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Oscillation criteria for second order

self-adjoint matrix differential equations

by N. Parhi and P. Praharaj (Berhampur)

Abstract. Some results concerning oscillation of second order self-adjoint matrix
differential equations are obtained. These may be regarded as a generalization of results
for the corresponding scalar equations.

1. Consider the self-adjoint second order linear differential equation

(1.1) [σ(t)y′]′ + c(t)y = 0,

where σ, c ∈ C([0,∞), R) and σ(t) > 0. A solution of (1.1) is said to be oscil-

latory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory .
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Leighton’s criterion (see [7, 10]) states that (1.1) is oscillatory if

∞\
0

dt

σ(t)
= ∞ and

∞\
0

c(t) dt = ∞.

In 1949, Wintner [12] showed that

(1.2) y′′ + c(t)y = 0

is oscillatory if limt→∞ C(t) = ∞, where

(1.3) C(t) =
1

t

t\
0

(

s\
0

c(u) du
)

ds.

On the other hand, Hartman [5] has proved that nonoscillation of (1.2)
implies that either C(t) tends to a finite limit or lim inft→∞ C(t) = −∞.
Thus the following oscillation results follow:

Lemma 1.1. If limt→∞ C(t) = ∞, then (1.2) is oscillatory.

1991 Mathematics Subject Classification: Primary 34C10.
Key words and phrases: oscillation, matrix differential equations, self-adjoint.

[1]



2 N. Parhi and P. Praharaj

Lemma 1.2. If −∞ < lim inft→∞ C(t) < lim supt→∞
C(t) ≤ ∞, then

(1.2) is oscillatory.

In [4], Coles developed the idea of weighted averages of
Tx
0

c(s) ds in order
to obtain additional information about oscillation of (1.2). He proved the
following results:

Theorem 1.3. Let f be a nonnegative, locally integrable function on

[0,∞) such that
Tx
0

f(t) dt 6≡ 0. If

(1.4)

∞\
a

f(t)
(

t\
0

f2(s) ds
)

−1(
t\
0

f(s) ds
)k

dt = ∞

for some k, 0 ≤ k < 1, and for a > 0, and

lim
x→∞

(

x\
0

f(t) dt
)

−1
x\
0

f(t)
(

t\
0

c(s) ds
)

dt = ∞,

then (1.2) is oscillatory.

Theorem 1.4. If C(t), given by (1.3), does not approach a finite limit as

t → ∞ and if there is a nonnegative, locally integrable function f on [0,∞)
satisfying

Tx
0

f(t) dt 6≡ 0 and (1.4) and

lim inf
x→∞

(

x\
0

f(t) dt
)

−1
x\
0

f(t)
(

t\
0

c(s) ds
)

dt > −∞,

then (1.2) is oscillatory.

Clearly, Theorems 1.3 and 1.4 generalize Lemmas 1.1 and 1.2 respec-
tively.

In this paper, we generalize Theorems 1.3 and 1.4 to self-adjoint second
order matrix differential equations of the form

(E) (P (t)Y ′)′ + Q(t)Y = 0

on [0,∞), where Y (t), P (t) and Q(t) are n × n real, continuous matrix
functions on [0,∞) such that Q(t) is symmetric and P (t) is symmetric and
positive definite. A solution Y (t) of (E) is said to be nontrivial if detY (t) 6=0
for at least one t ∈ [0,∞). A solution Y (t) of (E) is said to be prepared or
self-conjugate if

(1.5) Y ∗(t)(P (t)Y ′(t)) = (P (t)Y ′(t))∗Y (t)

for t ∈ [0,∞), where, for any matrix A, the transpose of A is denoted by
A∗. It is easy to see that for any solution Y (t) of (E),

Y ∗(t)(P (t)Y ′(t)) − (P (t)Y ′(t))∗Y (t) = a constant.

In most of the literature dealing with oscillation of matrix differential equa-
tions, it is tacitly assumed that the constant in the above identity is a zero
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matrix. However, Howard (see [6, pp. 185, 188]) explicitly assumed the condi-
tion (1.5). A nontrivial prepared solution Y (t) of (E) is said to be oscillatory

if for every t0 ≥ 0 it is possible to find a t1 ≥ t0 such that det Y (t1) = 0; oth-
erwise, Y (t) is called nonoscillatory . Equation (E) is said to be oscillatory

if every nontrivial prepared solution of the equation is oscillatory. The oscil-
lation of (E) is defined through its nontrivial prepared solutions because it
is possible (see [9]) that (E) admits a nontrivial nonprepared nonoscillatory
solution.

