A characterization of linear automorphisms of the Euclidean ball

by Hidetaka Hamada (Kitakyushu) and Tatsuhiro Honda (Omuta)

Abstract. Let B be the open unit ball for a norm on \mathbb{C}^n . Let $f: B \to B$ be a holomorphic map with f(0) = 0. We consider a condition implying that f is linear on \mathbb{C}^n . Moreover, in the case of the Euclidean ball \mathbb{B} , we show that f is a linear automorphism of \mathbb{B} under this condition.

1. Introduction. Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ denote the open unit disc in the complex plane \mathbb{C} . Let $f : \Delta \to \Delta$ be a holomorphic map with f(0) = 0. By the classical Schwarz lemma, if there exists a single point $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, then $f(z) = \lambda z$ with a complex number λ such that $|\lambda| = 1$ for all $z \in \Delta$. That is, f is a linear automorphism of Δ .

Let $\|\cdot\|$ be a norm on \mathbb{C}^n . It is natural to consider a generalization of the above classical Schwarz lemma to the open unit ball $B = \{z \in \mathbb{C}^n : \|z\| < 1\}$ in \mathbb{C}^n . Let $f: B \to B$ be a holomorphic map with f(0) = 0.

- J. P. Vigué [13], [14] proved that if every boundary point of B in \mathbb{C}^n is a complex extreme point of \overline{B} and
- (1.1) $C_B(f(0), f(w)) = C_B(0, w)$ or equivalently ||f(w)|| = ||w||

holds on an open subset U of B, then f is a linear automorphism of \mathbb{C}^n , where C_B denotes the Carathéodory distance on the open set B. The first author [4], [5] generalized the above classical Schwarz lemma to the case where (1.1) holds on some local complex submanifold of codimension 1. We note that a single point $z_0 \in \Delta \setminus \{0\}$ is a complex submanifold of codimension 1 in \mathbb{C} . The second author [7], [8] extended those results to the case where (1.1) holds on a subset mapped onto a non-pluripolar subset in the projective space. We note that an open set is non-pluripolar.

In this paper, we show the following theorems.

 $^{1991\} Mathematics\ Subject\ Classification \colon {\bf Primary\ 32A10}.$

 $[\]it Key\ words\ and\ phrases:$ totally real, non-pluripolar, Schwarz lemma, complex extreme point, automorphism.

Theorem A. Let $\|\cdot\|$ be a norm on \mathbb{C}^n and let $B = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the open unit ball. Assume that every boundary point $p \in \partial B$ is a complex extreme point of the closure \overline{B} of B. Let $f: B \to B$ be a holomorphic map with f(0) = 0. Assume that there exist an open subset U of B and a totally real, real-analytic (n-1)-dimensional submanifold X of U such that there exists a point $a \in X$ with $0 \notin a + T_a(X) \oplus iT_a(X)$. If $C_B(f(0), f(w)) = C_B(0, w)$ or equivalently $\|f(w)\| = \|w\|$ for every $w \in X$, then f is linear on \mathbb{C}^n .

THEOREM B. Let $\|\cdot\|_2$ be the Euclidean norm on \mathbb{C}^n . Let $\mathbb{B} = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : \|z\|_2 = (\sum_{j=1}^n |z_j|^2)^{1/2} < 1\}$ be the Euclidean unit ball. If U, X, f are as in the assumption of Theorem A, then $f : \mathbb{B} \to \mathbb{B}$ is a linear automorphism of \mathbb{B} .

2. Preliminaries. Let Δ be the open unit disc in the complex plane \mathbb{C} . The *Poincaré distance* ϱ on Δ is defined by

$$\varrho(z,w) = \frac{1}{2} \log \frac{1 + \left| \frac{z - w}{1 - z\overline{w}} \right|}{1 - \left| \frac{z - w}{1 - z\overline{w}} \right|} \quad (z, w \in \Delta).$$

Let D be a domain in \mathbb{C}^n . The Carathéodory distance C_D on D is defined by

$$C_D(p,q) = \sup \{ \varrho(f(p), f(q)) : f \in \operatorname{Hol}(D, \Delta) \} \quad (p, q \in D).$$

A holomorphic map $\varphi: \Delta \to D$ is called a *complex geodesic* on D if

$$C_D(\varphi(z), \varphi(w)) = \varrho(z, w)$$
 (for all $z, w \in \Delta$).

