollary how
Theorem 3.1 can be used to prove that the nonholomorphic function

p(z) = 1 +
zf ′′(z)
f ′(z)

+
2f(z)zf ′(z)
1− |f(z)|2

still satisfies ∣∣∣∣p(z)− 1 + |z|2

1− |z|2

∣∣∣∣ ≤ 2|z|
1− |z|2

,

which is a well known result for P. We state the result for hyperbolically
convex functions; a similar characterization with strict inequality was given
in [3], and its proof was quite different from what we have here.

Corollary 3.2. Suppose f(z) is holomorphic and locally univalent in D
with f(D) ⊂ D. Then f(z) is hyperbolically convex if and only if∣∣∣∣Dh2f(z)

Dh1f(z)

∣∣∣∣ ≤ 2 (z ∈ D).

P r o o f. First, we assume that f(z) is hyperbolically convex. It is enough
to prove the inequality at any fixed a ∈ D. Theorem 3.1 implies that p(z, a)
given in (3.2) has positive real part as a function of z. Thus, p(z, a) belongs
to P as a function of z and∣∣∣∣p(z, a)− 1 + |z|2

1− |z|2

∣∣∣∣ ≤ 2|z|
1− |z|2

.

As

p(a, a) = 1 +
af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

,

we obtain ∣∣∣∣1 +
af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

− 1 + |a|2

1− |a|2

∣∣∣∣ ≤ 2|a|
1− |a|2

.

The preceding inequality is equivalent to∣∣∣∣Dh2f(a)
Dh1f(a)

∣∣∣∣ ≤ 2.
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By reversing the steps above, we see that |Dh2f(a)/Dh1f(a)| ≤ 2 implies∣∣∣∣p(a, a)− 1 + |a|2

1− |a|2

∣∣∣∣ ≤ 2|a|
1− |a|2

.

Thus

Re{p(a, a)} ≥ 1− |a|
1 + |a|

> 0.

4. Some applications of the two-variable characterization. Recall
that a holomorphic and locally univalent function f(z) in D with f(0) =
f ′(0)− 1 = 0 is called starlike of order β if Re{zf ′(z)/f(z)}>β. Mejia and
Pommerenke [6] showed that f(z)/f ′(0) is starlike of order 1/2 if f(z) is
hyperbolically convex with f(0) = 0. This is the special case of the following
result when a = 0.

Theorem 4.1. If f(z) is hyperbolically convex with f(0) = 0, then for
every a ∈ D,

Fa(z) =
za

f(a)
f(z)− f(a)

(z − a)(1− f(a)f(z))
is starlike of order 1/2.

P r o o f. Fa(z) is starlike of order 1/2 if and only if

Re
{

2zF ′a(z)
Fa(z)

− 1
}
> 0.

As
zF ′a(z)
Fa(z)

=
zf ′(z)

f(z)− f(a)
− a

z − a
+

f(a)zf ′(z)
1− f(a)f(z)

,

we have
2zF ′a(z)
Fa(z)

− 1 =
2zf ′(z)

f(z)− f(a)
− z + a

z − a
+

2f(a)zf ′(z)
1− f(a)f(z)

.

Theorem 3.1 then implies the desired inequality.

Mejia and Pommerenke [6] showed that for hyperbolically convex func-
tions f(z) with f(0) = 0,

Re
{

a

f(a)
f(z)− f(a)

z − a

}
>

1
2
.

As a corollary of Theorem 4.1, we now state a similar result. We use the
fact that Re{F (z)/z} > 1/2 if F (z) is starlike of order 1/2 (see [7, p. 49]).

Corollary 4.2. If f(z) is hyperbolically convex with f(0) = 0, then for
every a ∈ D,

Re
{

a

f(a)
f(z)− f(a)

(z − a)(1− f(a)f(z))

}
>

1
2

(z ∈ D).
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Corollary 4.3. If f(z) is hyperbolically convex with f(0) = 0, then for
every a ∈ D,

Fa(z)2

z
=

za2

f(a)2
(f(z)− f(a))2

(z − a)2(1− f(a)f(z))2

is starlike in D.

When a = 0, this result is due to Mejia and Pommerenke [6].
As another application of Theorem 3.1, we provide a lower bound on

Re{a2f(z)/α2} for hyperbolically convex functions.

