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On the existence of curves in Pn with stable normal bundle

by Edoardo Ballico (Trento) and Luciana Ramella (Genova)

Abstract. We prove that for integers n, d, g such that n ≥ 4, g ≥ 2n and d ≥
2g + 3n+ 1, the general (smooth) curve C in Pn with degree d and genus g has a stable
normal bundle NC .

Introduction. Let C be a smooth projective curve. It is natural to ask
for which triples (n, d, g) of integers there exist smooth curves C in Pn of
degree d and genus g with a stable normal bundle NC .

For n = 3, Ellingsrud and Hirschowitz proved in [9] that there exist a
lot of space smooth curves having a stable normal bundle.

Here, for n ≥ 4, we will prove the following result:

Theorem 1. Let n, d, g be integers with n ≥ 4, g ≥ 2n and d ≥ 2g +
3n + 1. Then the general (smooth) curve C ⊂ Pn of degree d and genus g
has a stable normal bundle NC .

As in [9], we use smoothable reducible nodal curves X having a stable
normal bundle NX . Of course for n > 3 the study of stability of the normal
bundle NX is more complicated than in the case n = 3.

The normal bundle of a general rational curve D ⊂ Pn of degree d ≥ n
and the normal bundle of a linearly normal elliptic curve Y ⊂ Pn of degree
n + 1 are well known (see e.g. [15] and [5]). Therefore we use a nodal
curveX whose irreducible components are linearly normal elliptic curves and
rational curves. Bundles on rational and elliptic curves are rather familiar.
For bundles on elliptic curves we also use a recent result obtained in [2]. To
check the stability of a vector bundle on a reducible nodal curve X we use
a result of [3].

We work over an algebraically closed field k with char(k) = 0.
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1. Notations. Let C be a smooth projective curve, P ∈ C and E,F
vector bundles on C.

Call µ(E) := deg(E)/rank(E) the slope of E. The bundle E is called
stable (resp. semistable) if for all proper subbundles G of E we have µ(G) <
µ(E) (resp. µ(G) ≤ µ(E)). The bundle E is called polystable if it is a direct
sum of stable vector bundles with the same slope. Hence a polystable bundle
is semistable. A polystable vector bundle E is called superpolystable if no
two among the indecomposable factors of E are isomorphic.

We will say that F is obtained from E by making a positive elementary
transformation supported by P ∈ C if E and F fit in an exact sequence 0→
E → F → OP → 0, where OP is the skyscraper sheaf on C supported by P .
Note that in this case we have rank(F ) = rank(E) and deg(F ) = deg(E)+1.

Dualizing the above exact sequence, we obtain the exact sequence 0 →
F∨ → E∨ → OP → 0. Then F is uniquely determined by E and a point
v ∈ P(E∨)P .

More generally, we can say that F is obtained from E by making a positive
elementary transformation supported by a 0-dimensional subscheme S of C
if E and F fit in an exact sequence 0→ E → F → OS → 0.

If the 0-dimensional scheme S ⊂ C is of length s, then F is obtained
from E by making s positive elementary transformations.

Remark 1.1. We will use the following parameter spaces for finite se-
quences of positive elementary transformations of a fixed vector bundle E
on C:

(i) There is an integral quasi-projective variety parametrizing sequences
of s positive elementary transformations supported by s different points
varying in C.

(ii) Fix s distinct points P1, . . . , Ps of C. The space of bundles obtained
from E by making s positive elementary transformations supported respec-
tively by P1, . . . , Ps is a closed irreducible subset of the space considered
in (i).

(iii) We fix a bundle F obtained from E by making s positive elementary
transformations. We take a local deformation space of F as parameter space,
having an open and dense subset which parametrizes bundles in (i).

A reduced curve X is called a nodal curve if the only singularities of X
are ordinary nodes. We will use only nodal curves with smooth irreducible
components.

Let X be a nodal curve in Pn. Then its normal sheaf NX := (I/I2)∨ is
locally free of rank n−1 and degree deg(NX) = (n+1) deg(X)+2pa(X)−2.