The following proposition is well known (cf. S. Dineen [3], M. Jarnicki and P. Pflug [9], E. Vesentini [11], [12]).

PROPOSITION 2.1. Let E be a complex Banach space with norm $\|\cdot\|$. Let B be the open unit ball of E for the norm $\|\cdot\|$. Then $C_B(0,x) = C_{\Delta}(0,\|x\|)$ for all $x \in B$.

This proposition implies that the conditions ||f(x)|| = ||x|| and $C_B(f(0), f(x)) = C_B(0, x)$ are equivalent.

We recall the definition of a complex extreme point. Let V be a convex subset of \mathbb{C}^n . A point $x \in V$ is called a *complex extreme point* of V if y = 0 is the only vector in \mathbb{C}^n such that the function $\zeta \mapsto x + \zeta y$ maps Δ into V. For example, C^2 -smooth strictly pseudoconvex boundary points are complex extreme points (cf. p. 257 of M. Jarnicki and P. Pflug [9]).

Using the uniqueness of complex geodesics on B at the origin in the direction of complex extreme points, we obtain the following proposition (cf. H. Hamada [4], [5], T. Honda [7], [8], J. P. Vigué [13], [14]).

PROPOSITION 2.2. Let $\|\cdot\|$ be a norm on \mathbb{C}^n and let $B = \{z \in \mathbb{C}^n : \|z\| < 1\}$ be the open unit ball. Assume that every $p \in \partial B$ is a complex extreme point of \overline{B} . Let $f: B \to B$ be a holomorphic map with f(0) = 0. Let $f(z) = \sum_{m=1}^{\infty} P_m(z)$ be the development of f by m-homogeneous polynomials P_m in a neighborhood of 0 in \mathbb{C}^n . If $C_B(f(0), f(w)) = C_B(0, w)$ or equivalently $\|f(w)\| = \|w\|$ at a point $w \in B \setminus \{0\}$, then $P_m(w) = 0$ for all $m \geq 2$.

3. Totally real submanifolds. Let X be a real submanifold of an open subset $U \subset \mathbb{C}^n$. Then X is said to be *totally real* if $T_p(X) \cap iT_p(X) = \{0\}$ for all $p \in X$, where $T_p(X)$ denotes the tangent space of X at p. The following lemma is proved in H. Hamada and J. Kajiwara [6], when k = 0 (cf. A. Andreotti and G. A. Fredricks [1]).

LEMMA 3.1. Let U be an open subset of \mathbb{C}^n . Let X be a totally real, real-analytic (n-k)-dimensional submanifold of U, where $0 \le k \le n-1$. Then for every $a \in X$, there exist an open subset \widetilde{U} of U, an (n-k)-dimensional complex submanifold M of \widetilde{U} , a connected open subset W of \mathbb{C}^{n-k} and an injective holomorphic map $\psi: W \to \widetilde{U}$ such that $a \in \psi(\mathbb{R}^{n-k} \cap W) = X \cap \widetilde{U} \subset M = \psi(W)$.