For any n × n real symmetric matrix A, the eigenvalues λk(A) of A,
1≤ k≤ n, are real and hence may be arranged as λ1(A) ≥ . . . ≥ λn(A). For
any n × n real symmetric matrices A and B, we write A ≥ B to mean that
A−B ≥ 0, that is, A−B is positive semi-definite, and A > B to mean that
A − B > 0, that is, A − B is positive definite. It is well known that A ≥ B
and B ≥ 0 imply that A ≥ 0.

If S is the real linear space of all real symmetric n × n matrices, then
tr : S → R is a linear functional and (tr A)2 ≤ n tr(A2) for every A ∈ S.
Further, for A,B ∈ S, (i) A ≥ B implies that tr A ≥ tr B, (ii) λn(A) ≤

tr A/n ≤ λ1(A). If A ≥ 0, then λ1(A) ≤ tr A ≤ nλ1(A). We recall that

tr A =

n
∑

k=1

λk(A) =

n
∑

k=1

akk if A = (aij)n×n.

Moreover,

tr

t\
0

Q(s) ds =

t\
0

tr Q(s) ds.

One may see [8] for these properties.
If P (t) ≡ I, the identity matrix, then (E) takes the form

(E1) Y ′′ + Q(t)Y = 0.

Oscillation of (E) must be studied separately from (E1) since, like in the
scalar case, there is no oscillation-preserving transformation of the indepen-
dent variable that allows the passage between the two forms. In most of the
literature (see [2, 3, 8] and the references therein), oscillation criteria for

(E) or (E1) are given in terms of tr(
Tt
0
Q(s) ds) or λ1(

Tt
0
Q(s) ds), the first

eigenvalue of
Tt
0
Q(s) ds. However, these results are not always comparable.

In this paper, we obtain sufficient conditions for oscillation of (E) in terms

of
Tt
0
tr Q(s) ds. Some results are stated in terms of λ1(

Tt
0
Q(s) ds). Examples

are given to illustrate usefulness of each of these results.
The motivation for this work came from the above observation and from

the observation that a very extensive literature exists (see [1, 11, 13] and
the references therein) for the oscillation theory of (1.1) or (1.2), whereas
the corresponding theory for (E) or (E1) is less developed.
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2. In this section we obtain sufficient conditions for oscillation of (E).
The following conditions are needed for our results in the sequel:

(H1) P−1(t) ≥ I,

(H2) limt→∞ A(t) = ∞, where A(t) = A(t, 0) and

A(t, σ) =
(

t\
σ

f(s) ds
)

−1
t\
σ

f(s)
(

s\
σ

tr Q(u) du
)

ds, t ≥ σ ≥ 0,

(H3)

∞\
a

f(t)
(

t\
0

f2(s) ds
)

−1(
t\
0

f(s) ds
)k

dt = ∞

for some k, 0 ≤ k < 1, and some a > 0, where f is a nonnegative,
locally integrable function on [0,∞) such that

Tt
0
f(s) ds 6≡ 0,

(H4) lim sup
t→∞

1

t

t\
0

(

s\
0

tr Q(u) du
)

ds = ∞,

(H5) lim inft→∞ A(t) > −∞, where A(t) is given by (H2),

(H6) the eigenvalues λi(C(t)), 1 ≤ i ≤ n, of any real symmetric matrix
C(t) may be arranged in the form λ1(C(t)) ≥ . . . ≥ λn(C(t)).

(H7) limt→∞ B(t) = ∞, where B(t) = B(t, 0) and

B(t, σ) =
(

t\
σ

f(s) ds
)

−1
t\
σ

f(s)λ1

(

s\
σ

Q(u) du
)

ds, t ≥ σ ≥ 0,

(H8) lim inft→∞ B(t) > −∞, where B(t) is given by (H7),

(H9) lim sup
t→∞

1

t

t\
0

λ1

(

s\
0

Q(u) du
)

ds = ∞.

Remark 1. (i) (H3) implies that

∞\
t1

f(t)
(

t\
t0

f2(s) ds
)

−1(
t\
t1

f(s) ds
)k

dt = ∞, t1 > t0 > 0.

(ii) (H3) implies that
T
∞

0
f(t) dt = ∞.