Theorem 4.4. Let f(z) = αz+a2z
2 + . . . be hyperbolically convex. Then

Re
{
a2f(z)
α2

}
> −1 (z ∈ D).

P r o o f. For any a ∈ D, we define p(z) by

p(z) =
2zf ′(z)

f(z)− f(a)
− z + a

z − a
+

2f(a)zf ′(z)
1− f(a)f(z)

,

which belongs to P by Theorem 3.1. Direct differentiation then yields

1
2
p′(0) = − α

f(a)
+

1
a

+ αf(a)

and
1
8

(p′′(0)− p′(0)2) =
[
− a2

f(a)
+

α2

f(a)2

(
f(a)
αa
− 1
)]

(1− |f(a)|2).

By using the inequality (2.2) of Lemma 2.1, we have∣∣∣∣− a2

f(a)
+

α2

f(a)2

(
f(a)
αa
−1
)∣∣∣∣(1−|f(a)|2) ≤ 1

2

(
1−
∣∣∣∣− α

f(a)
+

1
a

+αf(a)
∣∣∣∣2).

That is,∣∣∣∣a2f(a)− α2

(
f(a)
αa
− 1
)∣∣∣∣

≤ 1
2(1− |f(a)|2)

(
|f(a)|2 −

∣∣∣∣f(a)
a
− α(1− |f(a)|2)

∣∣∣∣2).
This implies

Re{a2f(a)} ≥ α2 Re
{
f(a)
αa
− 1
}

− 1
2(1− |f(a)|2)

(
|f(a)|2 −

∣∣∣∣f(a)
a
− α(1− |f(a)|2)

∣∣∣∣2)
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=
1
2

∣∣∣∣f(a)
a

∣∣∣∣2 1− |a|2

1− |f(a)|2
− 1

2
α2(1 + |f(a)|2)

>− 1
2
α2(1 + |f(a)|2) > −α2.

Note that for kα(z), the infimum of Re{a2kα(z)/α2} over z ∈ D is
−(1 − α2). Thus, the constant −1 in Theorem 4.4 is best possible. This
constant seems to be quite different from that for euclidean convex func-
tions f(z) = z+ a2z

2 + . . . , in which case Fournier, Ma and Ruscheweyh [2]
proved that Re{a2f(z)} > −1/2 for all z ∈ D.

5. Schwarzian derivative of hyperbolically convex functions.
Mejia and Pommerenke [6] investigated the Schwarzian derivative for hy-
perbolically convex functions. They conjectured that

sup{(1− |z|2)2|Sf (z)| : f is hyperbolically convex, z ∈ D}
= sup{σ(α) : 0 < α ≤ 1} ≈ 2.384,

where

σ(α) = max{|Sf (0)| : f(z) = αz + . . . is hyperbolically convex}.
They also proved that σ(α) ≤ 3(1−α4) for e−2 ≤ α ≤ 1. In this section, we
use the two-variable characterization to get a uniform upper bound on σ(α).
Precisely, we establish an inequality for hyperbolically convex functions that
is similar to the invariant form of the Trimble inequality for euclidean convex
functions [10].

Theorem 5.1. Suppose f(z) (not necessarily normalized) is holomorphic
and locally univalent in D with f(D) ⊂ D. Then f(z) is hyperbolically convex
if and only if

(1− |z|2)2|Sf (z)|+ 3
4

∣∣∣∣Dh2f(z)
Dh1f(z)

∣∣∣∣2 ≤ 3.

P r o o f. First, we assume that f(z) is hyperbolically convex. It is enough
to prove the desired inequality at any fixed a ∈ D. Define

p(z) =
2zf ′(z)

f(z)− f(a)
− z + a

z − a
+

2f(a)zf ′(z)
1− f(a)f(z)

.

Theorem 3.1 tells us that p(z) ∈ P. Long but straightforward calculations
result in

p′(z) =
2(f ′(z) + zf ′′(z))(f(z)− f(a))− 2zf ′(z)2

(f(z)− f(a))2
+

2a
(z − a)2

+
2f(a)

(1− f(a)f(z))2
[(f ′(z) + zf ′′(z))(1− f(a)f(z)) + f(a)zf ′(z)2]
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and

lim
z→a

p′(z) =
2
3
a
f ′′′(a)
f ′(a)

− 1
2
a

(
f ′′(a)
f ′(a)

)2

+
f ′′(a)
f ′(a)

+
2f(a)f ′(a)

(1− |f(a)|2)

[
1 +

af ′′(a)
f ′(a)

+
f(a)af ′(a)
1− |f(a)|2

]
.

