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A criterion for convergence of solutions

of homogeneous delay linear differential equations

by Josef Dibĺık (Brno)

Abstract. The linear homogeneous differential equation with variable delays

ẏ(t) =

n∑

j=1

αj(t)[y(t)− y(t− τj(t))]

is considered, where αj ∈ C(I,R+), I = [t0,∞), R
+ = (0,∞),

∑n
j=1 αj(t) > 0 on I ,

τj ∈ C(I,R
+), the functions t − τj(t), j = 1, . . . , n, are increasing and the delays τj are

bounded. A criterion and some sufficient conditions for convergence of all solutions of
this equation are proved. The related problem of nonconvergence is also discussed. Some
comparisons to known results are given.

1. Introduction and the main results. We shall deal with the linear
homogeneous differential equation with variable delays

(1.1) ẏ(t) =
n∑

j=1

αj(t)[y(t) − y(t− τj(t))],

where αj ∈ C(I,R+), I = [t0,∞), R
+ = (0,∞),

∑n
j=1 αj(t) > 0 on I,

τj ∈ C(I,R+), the functions t− τj(t), j = 1, . . . , n, are increasing on I and
the delays τj are bounded on I, i.e. τj(t) ≤ r = const, t ∈ I. Set τ(t) =
maxj{τj(t)}, t ∈ I, Ip = [tp,∞), tp+1 = tp + τ(tp+1), p ∈ {−1, 0, 1, . . .} and
I0 ≡ I.

A function y is called a solution of (1.1) corresponding to an initial

point t∗ ∈ I if y is defined and continuous on [t∗ − τ(t∗),∞), differen-
tiable on [t∗,∞) and satisfies (1.1) for t ≥ t∗. By a solution of (1.1) we
mean a solution corresponding to some initial point t∗ ∈ I. We denote by
y(t∗, ϕ)(t) a solution of (1.1) corresponding to the initial point t∗ ∈ I which
is generated by a continuous initial function ϕ : [t∗ − τ(t∗), t∗] → R. In the
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[115]



116 J. Dibl ı́k

linear case the solution y(t∗, ϕ)(t) is unique on its maximal existence interval
Dt∗,ϕ = [t∗,∞) ([10]). We say that a solution of (1.1) corresponding to the
initial point t∗ is convergent or asymptotically convergent if it has a finite
limit at ∞.

Our aim in this paper is to formulate a criterion and some sufficient
conditions for convergence of all solutions of (1.1). We also consider the
related problem of nonconvergence of solutions of (1.1).

Problems concerning asymptotic constancy of solutions, asymptotic con-
vergence of solutions or existence of asymptotic equilibrium of various clas-
ses of retarded functional differential equations were investigated e.g. by O.
Arino, I. Győri and M. Pituk [1], F. V. Atkinson and J. R. Haddock [2], R.
Bellman and K. L. Cooke [3], I. Győri and M. Pituk [8, 9] and T. Krisz-
tin [11]–[13]. Nonconvergence was considered e.g. by S. N. Zhang [18] and
J. Dibĺık [7]. Some closely connected questions are discussed in the recent
papers by J. Čermák [5, 6] (where, in some proofs, the fundamental results
of F. Neuman [14, 15] concerning the transformation theory are used). In
Section 2 some comparisons are given. Section 3 contains auxiliary lemmas
and in the last Section 4 the proofs of the theorems are collected.

In this paper the following is proved:

Theorem 1 (Main Result). For the convergence of all solutions of (1.1)
corresponding to an initial point t0, a necessary and sufficient condition is

that there exist functions ki ∈ C(I,R+), i = 1, . . . , n, satisfying the system

of integral inequalities

(1.2) 1 + ki(t) ≥ exp
[ t\

t−τi(t)

n∑

j=1

αj(s)kj(s) ds
]
, i = 1, . . . , n,

on the interval I1.

The necessity part of this theorem can be formulated more precisely:

Theorem 2. If all solutions of (1.1) corresponding to an initial point

t0 are convergent , then there are functions ki ∈ C(I,R+), i = 1, . . . , n,
satisfying ki(∞) = 0 and the system of integral equations

(1.3) 1 + ki(t) = exp
[ t\

t−τi(t)

n∑

j=1

αj(s)kj(s) ds
]
, i = 1, . . . , n,

on the interval I1.