Positive elementary transformations are involved in the description of
the normal bundle NX . In fact, if X = Y1 ∪ Y2 is a nodal curve, then the
normal bundle NX is a glueing of NX|Y1 and NX|Y2 . Moreover, for i = 1, 2,
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NX|Yi is obtained from NYi by making s = card(Y1∩Y2) positive elementary
transformations supported by the points of Y1 ∩ Y2; at every P ∈ Y1 ∩ Y2

the positive elementary transformation needed to obtain NX|Yi from NYi is
given by the plane K determined by the tangent lines of Y1 and Y2 at P
(see [12], Cor. 3.2, Prop. 3.3 and their proofs).

The definition of stability and semistability of a vector bundle on a
smooth curve C is extended in a similar way to a vector bundle on a re-
ducible nodal curve X (see e.g. [16]).

In the following we denote by rF the direct sum of r copies of the bundle
F and by [x] the integer part of a real number x.

2. Preliminary remarks on rational and elliptic curves. We want
to prove a result due to Sacchiero (see [15]), i.e. Proposition 2.2 below.

We need the following trivial extension of the terminology and proof of
[14], Prop. 1.3.5 and Prop. 2.1.4.

Lemma 2.1. Let C be a smooth curve in Pn, n ≥ 3, P ∈ C and let D
be a line passing through P different from the tangent line TPC to C at P .
Set X := C ∪D. Denote by K the plane defined by the lines D and TPC.
Let M be the maximal line subbundle of ND passing through K and L a
line subbundle of NC . Let G be the rank 1 saturated subsheaf of NX with
L ⊂ G|C and M ⊂ G|D.

(a) If L does not pass through K, then deg(G) = deg(L)+1. If L passes
through K and does not glue together with M at P in NX , then deg(G) =
deg(L)+2; if L and M glue together at P in NX , then deg(G) = deg(L)+3.

(b) If P is a general point of C and D is a general line passing through
P , then L and M do not glue together at P in NX .

Recall that the normal bundle of a line D in Pn is ND ∼= (n− 1)OP1(1).

Proposition 2.2 (Sacchiero [15]). Fix integers n, d with d ≥ n ≥ 3. Let
C ⊂ Pn be a general rational curve of degree d. Then the normal bundle NC
is rigid. More precisely , we have NC ∼= rOP1(a+1)⊕(n−1−r)OP1(a), where
the integers r and a are such that (n+1)d−2 = a(n−1)+r, 0 ≤ r ≤ n−2.

P r o o f. Step 1. First we prove the proposition for d=n. We use induc-
tion on n. The case n = 3 is classical (see e.g. [7], [8] or [10]). Now assume
n ≥ 4 and that the assertion is true in Pn−1. Let H be a hyperplane of Pn
and Y ⊂ H a rational normal curve of degree n− 1 contained in H. By the
inductive assumption, NY/H ∼= (n− 2)OP1(n+ 1).

Let P be a general point of Y and D a general line of Pn passing through
P . Then X := Y ∪D is smoothable to a degree n rational normal curve C
in Pn. By the openness of semistability (see e.g. [13], Thm. 2.4), it suffices
to prove that NX is semistable.
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We have NY ∼= NY/H ⊕ OY (1) ∼= (n − 2)OP1(n + 1) ⊕ OP1(n − 1). Let
K be the plane defined by D and the tangent line of Y at P . Since P and
D are general, by Lemma 2.1 the maximal line subbundle M of ND passing
through the plane K does not glue together with a maximal line subbundle
of NY . Hence NX is semistable.

Step 2. We use induction on d. For d = n the assertion is proved in
Step 1. Assume d > n and the result true for the general rational curve Y
in Pn with degree d− 1. Take a general point P of Y and a general line D
passing through P . The nodal curve X := Y ∪D is smoothable to a degree d
smooth rational curve in Pn. We have to prove that the Harder–Narasimhan
polygon of NX (see e.g. [4] and also [13] for its definition) is general.