From the limits of p(z) and p′(z), we can easily see that

lim
z→a

(2zp′(z) + 1− p(z)2) = 4
3a

2Sf (a).

By using the inequality (2.1) of Lemma 2.1 and letting z → a, we have

|a|2
∣∣∣∣43Sf (a)

∣∣∣∣+
∣∣∣∣1 +

af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

− 1 + |a|2

1− |a|2

∣∣∣∣2 ≤ ( 2|a|
1− |a|2

)2

.

As

(1− |a|2)2
∣∣∣∣1 +

af ′′(a)
f ′(a)

+
2f(a)af ′(a)
1− |f(a)|2

− 1 + |a|2

1− |a|2

∣∣∣∣2 =
∣∣∣∣aDh2f(a)
Dh1f(a)

∣∣∣∣2,
we get

|a|2(1− |a|2)2
∣∣∣∣43Sf (a)

∣∣∣∣+
∣∣∣∣aDh2f(a)
Dh1f(a)

∣∣∣∣2 ≤ 4|a|2,

which implies the desired inequality.
On the other hand, the inequality yields |Dh2f(z)/Dh1f(z)| ≤ 2. Corol-

lary 3.2 then implies that f(z) is hyperbolically convex.

Corollary 5.2. Let f(z) = αz + a2z
2 + a3z

3 + . . . be hyperbolically
convex in D. Then ∣∣∣∣a3

α
−
(
a2

α

)2∣∣∣∣+
1
2

∣∣∣∣a2

α

∣∣∣∣2 ≤ 1
2
.

Remark 5.1. Note that for the function kα(z),∣∣∣∣a3

α
−
(
a2

α

)2∣∣∣∣+
1
2

∣∣∣∣a2

α

∣∣∣∣2 =
1
2

(1− α4).

Thus the constant 1/2 in Corollary 5.2 is best possible. And from Theo-
rem 5.1, we see that sup{σ(α) : 0 < α ≤ 1} ≤ 3.

6. Distortion theorems. Finding sharp bounds on |f ′(z)| for hyper-
bolically convex functions is not an easy problem. We even do not know the
sharp order of growth for |f ′(z)|. In this section, we use the sharp growth
theorem obtained in [3] to get the sharp lower bound on |f ′(z)| for all z ∈ D
and the sharp upper bound on |f ′(z)| when |z| ≤

√
2− 1.
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Theorem 6.1. Let f(z) = αz+a2z
2 + . . . be hyperbolically convex. Then

for all z ∈ D,
|f ′(z)| ≥ k′α(−|z|),

and for |z| ≤
√

2− 1,
|f ′(z)| ≤ k′α(|z|).

P r o o f. In [3], we obtained the sharp growth theorem −kα(−|z|) ≤
|f(z)| ≤ kα(|z|) for hyperbolically convex f(z) = αz + a2z

2 + . . . That
is, if f(z) is hyperbolically convex with f(0) = 0, then

2|f ′(0)||z|
1 + |z|+

√
(1 + |z|)2 − 4|f ′(0)|2|z|

≤ |f(z)| ≤ 2|f ′(0)||z|
1− |z|+

√
(1− |z|)2 + 4|f ′(0)|2|z|

since e−iθf(z), where θ = arg{f ′(0)}, is also hyperbolically convex. By using
the inequalities above for

fa(z) =
f((z + a)/(1 + az))− f(a)
1− f(a)f((z + a)/(1 + az))

,

we see that
2|Dh1f(a)||z|

1 + |z|+
√

(1 + |z|)2 − 4|Dh1f(a)|2|z|

≤
∣∣∣∣ f((z + a)/(1 + az))− f(a)
1− f(a)f((z + a)/(1 + az))

∣∣∣∣ ≤ 2|Dh1f(a)||z|
1− |z|+

√
(1− |z|)2 + 4|Dh1f(a)|2|z|

.