Proof. From the condition on X, for every $a \in X$, there exist an open neighborhood \widetilde{U} of a in $\mathbb{C}^n = \{(w_1, \ldots, w_n) : w_j \in \mathbb{C}\}$ and an open neighborhood V of 0 in $\mathbb{R}^{n-k} = \{(x_1, \ldots, x_{n-k}) : x_j \in \mathbb{R}\}$ and real-analytic functions ψ_j $(1 \le j \le n)$ on V such that $\psi = (\psi_1, \ldots, \psi_n) : V \to X \cap \widetilde{U}$ is bijective with $\psi(0) = a$. Since ψ is real-analytic, there exists a neighborhood W of 0 in $\mathbb{C}^{n-k} = \{(z_1, \ldots, z_{n-k}) : z_j \in \mathbb{C}\}$ such that ψ is holomorphic on W. Then

(3.1)
$$\operatorname{rank} \frac{\partial(\psi_1, \dots, \psi_n, \overline{\psi}_1, \dots, \overline{\psi}_n)}{\partial(x_1, \dots, x_{n-k})}(0) = n - k.$$

We set $M = \{\psi(z') : z' = (z_1, \dots, z_{n-k}) \in W\} = \psi(W)$. We will show that M is an (n-k)-dimensional complex submanifold of \widetilde{U} , upon shrinking M and \widetilde{U} if necessary.

Now we have $(\psi_*(\partial/\partial x_1))(a), \ldots, (\psi_*(\partial/\partial x_{n-k}))(a) \in T(X) \otimes \mathbb{C}_a$ and

$$\psi_* \left(\frac{\partial}{\partial x_j} \right) = \sum_{\beta=1}^n \frac{\partial \psi_\beta}{\partial x_j} \frac{\partial}{\partial w_\beta} + \sum_{\beta=1}^n \frac{\partial \overline{\psi}_\beta}{\partial x_j} \frac{\partial}{\partial \overline{w}_\beta}.$$

We put

$$\sum_{j=1}^{n-k} \alpha_j \frac{\partial \psi_{\beta}}{\partial x_j}(0) = 0 \quad \text{for } \alpha_j \in \mathbb{C}, \ 1 \le \beta \le n.$$

Then

$$\sum_{j=1}^{n-k} \overline{\alpha}_{j} \left(\psi_{*} \left(\frac{\partial}{\partial x_{j}} \right) \right) (a)$$

$$= \sum_{j=1}^{n-k} \overline{\alpha}_{j} \left(\sum_{\beta=1}^{n} \frac{\partial \psi_{\beta}}{\partial x_{j}} (0) \frac{\partial}{\partial w_{\beta}} + \sum_{\beta=1}^{n} \frac{\partial \overline{\psi}_{\beta}}{\partial x_{j}} (0) \frac{\partial}{\partial \overline{w}_{\beta}} \right) (a)$$

$$= \sum_{\beta=1}^{n} \left(\sum_{j=1}^{n-k} \overline{\alpha}_{j} \frac{\partial \psi_{\beta}}{\partial x_{j}} (0) \right) \frac{\partial}{\partial w_{\beta}} (a) + \sum_{\beta=1}^{n} \overline{\left(\sum_{j=1}^{n-k} \alpha_{j} \frac{\partial \psi_{\beta}}{\partial x_{j}} (0) \right)} \frac{\partial}{\partial \overline{w}_{\beta}} (a)$$

$$= \sum_{\beta=1}^{n} \left(\sum_{j=1}^{n-k} \overline{\alpha}_{j} \frac{\partial \psi_{\beta}}{\partial x_{j}} (0) \right) \frac{\partial}{\partial w_{\beta}} (a)$$

$$\in \operatorname{HT}(X, \mathbb{C}^{n})_{a}.$$

Since X is totally real, $\mathrm{HT}(X,\mathbb{C}^n)=\{0\}$. So

$$\sum_{j=1}^{n-k} \overline{\alpha}_j \left(\psi_* \left(\frac{\partial}{\partial x_j} \right) \right) (a) = 0.$$

From (3.1), $\{(\psi_*(\partial/\partial x_j))(a)\}_{j=1}^{n-k}$ is linearly independent over \mathbb{C} . Then $\overline{\alpha}_j = 0, 1 \leq j \leq n-k$. Therefore

$$\operatorname{rank} \frac{\partial(\psi_1, \dots, \psi_n)}{\partial(x_1, \dots, x_{n-k})}(0) = n - k.$$

Since ψ_1, \ldots, ψ_n are holomorphic, we have

$$\operatorname{rank} \frac{\partial(\psi_1, \dots, \psi_n)}{\partial(z_1, \dots, z_{n-k})}(0) = n - k.$$

Hence $M = \psi(W)$ is an (n - k)-dimensional complex submanifold of \widetilde{U} , upon shrinking M, \widetilde{U} and W if necessary.