By the inductive assumption, NY ∼= r′OP1(a′ + 1)⊕ (n− 1− r′)OP1(a′),
where the integers r′ and a′ are such that (n+ 1)(d− 1)− 2 = a′(n− 1) + r′

and 0 ≤ r′ ≤ n− 2.
Let K be the plane defined by D and the tangent line of Y at P . Since

P and D are general, NX|Y is a general positive elementary transformation
of NY and hence NX|Y is rigid. Also NX|D is rigid. With the terminology
of [14], NX is a glueing of NX|Y and NX|D.

If r′ = n − 2, we are done. Let r′ ≤ n − 3. Since D is general, the
(maximal) line subbundles of NY with degree a′+ 1 do not pass through K
and the maximal line subbundle M of ND passing through K does not glue
together with a degree a′ line subbundle of NY passing through K. Thus
the Harder–Narasimhan polygon of NX is general.

Remark 2.3. Let C be a general rational curve in Pn of degree d≥n≥3.
Let r be the integer defined in Proposition 2.2. Take t := n − 1 − r for
0 ≤ r ≤ n − 2. Then the bundle obtained from NC by making t general
positive elementary transformations is semistable.

Write d = n+ β+ (n− 1)γ with β, γ ∈ N and 0 ≤ β ≤ n− 2. The above
integer t depends only on β and n, in fact it is equal to

tβ :=
{
−2β + n− 1 if 0 ≤ β ≤ [n/2]− 1,
−2β + 2(n− 1) if [n/2] ≤ β ≤ n− 2.

For elliptic curves we have the following result:

Proposition 2.4 (Ein–Lazarsfeld [5]). A linearly normal elliptic curve
C in Pn has a semistable normal bundle.

Remark 2.5. The above result is the case i= 1 of the Corollary in [5].
The authors of [5] wrote in the introduction of that paper that this particular
case of their Corollary was due to Ellingsrud.

For an elliptic curve C, the vector bundles on C were classified by Atiyah
[1]. For all integers r, s with r > 0, there are polystable bundles of rank r
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and degree s. A semistable bundle E on C is stable if and only if deg(E)
and rank(E) are coprime.

Let C be a linearly normal elliptic curve in Pn. Then C is of degree
n+ 1, its normal bundle NC is a semistable bundle of rank n−1 and degree
(n+ 1)2. Therefore the normal bundle NC is stable if and only if n is even.

Lemma 2.6. Let C be an elliptic curve and E a superpolystable bundle
on C. Then the bundle F obtained from E by making s general positive
elementary transformations is superpolystable.

P r o o f. Note that for all integers r, t with r > 0, there is a super-
polystable bundle on C of rank r and degree t. In fact, let G =

∑m
i=1Gi be

a polystable bundle of rank r and degree t on C with each Gi stable. Take
m general line bundles L1, . . . , Lm in Pic0(C) ∼= C. Then G′ =

∑m
i=1Gi⊗Li

is superpolystable.
Put r = rank(E) and d = deg(E). Let F0 be a superpolystable bundle on

C of rank r and degree d+s. By the Riemann–Roch Theorem, Hom(E,F0) ∼=
H0(C,E∨ ⊗ F0) 6= 0 and, from Thm. 1 of [2], a general f ∈ Hom(E,F0) is
injective.

Then we have an exact sequence 0 → E → F0 → OS0 → 0, i.e. F0

is a positive elementary transformation of E supported by a 0-dimensional
subscheme S0 of C of length s. By the openness of superpolystability, we
have the assertion (see Remark 1.1).

3. Proof of Theorem 1. We use the following result contained in [3],
Lemma 1.1:

Lemma 3.1. Let X be a nodal curve whose irreducible components Y1, . . .
. . . , Ym are smooth. Let E be a bundle on X such that E|Yi is semistable
for every i = 1, . . . ,m and moreover E|Y1 is stable. Then the bundle E is
stable.