(iii) (H2) and
T
∞

0
f(t) dt = ∞ imply that limt→∞ A(t, t0) = ∞ for every

t0 > 0.
(iv) (H4) implies that

lim sup
t→∞

1

t

t\
t0

(

s\
t0

tr Q(u) du
)

ds = ∞ for every t0 > 0.

(v) (H5) and
T
∞

0
f(t) dt = ∞ imply that lim inft→∞ A(t, t0) > −∞ for

every t0 > 0.
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(vi) If
T
∞

0
f(t) dt = ∞ and g(t) is nondecreasing, then the function

(
Tt
0
f(s) ds)−1(

Tt
0
f(s)g(s) ds) is nondecreasing.

(vii) If
T
∞

0
f(t) dt = ∞, g(t) is nondecreasing and the function

(
Tt
0
f(s) ds)−1(

Tt
0
f(s)g(s) ds) is bounded, then g(t) is bounded.

Theorem 2.1. If (H1)–(H3) hold , then (E) is oscillatory.

P r o o f. If possible, suppose that (E) is not oscillatory.Hence there exists
a nontrivial prepared solution Y (t) of (E) such that det Y (t) 6= 0 for t ≥

t0 > a. Setting

(2.1) R(t) = P (t)Y ′(t)Y −1(t)

for t ≥ t0, we observe that R∗(t) = R(t) due to (1.5) and

(2.2) R′(t) + R(t)P−1(t)R(t) + Q(t) = 0.

Integrating (2.2) from t0 to t yields

R(t) +

t\
t0

R(s)P−1(s)R(s) ds +

t\
t0

Q(s) ds = R(t0).

Hence

tr R(t) +

t\
t0

tr(R(s)P−1(s)R(s)) ds +

t\
t0

tr Q(s) ds = tr R(t0).

Multiplying the above identity through by f(t) and then integrating from
t0 to t, we obtain

(2.3)

t\
t0

f(s) tr R(s) ds +

t\
t0

f(s)
(

s\
t0

tr(R(u)P−1(u)R(u)) du
)

ds

= (tr R(t0) − A(t, t0))

t\
t0

f(s) ds < 0

for large t due to (H2) and (H3) (see Remark 1(ii), (iii)). From (H1) it follows
that

R(t)P−1(t)R(t) ≥ R2(t) ≥ 0

and hence (2.3) yields

(2.4)

t\
t0

f(s) tr R(s) ds < 0

for large t. Consequently, from (2.3) we get
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(2.5)
[

t\
t0

f(s)
(

s\
t0

tr(R(u)P−1(u)R(u)) du
)

ds
]2

≤
[

t\
t0

f(s) tr R(s) ds
]2

≤
(

t\
t0

f2(s) ds
)(

t\
t0

(tr R(s))2 ds
)

≤ n
(

t\
t0

f2(s) ds
)(

t\
t0

tr R2(s) ds
)

≤ n
(

t\
t0

f2(s) ds
)(

t\
t0

tr(R(s)P−1(s)R(s)) ds
)

,

where the Cauchy–Schwarz inequality is used. If

(2.6) r(t) =

t\
t0

f(s)
(

s\
t0

tr(R(u)P−1(u)R(u)) du
)

ds,

then, for t ≥ t1 > t0, we have

r(t) ≥

t\
t1

f(s)
(

s\
t0

tr(R(u)P−1(u)R(u)) du
)

ds

≥
(

t\
t1

f(s) ds
)(

t1\
t0

tr(R(u)P−1(u)R(u)) du
)

.

Hence, using (2.5), we obtain

(

t\
t1

f(s) ds
)k(

t1\
t0

tr(R(u)P−1(u)R(u)) du
)k

≤ rk(t) = rk−2(t)r2(t)

≤ nrk−2(t)
(

t\
t0

f2(s) ds
)(

t\
t0

tr(R(s)P−1(s)R(s)) ds
)

,

that is,

f(t)
(

t\
t1

f(s) ds
)k(

t1\
t0

tr(R(u)P−1(u)R(u)) du
)k

≤ nrk−2(t)r′(t)

t\
t0

f2(s) ds.
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Integrating from t1 to t, we get

(

t1\
t0

tr(R(u)P−1(u)R(u)) du
)k

×

t\
t1

f(s)
(

s\
t0

f2(u) du
)

−1(
s\
t1

f(u) du
)k

ds

≤ n

t\
t1

rk−2(s)r′(s) ds ≤
n

1 − k
·

1

r1−k(t1)
< ∞,

which contradicts (H3) (see Remark 1(i)). Hence the theorem is proved.