The following lemma is proved in H. Hamada [5].

LEMMA 3.2. Let U be an open subset of \mathbb{C}^n . Let M be a complex submanifold of U of dimension n-1. Assume that there exists a point a in M such that $a+T_a(M)$ does not contain the origin. Then there exists a neighborhood U_1 of a in \mathbb{C}^n such that $U_1 \subset \mathbb{C}M = \{tx : t \in \mathbb{C}, x \in M\}$.

Proof of Theorem A. By Lemma 3.1, there exists an (n-1)-dimensional complex submanifold M of an open subset $\widetilde{U} \subset \mathbb{C}^n$ such that $a \in X \cap \widetilde{U} \subset M \cap \widetilde{U} = M$. Let $f(z) = \sum_{m=1}^{\infty} P_m(z)$ be the development of f by m-homogeneous polynomials P_m in a neighborhood of 0 in \mathbb{C}^n . By Proposition 2.2, $P_m \equiv 0$ on X for all $m \geq 2$. Since $P_m|_M$ is holomorphic, we have

 $P_m \equiv 0$ on M for all $m \geq 2$. Since $0 \notin a + T_a(X) \oplus iT_a(X) = a + T_a(M)$, by Lemma 3.2, there exists a neighborhood Ω of a in \mathbb{C}^n such that $\Omega \subset \mathbb{C}M$. Then $\|P_m(tz)\| = |t|^m \|P_m(z)\| = 0$ for all $z \in M$ and $t \in \mathbb{C}$. So $P_m \equiv 0$ on $\mathbb{C}M \supset \Omega$. By the identity theorem, $P_m \equiv 0$ on \mathbb{C}^n for all $m \geq 2$. Therefore $f = P_1$, i.e. f is linear on \mathbb{C}^n .

4. Non-pluripolar subsets. Let Ω be a complex manifold. A subset $S \subset \Omega$ is said to be *pluripolar* in Ω if there exists a non-constant plurisub-harmonic function u on Ω such that $S \subset u^{-1}(-\infty)$.

By the definition of a pluripolar set, we have the following lemma.

Lemma 4.1. Let Ω be a connected complex manifold. Let Σ be a subset of Ω . Then Σ is a non-pluripolar subset of Ω if and only if all plurisubharmonic functions u on Ω with $u \equiv -\infty$ on Σ satisfy $u \equiv -\infty$ on Ω .

Let k be a positive number. A non-negative function $u: \mathbb{C}^n \to [0, +\infty)$ is said to be *complex homogeneous of order* k if $u(\lambda x) = |\lambda|^k u(x)$ for all $\lambda \in \mathbb{C}$, $x \in \mathbb{C}^n$.

The following lemma is proved in T. Honda [8] (cf. T. J. Barth [2]).

LEMMA 4.2. Let $u: \mathbb{C}^n \to [0, +\infty)$ be an upper semicontinuous function. If u is a complex homogeneous function of order k, then the following conditions are equivalent:

- (1) u is plurisubharmonic on \mathbb{C}^n ;
- (2) $\log u$ is plurisubharmonic on \mathbb{C}^n .

Proof of Theorem B. By Theorem A, f is linear. By Lemma 3.1, for $a \in X$, there exist an open subset \widetilde{U} of U, an (n-1)-dimensional complex submanifold M of \widetilde{U} , a connected open subset W of \mathbb{C}^{n-1} and an injective holomorphic map $\psi: W \to \widetilde{U}$ such that $\psi(\mathbb{R}^{n-1} \cap W) = X \cap \widetilde{U} \subset M \cap \widetilde{U} = \psi(W)$.