We recall the following result of Eisenbud and Harris on the rational
normal curve:

Lemma 3.2 ([6], Thm. 1(b)). Let Γ be a 0-dimensional subscheme of Pn
in linearly general position (i.e. for every proper linear subspace Λ ⊂ Pn the
length of Λ∩Γ is ≤ 1+dim(Λ)). If Γ is of length n+3, then Γ is contained
in a unique rational normal curve of degree n.

Lemma 3.3. Let n be even and n ≥ 4. Consider integers α, β, γ∈N with
α ≥ 3 and 0 ≤ β ≤ n− 2. Put

d = (n+ 1)α+ n+ β + (n− 1)γ
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and let tβ be the integer defined in Remark 2.3. Then, for every integer g
such that

n+ tβ + α− 4 ≤ g ≤ n− 1 + tβ + (α− 3)(n/2 + 1),

there exists a smooth curve C in Pn of degree d and genus g having a stable
normal bundle NC .

P r o o f. It is sufficient to exhibit a smoothable nodal curve X of degree
d and arithmetic genus g with a stable normal bundle.

We consider the following types of “polygonal” curves X. The irreducible
components of X are α linearly normal elliptic curves Y1, . . . , Yα and a
general rational curve D of degree n+ β + (n− 1)γ.

The curve D intersects Y1 in ν1 points, Yi−1 intersects Yi in νi points
for 2 ≤ i ≤ α, Yα intersects D in να+1 points, and there are no further
intersections.

We put the following conditions on the intersections: νi ≥ 1 for every
1 ≤ i ≤ α, να+1 ≥ 0, νi ≤ n/2 + 1 for every 1 ≤ i ≤ α + 1, and moreover
tβ = ν1 + να+1 and n− 1 = ν2 + ν3.

Note that 1 ≤ tβ ≤ n− 1 (Remark 2.3).
Now we show that the above curve X exists. It is sufficient to consider

nodal reducible curves Yi of arithmetic genus 1 and degree n + 1 that are
the union of a normal rational curve Di of degree n and a bisecant line `i.

Consider the rational curve D and fix ν1 general points of D. Since
ν1 < n + 3, the scheme Σ of degree n rational curves passing through the
above ν1 points is of dimension (n2 + 2n− 3)− (n− 1)ν1 > 0. Moreover the
curves ofΣ meeting the curveD give a schemeΣ′ of dimension (n2 + 2n− 3)
− (n− 1)(ν1 + 1) + 1. Then the general curve D1 of Σ intersects D exactly
in ν1 points. Now consider a general bisecant `1 of D1. The line `1 is not a
tangent line of D1 and does not intersect the curve D.

By proceeding in this way, we can construct a “polygonal” configuration
D ∪ (D1 ∪ `1) ∪ . . . ∪ (Dα−1 ∪ `α−1) satisfying the above conditions on the
intersections.

Now take να general points of Dα−1 and να+1 general points of D. Since
να+να+1 < n+3, a general degree n rational curve Dα passing through the
above να + να+1 points does not intersect the curves of the configuration in
further points. We conclude by taking a general bisecant `α of Dα.

Since card((
⋃i−1
j=1 Yj) ∩ Yi) ≤ n + 1 for 2 ≤ i ≤ α, and card((

⋃α
j=1 Yj)

∩D) ≤ n+ 1, we see that X is smoothable ([12]).
Note that X is of degree d and genus g = n− 1 + tβ +

∑α
i=4 νi.

From Remark 2.3 we know that the bundle on the rational curve D ob-
tained from the normal bundle ND by making tβ general positive elementary
transformations is semistable.
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Since ν1, να+1 ≤ n/2+1, given tβ = ν1 +να+1 general points P1, . . . , Ptβ
of D and for each Pj a general line `j passing through it, with j = 1, . . . , tβ ,
there exists a “polygonal” curve X of the above type such that the tangent
lines of Y1 and Yα at P1, . . . , Pα are `1, . . . , `α (that is a consequence of
Lemma 3.2).