Remark 2. Theorem 2.1 may be viewed as a generalization of the fol-
lowing theorem which is an extension of Theorem 1.3.

Theorem 2.2. Suppose that the conditions of Theorem 1.3 hold. IfT
∞

0
σ−1(t) dt = ∞, then (1.1) is oscillatory.

Theorem 2.3. Let (H1) and (H3)–(H5) hold. Then (E) is oscillatory.

P r o o f. If (E) is not oscillatory, then it admits a nontrivial prepared
solution Y (t) such that detY (t) 6= 0 for t ≥ t0 > a. Setting R(t) as in (2.1)
for t ≥ t0, we obtain (2.2) and R∗(t) = R(t). Proceeding as in the proof of
Theorem 2.1, we obtain (2.3). Thus

(2.7)
(

t\
t0

f(s) ds
)

−1[
t\
t0

f(s) trR(s) ds

+

t\
t0

f(s)
(

s\
t0

tr(R(u)P−1(u)R(u)) du
)

ds
]

≤ tr R(t0) − A(t, t0) ≤ L

for t ≥ t1 > t0, by (H3) and (H5), where L is a constant (see Remark 1(v)).

We claim that r(t)(
Tt
t0

f(s) ds)−1 is bounded, where r(t) is given by (2.6).

Suppose it is unbounded. Since
Tt
t0

tr(R(u)P−1(u)R(u)) du is nondecreasing

and (H3) holds, it follows that r(t)(
Tt
t0

f(s) ds)−1 is nondecreasing (see Re-

mark 1(vi)). Hence

(2.8) lim
t→∞

r(t)
(

t\
t0

f(s) ds
)

−1

= ∞.
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From (2.7) it follows that, for t ≥ t1,

t\
t0

f(s) tr R(s) ds + r(t) ≤ L

t\
t0

f(s) ds,

that is,

t\
t0

f(s) tr R(s) ds +
1

2
r(t) ≤

[

L −
1

2
r(t)

(

t\
t0

f(s) ds
)

−1
] t\

t0

f(s) ds.

Thus the left hand side is negative for large t, due to (2.8). Consequently,
we obtain (2.4). Proceeding as in the proof of Theorem 2.1, we arrive at a
contradiction to (H3). Hence our claim holds.

From Remark 1(vii) it now follows that
Tt
t0

tr(R(u)P−1(u)R(u)) du is
bounded. If

∣

∣

∣
tr R(t0) −

t\
t0

tr(R(u)P−1(u)R(u)) du
∣

∣

∣
≤ M,

where M is a constant, then from (2.2) we obtain

t\
t0

tr Q(s) ds ≤ M − tr R(t).

Hence

(2.9)
1

t

t\
t0

(

s\
t0

tr Q(u) du
)

ds ≤
M(t − t0)

t
−

1

t

t\
t0

tr R(s) ds.

By the Cauchy–Schwarz inequality
[

1

t

t\
t0

tr R(s) ds

]2

≤ (t − t0)
1

t2

t\
t0

(tr R(s))2 ds ≤ (t − t0)
n

t2

t\
t0

tr(R(s))2 ds

≤ n

(

1 −
t0
t

)

1

t

t\
t0

tr(R(s)P−1(s)R(s)) ds.

Hence

lim
t→∞

[

1

t

t\
t0

tr R(s) ds

]2

= 0,

since
Tt
t0

tr(R(s)P−1(s)R(s)) ds is bounded. Thus

lim
t→∞

1

t

t\
t0

tr R(s) ds = 0.
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From (2.9) it follows that

lim sup
t→∞

1

t

t\
t0

(

s\
t0

tr Q(u) du
)

ds ≤ M,

a contradiction to (H4) due to Remark 1(iv). Hence the proof of the theorem
is complete.

Remark 3. Theorem 2.3 is a generalization of Theorem 1.4.

The following examples illustrate the above results.

Example 1. Consider

(2.10) (P (t)Y ′)′ + Q(t)Y = 0, t ≥ 0,

where
(2.11)

P (t) =
1

2(t + 2)

[

2 0
0 t + 2

]

, Q(t) =

[

(1/2) − cos t 0
0 (1/2) + cos t

]

.

Hence

P−1(t) − I =

[

t + 1 0
0 1

]

> 0 and tr Q(t) = 1.