We will show $X \cap \widetilde{U}$ is non-pluripolar in $M \cap \widetilde{U}$. Let u be a plurisubharmonic function on $M \cap \widetilde{U}$ with $u \equiv -\infty$ on $X \cap \widetilde{U}$. Then $u \circ \psi \equiv -\infty$ on $\mathbb{R}^{n-1} \cap W$. By Lemma 3.5 of K. H. Shon [10], $\mathbb{R}^{n-1} \cap W$ is a non-pluripolar subset of W. So, by Lemma 4.1, we have $u \circ \psi \equiv -\infty$ on W, i.e. $u \equiv -\infty$ on $M \cap \widetilde{U}$. Hence $X \cap \widetilde{U}$ is non-pluripolar in $M \cap \widetilde{U}$.

By Proposition 2.1 and the distance decreasing property of the Carathéodory distances, we have for all $z \in \mathbb{B}$,

$$C_{\Delta}(0, ||z||_2) = C_{\mathbb{B}}(0, z) \ge C_{\mathbb{B}}(0, f(z)) = C_{\Delta}(0, ||f(z)||_2).$$

Since $C_{\Delta}(0,r)$ is strictly increasing for $0 \le r < 1$, we obtain $||f(z)||_2 \le ||z||_2$ for all $z \in \mathbb{B}$. Since f is linear on \mathbb{C}^n , $||f(z)||_2 \le ||z||_2$ for all $z \in \mathbb{C}^n$. So we define a non-negative function

$$g(z) = ||z||_2^2 - ||f(z)||_2^2 \ge 0$$
 for $z \in \mathbb{C}^n$.

Since f is linear, there exists an $n \times n$ matrix A such that

$$f(z) = Az = \left(\sum_{k=1}^{n} a_{jk} z_k\right).$$

So, for $\zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$,

$$\begin{split} \sum_{\alpha,\beta=1}^{n} \frac{\partial^{2} g}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} &= \sum_{\alpha,\beta=1}^{n} \frac{\partial^{2} (\|z\|_{2}^{2} - \|f(z)\|_{2}^{2})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} \\ &= \sum_{\alpha,\beta=1}^{n} \frac{\partial^{2} \|z\|_{2}^{2}}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} - \sum_{\alpha,\beta=1}^{n} \frac{\partial^{2} \|Az\|_{2}^{2}}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} \\ &= \|\zeta\|_{2}^{2} - \|A\zeta\|_{2}^{2} = \|\zeta\|_{2}^{2} - \|f(\zeta)\|_{2}^{2} \ge 0. \end{split}$$

Therefore g is plurisubharmonic on \mathbb{C}^n . Since g is complex homogeneous of order 2, by Lemma 4.2, $\log g$ is plurisubharmonic on \mathbb{C}^n . So $\log g$ is plurisubharmonic on $M \cap \widetilde{U}$. Since $\|w\|_2 = \|f(w)\|_2$ for every $w \in X$, $\log g \equiv -\infty$ on $X \cap \widetilde{U} \subset M \cap \widetilde{U}$. Since $X \cap \widetilde{U}$ is non-pluripolar in $M \cap \widetilde{U}$, by Lemma 4.1 $\log g \equiv -\infty$ on $M \cap \widetilde{U}$, i.e. $g \equiv 0$ on $M \cap \widetilde{U}$. Therefore $\|f(w)\|_2 = \|w\|_2$ for all $w \in M \cap \widetilde{U}$. Since $M \cap \widetilde{U}$ is an (n-1)-dimensional complex submanifold of \widetilde{U} and $0 \not\in a + T_a(M) = a + T_a(X) \oplus iT_a(X)$, by Corollary 1 of H. Hamada [5], f is a linear automorphism of \mathbb{B} .

REMARK. We set $f(z) = (z_1, \ldots, z_{n-1}, z_n^2)$. Then f maps \mathbb{B} into itself and f(0) = 0.