So there exists a nodal curve X of the above type such that NX|D is
semistable.

The normal bundle NYi of the linearly normal elliptic curve Yi is stable
(see Remark 2.5). Thus for every positive integer s the bundle obtained from
NYi by making s general positive elementary transformations is semistable
(Lemma 2.6). Given νi + νi+1 general points of Yi (with νi, νi+1 ≤ n/2 + 1)
and for each of them a general line passing through it, there exists a nodal
curve X of the above type such that Yi−1 and Yi+1 (put Y0 = D = Yi+1)
intersect Yi in the given points and have the given lines as tangent lines at
those points (Lemma 3.2).

Thus, for every 1 ≤ i ≤ α, there exists a nodal curve X of the above
type such that NX|Yi is semistable.

Moreover ν2 + ν3 = n − 1 and so deg(NX|Y2) = deg(NY2) + n − 1 =
(n+ 1)2 +n− 1. Hence deg(NX|Y2) and rank(NX|Y2) are coprime, and thus
NX|Y2 is stable.

As our “polygonal” curve X varies in an irreducible scheme, from the
openness of semistability and stability we deduce that the general nodal
curve X of the above type has a normal bundle NX whose restriction to
each irreducible component is semistable and to one irreducible component
is stable.

Then, by Lemma 3.1, for such a nodal curve X the normal bundle NX
is stable. By the openness of stability (see e.g. [13]), we have the assertion.

Proof of Theorem 1 for n even. We use the notations of Lemma 3.3.
Note that

α ≤ αd :=
[
d− n
n+ 1

]
.

Since 1 ≤ tβ ≤ n − 1, for 5 ≤ α ≤ αd and for every integer g such that
2n + α − 5 ≤ g ≤ 2n + (α − 5)n/2 + α − 3, by Lemma 3.3 the pair (d, g)
satisfies the assertion of the theorem, i.e. there exists a smooth curve in Pn
of degree d and genus g having a stable normal bundle.

Thus for d ≥ 6n+ 5 and

2n ≤ g ≤ 2n+ (αd − 5)n/2 + αd − 3

the pair (d, g) satisfies the assertion of the theorem. We have d − n =
(n+1)αd+rd with 0 ≤ rd ≤ n. The last displayed inequality is equivalent to

d ≥ 2g + 2n+ rd + 5− 2g + 4
n+ 2

:= d(g, n).
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Since g ≥ 2n and rd ≤ n, we have 2g + 3n+ 1 ≥ d(g, n) and Theorem 1 for
n even is proved.

Lemma 3.4. Fix an odd integer n≥5 and let H be a hyperplane of Pn.
Let C ⊂ H be a linearly normal elliptic curve contained in H. Let s(5) := 4
and s(n) := 3 for every n ≥ 7. Then, for every integer s ≥ s(n), the bundle
obtained from the normal bundle NC of C in Pn by making s general positive
elementary transformations is semistable.

P r o o f. Denote by NC/H the normal bundle of C in H. We have NC ∼=
NC/H ⊕OC(1) and by Remark 2.5 the bundle NC/H is stable.

Let t be an integer such that

t

n− 1
>

n2

n− 2
= µ(NC/H).

Let F be a superpolystable bundle on C of degree t and rank n− 1 (see the
proof of Lemma 2.6).

By the Riemann–Roch Theorem, Hom(NC/H , F ) ∼= H0(C,N∨C/H ⊗ F )
6= 0 and, by [2], Thm. 1, a general f ∈ Hom(NC/H , F ) is injective and such
that coker(f) is locally free.

Since F (−1) and NC/H(−1) are semistable with degree > 0, we also
have h1(C,F (−1)) = h1(C,NC/H(−1)) = 0 (see [1]).

Hence by the Riemann–Roch Theorem and the assumptions on t, we
have h0(C,Hom(OC(1), F )) > h0(C,Hom(OC(1), NC/H)) and there exists
a map g : OC(1)→ F which does not factor through f(NC/H), where f is
the map described above.