Taking f(t)= t and k=2/3, we observe that the assumptions (H1)–(H3) are
satisfied. From Theorem 2.1 it follows that (2.10) is oscillatory. In particular,

Y (t) =

[

y1(t) 0
0 y2(t)

]

is an oscillatory solution of (2.10), where yi(t) is a solution of

(2.12)i (pi(t)y
′)′ + qi(t)y = 0, t ≥ 0,

i = 1, 2, with p1(t) = 1/(t + 2), p2(t) = 1/2, q1(t) = 1/2 − cos t, and
q2(t) = 1/2 + cos t. Leighton’s criterion implies that (2.12)i is oscillatory,
i = 1, 2, and hence y1(t) and y2(t) are oscillatory functions. Clearly, Y (t) is
nontrivial and prepared.

Example 2. Let P (t) be as in Example 1 and

(2.13) Q(t) =

[

q(t) − cos t 0
0 q(t) + cos t

]

where q(t) = qn(t), t ∈ [2n, 2n + 2], n = 0, 1, 2, . . . , and

qn(t) =







0, t ∈ [2n, 2n + 1],
2(t − 2n − 1), t ∈ [2n + 1, 2n + 3/2],
−2t + 4(n + 1), t ∈ [2n + 3/2, 2n + 2].

Clearly, q(t) is a nonnegative continuous function on [0,∞) and hence Q(t)
is a continuous matrix function on [0,∞). Clearly, tr Q(t) = 2q(t). Since



10 N. Parhi and P. PraharajT2n+2

2n
qn(t) dt = 1/2 for n = 0, 1, 2, . . . , we have, for t ∈ (2n + 2, 2n + 4],

1

t

t\
0

(

s\
0

tr Q(u) du
)

ds =
2

t

t\
0

(

s\
0

q(u) du
)

ds

=
2

t

[

n+1
∑

i=1

2i\
2(i−1)

(

s\
0

q(u) du
)

ds +

t\
2n+2

(

s\
0

q(u) du
)

ds
]

≥
1

t

n+1
∑

i=1

2i\
2(i−1)

(

s\
0

q(u) du
)

ds

≥
1

t

n+1
∑

i=1

2i\
2(i−1)

[

2\
0

q0(u) du +

4\
2

q1(u) du + . . . +

2(i−1)\
2(i−2)

qi−2(u) du
]

ds

≥
2

t

n+1
∑

i=1

i − 1

2
=

1

t
·
n(n + 1)

2
≥

n(n + 1)

4(n + 2)
.

Thus

lim
t→∞

1

t

t\
0

(

s\
0

tr Q(u) du
)

ds = ∞.

If

f(t) =

{

1, t ∈ [2n, 2n + 1],
0, t ∈ (2n + 1, 2n + 2],

for n = 0, 1, 2, . . . , then f(t) is a nonnegative, locally integrable function on

[0,∞) such that
Tt
0
f(s) ds 6≡ 0, and

A(t) =
(

t\
0

f(s) ds
)

−1
t\
0

f(s)
(

s\
0

tr Q(u) du
)

ds

=
(

t\
0

f(s) ds
)

−1
t\
0

f(s)
(

s\
0

q(u) du
)

ds = 0

for t ∈ (0,∞), due to the definitions of f and q. Further, for 0 < k < 1,
a > 0 and 2n < t ≤ 2n + 2,

t\
a

f(s)
(

s\
0

f2(u) du
)−1(

s\
0

f(u) du
)k

ds =

1\
a

+

3\
2

+ . . . +

2n−1\
2n−2

+

t\
2n

>

(

1

k
− ak

)

+

(

2k

k
−

1

k

)

+

(

3k

k
−

2k

k

)

+ . . . +

(

nk

k
−

(n − 1)k

k

)

=
nk

k
− ak.
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Hence
∞\
a

f(t)
(

t\
0

f2(s) ds
)

−1(
t\
0

f(s) ds
)k

dt = ∞.

As all the assumptions of Theorem 2.3 are satisfied, the matrix equation

(2.14) (P (t)Y ′)′ + Q(t)Y = 0

is oscillatory, where P (t) and Q(t) are given by (2.11) and (2.13) respectively.
In particular,

Y (t) =

[

y1(t) 0
0 y2(t)

]

is a nontrivial, prepared, oscillatory solution of (2.14) where y1(t) and y2(t)
are solutions of

(2.15)

(

1

t + 2
y′

)

′

+ (q(t) − cos t)y = 0

and

(2.16)

(

1

2
y′

)

′

+ (q(t) + cos t)y = 0

respectively. From Theorem 2.2 it follows that equations (2.15) and (2.16)
are oscillatory.