If we let z = −a, we get

(6.1) |f(a)| ≤ 2|Dh1f(a)| |a|
1− |a|+

√
(1− |a|)2 + 4|Dh1f(a)|2|a|

and

(6.2) |f(a)| ≥ 2|Dh1f(a)| |a|
1 + |a|+

√
(1 + |a|)2 − 4|Dh1f(a)|2|a|

.

The inequality (6.1) can be rewritten as

|f(a)|
√

(1− |a|)2 + 4|Dh1f(a)|2|a| ≤ 2|Dh1f(a)| |a| − (1− |a|)|f(a)|,
which is equivalent to

(|a| − |f(a)|2)|Dh1f(a)| ≥ (1− |a|)|f(a)|.

Thus,

(6.3) |f ′(a)| ≥ |f(a)|(1− |f(a)|2)
(1 + |a|)(|a| − |f(a)|2)

.
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We want to show that the right side is an increasing function of |f(a)| when
0 ≤ |f(a)| ≤ |a| ≤ 1. The function h(x) = x(1− x2)/(|a| − x2), 0 ≤ x ≤ |a|
≤ 1, satisfies

(|a| − x2)2h′(x) = |a|+ (1− 3|a|)x2 + x4

= (|a| − x2)2 + (|a|+ x2)(1− |a|),
which is clearly nonnegative when 0 ≤ x ≤ |a| ≤ 1. Therefore, h′(x) ≥ 0
when 0 ≤ x ≤ |a| ≤ 1 and so the right side of (6.3) is an increasing function
of |f(a)|. Since −kα(−|a|) ≤ |f(a)|, we have

|f ′(a)| ≥ −kα(−|a|)(1− k2
α(−|a|))

(1 + |a|)(|a| − k2
α(−|a|))

= k′α(−|a|).

Now we verify the upper bound. First we derive

(6.4) |f ′(a)| ≤ |f(a)|(1− |f(a)|2)
(1− |a|)(|a|+ |f(a)|2)

.

The inequality (6.2) can be written as

2|Dh1f(a)| |a| − (1 + |a|)|f(a)| ≤ |f(a)|
√

(1 + |a|)2 − 4|Dh1f(a)|2|a|.
If 2|Dh1f(a)| |a| − (1 + |a|)|f(a)| ≤ 0, then

|f ′(a)| ≤ |f(a)|(1− |f(a)|2)
2|a|(1− |a|)

≤ |f(a)|(1− |f(a)|2)
(1− |a|)(|a|+ |f(a)|2)

.

If 2|Dh1f(a)| |a| − (1 + |a|)|f(a)| ≥ 0, then by squaring both sides we get

(|a|+ |f(a)|2)|Dh1f(a)| ≤ (1 + |a|)|f(a)|.
This is the same as (6.4).

Second, we show that the right side of (6.4) is an increasing function
of |f(a)| when |a| ≤

√
2 − 1. The function l(x) = x(1− x2)/(|a|+ x2),

0 ≤ x ≤ |a|, satisfies (|a| + x2)2l′(x) = |a| − (1 + 3|a|)x2 − x4, which is
nonnegative if

x2 ≤
√

(1 + 3|a|)2 + 4|a| − (1 + 3|a|)
2

.

Direct calculation shows that when |a| ≤
√

2− 1,

|a|2 ≤
√

(1 + 3|a|)2 + 4|a| − (1 + 3|a|)
2

.

Thus, l′(x) ≥ 0 when 0 ≤ x ≤ |a| ≤
√

2− 1.
Finally, as |f(a)| ≤ kα(|a|), we obtain

|f ′(a)| ≤ kα(|a|)(1− k2
α(|a|))

(1− |a|)(|a|+ k2
α(|a|))

= k′α(|a|).

Recently, Mejia, Pommerenke and Vasil’ev [5] got the same upper bound
on |f ′(z)| when |z| ≤

√
2−1 by using a somewhat different method, although
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their approach also resulted in the same inequality (6.4). We included our
proof since the method for the upper and lower bounds is the same. Also
note from our proof that |f ′(a)| ≤ k′α(|a|) holds as long as

|f(a)|2 ≤
√

(1 + 3|a|)2 + 4|a| − (1 + 3|a|)
2

.

Since |f(a)| ≤ kα(|a|), the upper bound in Theorem 6.1 is valid for all a
that satisfy

kα(|a|)2 ≤
√

(1 + 3|a|)2 + 4|a| − (1 + 3|a|)
2

.
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