Thus the map (f, g) : NC ∼= NC/H⊕OC(−1)→ F has generic rank n− i

and it gives an exact sequence 0 → NC
(f,g)−→ F → OS → 0, where S is a

0-dimensional subscheme of C of length s = deg(F )−deg(NC) = t−n(n+1).
On the other hand, the superpolystable bundle F is obtained from NC by

making a positive elementary transformation supported by a 0-dimensional
subscheme of C of length s = t− n(n+ 1).

By the openness of superpolystability, the bundle obtained from NC
by making s = t − n(n + 1) general positive elementary transformations is
superpolystable, and hence semistable. Note that t

n−1 >
n2

n−2 if and only if
s = t− n(n+ 1) > 2 + 4

n−2 , i.e. s ≥ s(n).

Lemma 3.5. Let n ≥ 5 be an odd integer. Consider integers α, β, γ ∈ N
with α ≥ 3 and 0 ≤ β ≤ n− 2. Let

d = (n+ 1)α− 1 + n+ β + (n− 1)γ.

Put sn := n − 2 for n ≥ 7 and s5 := 5. Consider the integer tβ defined in
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Remark 2.3. Then for every integer g with

sn + tβ + α− 3 ≤ g ≤ sn + tβ + (α− 3)
(
n+ 1

2
+ 1
)
,

there exists a smooth curve C in Pn of degree d and genus g having a stable
normal bundle NC .

P r o o f. As in the proof of Lemma 3.3, we consider smoothable nodal
curves X that are “polygonal”. In this case the irreducible components of
X are (α− 1) linearly normal elliptic curves of degree n+ 1, Y1, Y3, . . . , Yα,
a linearly normal elliptic curve Y2 of degree n contained in a hyperplane,
and a general rational curve D of degree n+ β + (n− 1)γ.

The curve D intersects Y1 in ν1 points, Yi−1 intersects Yi in νi points
for 2 ≤ i ≤ α, Yα intersects D in να+1 points and there are no further
intersections.

We put the following conditions on the intersections: νi≥1 for every 1≤
i ≤ α, να+1 ≥ 0, νi ≤ (n+1)/2+1 for every 1 ≤ i ≤ α+1, ν2, ν3 ≤ (n+1)/2,
and moreover tβ = ν1 + να+1 and sn = ν2 + ν3. Note that 1 ≤ tβ ≤ n− 1.

The smoothable curve X is of degree d and genus g = sn + tβ +
∑α
i=4 νi.

By Lemma 3.4, the bundle Gsn obtained from the normal bundle NY2

of Y2 in Pn by making sn general positive elementary transformations is
semistable. Since deg(Gsn) = n(n + 1) + sn and rank(Gsn) = n − 1 are
coprime, we infer that Gsn is stable.

Thus we can proceed as in the proof of Lemma 3.3 to conclude.

Proof of Theorem 1 for n odd and n ≥ 7. We use the notations of Lemma
3.5. Note that

α ≤ αd :=
[
d− n+ 1
n+ 1

]
.

By Lemma 3.5, for 5 ≤ α ≤ αd and for every integer g such that 2n+α−6 ≤
g ≤ 1

2 ((α− 1)n+α− 5) +α− 3, the pair (d, g) satisfies the assertion of the
theorem. We obtain the result for d ≥ 6n+ 4 and

2n− 1 ≤ g ≤ 1
2

((αd − 1)n+ αd − 5) + αd − 3.

We have d − n + 1 = (n + 1)αd + rd with 0 ≤ rd ≤ n. The last displayed
inequality is equivalent to

d ≥ 2g + 2n+ rd + 8− 4g + 16
n+ 3

.

So we obtain the range d ≥ 2g + 3n+ 1.

Proof of Theorem 1 for n = 5. For n = 5 we have sn = n = 5. We
proceed as above to obtain the range g ≥ 10 and d ≥ 3

2g + 18.
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