- (1) Let $X=\{(x_1+iy_1,\ldots,x_n+iy_n)\in\mathbb{B}\colon y_1=b,\ x_n=y_2=\ldots=y_n=0\}$, where 0<|b|<1. Then X is a totally real, real-analytic (n-1)-dimensional submanifold of \mathbb{B} . Moreover, $0\not\in a+T_a(X)$ and $0\in a+T_a(X)\oplus iT_a(X)$ for any $a\in X$. We have $\|f(w)\|=\|w\|$ for every $w\in X$. However, f is not linear. So the condition that $0\not\in a+T_a(X)\oplus iT_a(X)$ cannot be weakened to $0\not\in a+T_a(X)$ in our theorems.
- (2) Let $X_{n-k} = \{x_{n-k+1} = b, \ x_{n-k+2} = \ldots = x_n = y_1 = \ldots = y_n = 0\}$ for $k \geq 2$, where 0 < |b| < 1. Then X_{n-k} is a totally real, real-analytic (n-k)-dimensional submanifold of \mathbb{B} , and $0 \not\in a + T_a(X_{n-k}) \oplus iT_a(X_{n-k})$ for any $a \in X_{n-k}$. We have ||f(w)|| = ||w|| for every $w \in X_{n-k}$. However, f is not linear. So the condition that the real dimension of X is n-1 cannot be omitted in our theorems.
- (3) In the case n=3, let $X=\{(x_1+iy_1,x_2+iy_2,x_3+iy_3)\in\mathbb{C}^3:x_2=b,\ x_3=y_2=y_3=0\}\cong\mathbb{R}^2$, where 0<|b|<1. Then $X\cap\mathbb{B}$ is a real-analytic 2-dimensional submanifold, and $0\not\in a+T_a(X)+iT_a(X)$ for any $a\in X$. We have $\|f(w)\|=\|w\|$ for every $w\in X$. However, f is not linear. So the condition that X is totally real cannot be omitted either.

References

- [1] A. Andreotti and G. A. Fredricks, *Embeddability of real analytic Cauchy-Riemann manifolds*, Ann. Scuola Norm. Sup. Pisa 6 (1979), 285-304.
- [2] T. J. Barth, The Kobayashi indicatrix at the center of a circular domain, Proc. Amer. Math. Soc. 88 (1983), 527–530.
- [3] S. Dineen, The Schwarz Lemma, Oxford Math. Monographs, 1989.
- [4] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third Internat. Colloq. on Finite or Infinite Dimensional Complex Analysis, Seoul, Korea, 1995, 105-110.
- [5] —, A Schwarz lemma on complex ellipsoids, Ann. Polon. Math. 67 (1997), 269–275.
- [6] H. Hamada and J. Kajiwara, Ensembles totalement réels et domaines pseudoconvexes, Mem. Fac. Sci. Kyushu Univ. 39 (1985), 243–247.
- [7] T. Honda, A special version of the Schwarz lemma on an infinite dimensional domain, Rend. Mat. Accad. Lincei 9 (1997), 107–110.
- [8] —, Linear isometries on Hilbert spaces, Complex Variables, to appear.
- [9] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993.
- [10] K. H. Shon, On Riemann domains containing a certain real domain, Complex Variables 31 (1996), 27–35.
- [11] E. Vesentini, Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa 7 (1979), 39–68.
- [12] —, Complex geodesics, Compositio Math. 44 (1981), 375–394.
- [13] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 239-304.
- [14] —, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241–249.

Faculty of Engineering Kyushu Kyoritsu University 1-8 Jiyugaoka Yahatanishi-ku Kitakyushu 807-8585, Japan E-mail: hamada@kyukyo-u.ac.jp Ariake National College of Technology 150 Higashihagio-machi, Omuta Fukuoka 836-8585, Japan E-mail: honda@ariake-nct.ac.jp

Reçu par la Rédaction le 3.11.1998