3. Discussion. Since Q(t) is a real symmetric matrix function and

tr
Tt
σ

Q(s) ds ≤ nλ1(
Tt
σ

Q(s) ds), (H2) implies (H7), (H4) implies (H9), and
(H5) implies (H8). These implications hold provided it is possible to deter-

mine the largest eigenvalue of
Tt
σ

Q(s) ds. Thus it would be interesting to
establish the following theorems:

Theorem 3.1. If (H1), (H3), (H6) and (H7) hold , then (E) is oscillatory.

Theorem 3.2. If (H1), (H3), (H6), (H8) and (H9) are satisfied , then

(E) is oscillatory.

Although it appears that Theorems 3.1 and 3.2 are generalizations of
Theorems 2.1 and 2.3 respectively, it is really not true in view of the as-
sumption (H6) which is not required for the proof of the latter theorems. If
C(t) = C, a real symmetric matrix with constant entries, then (H6) follows
immediately from the natural ordering of real numbers. In fact, (H6) makes
Theorems 2.1 and 2.3 independent of Theorems 3.1 and 3.2. In the following
we give some examples to make this point clear. We may note that Theo-
rem 3.1 cannot be applied to Example 1 since (H6) fails to hold. Indeed,

the eigenvalues of
Tt
0
Q(s) ds are given by t/2− sin t and t/2+sin t and these

are not comparable. For a similar reason, Theorem 3.2 cannot be applied
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to Example 2. On the other hand, there are examples to which Theorems
3.1 and 3.2 can be applied but Theorems 2.1 or 2.3 cannot.

Example 3. Consider

(3.1) (P (t)Y ′)′ + Q(t)Y = 0, t ≥ 0,

with

P (t) =
1

2(t2 + 1)

[

2 0
0 t2 + 1

]

and Q(t) =

[

t 0
0 −t

]

.

Since tr Q(t) = 0, (H2) fails to hold and hence Theorem 2.1 cannot be
applied to (3.1). However, Theorem 3.1 holds for (3.1). Indeed, here

P−1(t) − I =

[

t2 0
0 1

]

> 0

and λ1(
Tt
0
Q(s) ds) = t2/2 implies, by taking f(t) = t, that

(

t\
0

f(s) ds
)

−1
t\
0

f(s)λ1

(

s\
0

Q(u) du
)

ds =
2

t2

t\
0

s3

2
ds =

t2

4
→ ∞

as t → ∞. Moreover, for a > 0 and k = 4/5, we obtain

t\
a

f(s)
(

s\
0

f2(u) du
)

−1(
s\
0

f(u) du
)k

ds

=

t\
a

3

s2
·
s2k

2k
ds =

3

2k
·

1

2k − 1
[t2k−1 − a2k−1] → ∞

as t → ∞. Thus (H1), (H3), (H6) and (H7) are satisfied.

Clearly,

Y (t) =

[

y1(t) 0
0 y2(t)

]

is a nontrivial, prepared, oscillatory solution of (3.1), where y1(t) is an os-
cillatory solution of

(

1

t2 + 1
y′

)′

+ ty = 0

and y2(t) is a nonoscillatory solution of
(

1

2
y′

)

′

− ty = 0.

Example 4. Clearly, all the conditions of Theorem 3.2 are satisfied for
the matrix equation

(3.2) (P (t)Y ′)′ + Q(t)Y = 0, t ≥ 0,
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with

P (t) =
1

2(t + 2)

[

2 0
0 t + 2

]

and Q(t) =

[

q(t) 0
0 −q(t)

]

where q(t) and f(t) are as in Example 2 and 0 < k < 1, since λ1(
Tt
0
Q(s) ds)

=
Tt
0
q(s) ds. However, Theorem 2.3 fails to hold for (3.2) as tr Q(t) = 0.

We may note that

Y (t) =

[

y1(t) 0
0 y2(t)

]

is a nontrivial, prepared, oscillatory solution of (3.2), where y1(t) is an os-
cillatory solution of

(

1

t2 + 1
y′

)

′

+ q(t)y = 0,

which is oscillatory by Theorem 2.2, and y2(t) is a nonoscillatory solution
of

(

1

2
y′

)

′

− q(t)y = 0.

The proof of Theorems 3.1 and 3.2 will be given elsewhere.
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