The following theorem establishes the fact that for convergence of all
solutions of (1.1) the existence of only one nonconstant monotone convergent
solution is sufficient.
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Theorem 3. If there exists a nonconstant monotone convergent solution

of (1.1) corresponding to an initial point t0, then all solutions of (1.1) which

correspond to t0 are convergent.

Moreover, we prove the following result concerning nonconvergence of
solutions of (1.1):

Theorem 4 (Nonconvergence result). A sufficient and necessary con-

dition for the existence of a solution of (1.1) corresponding to an initial

point t0 with the property y(∞) = ∞ is the nonexistence of functions ki ∈
C(I,R+), i = 1, . . . , n, satisfying the system of integral inequalities (1.2) on

the interval I1.

The following theorem concerns (1.1) with bounded coefficients.

Theorem 5. For convergence of all solutions of (1.1) corresponding to

an initial point t0, where 0 < b ≤ αi(t) ≤ a, 0 < r̃ ≤ τi(t), t ∈ I, a, b, r̃ =
const, i = 1, . . . , n, the condition

(1.4) nbr̃ < 1

is necessary and the condition

(1.5) nar < 1

is sufficient.

2. Some consequences, comparisons and remarks. In this section
we give some sufficient conditions for convergence and divergence of solu-
tions of (1.1). These conditions are formulated in terms of the coefficients
of (1.1) and their proofs are based on the results of the previous section. A
comparison of these sufficient conditions with some known ones is given in
Remark 1.

Theorem 6. All solutions of (1.1) are convergent if

lim sup
t→∞

t\
t−τi(t)

αj(s) ds = qji

where i, j = 1, . . . , n, qji = const and
∑n

j=1 qji < 1, i = 1, . . . , n.

Theorem 7. For the existence of a solution of (1.1) corresponding to an

initial point t0 with the property y(∞) = ∞, it is sufficient that

(2.1)

t\
t−τi(t)

αj(s) ds ≥ qji

where i, j = 1, . . . , n, t ∈ I1, qji = const and
∑n

j=1 qji ≥ 1, i = 1, . . . , n.

The next three theorems give more special convergence criteria.
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Theorem 8. Suppose τj(t) ≤ τj = const and

(2.2) αj(t) ≤ βj

(
1

τj
−
Lj

t

)

for sufficiently large t, where 0 < βj , Lj = const, j = 1, . . . , n,
∑n

j=1 βj = 1
and Lj > 1/2. Then each solution of (1.1) converges.

Example 1. Consider the equation

ẏ(t) =
1

2

(
1 −

L∗

1

t

)
[y(t) − y(t− 1)](2.3)

+
1

2

(
1

2
−
L∗

2

t

)
[y(t) − y(t− 2)],

where L∗

1, L
∗

2 are constants greater than 1/2. Here n = 2, τ1 = 1, τ2 = 2,
α1(t) = (1 − L∗

1/t)/2 and α2(t) = (0, 5 − L∗

2/t)/2. The assumption of
Theorem 8 holds for β1 = β2 = 1/2. Hence each solution of (2.3) converges.

Theorem 9. Suppose τj(t) ≤ τ = const, j = 1, . . . , n. If , moreover , for

all sufficiently large t,

(2.4)

t+τ\
t

( n∑

j=1

αj(s)
)
ds ≤ 1 −

τ

t
−

τ

t ln t
−

L

t ln t ln2 t

where L > τ , L = const and ln2 t = ln ln t, then each solution of (1.1)
converges.

Theorem 10. Suppose τj(t) ≤ τ = const, j = 1, . . . , n. If , moreover ,
for sufficiently large t,

(2.5)

t+τ\
t

( n∑

j=1

αj(s)
) 1

sm
ds ≤

1

tm
−

L

tm+1

where m,L = const, m ≥ 1 and L > τm, then each solution of (1.1)
converges.

Example 2. Consider the equation

(2.6) ẏ =

[
1

2π

(
1 +

sin t

2

)
−
E

t

]
· [y(t) − y(t− 2π)]

where E is a constant within the interval

1 > E >
1

2

(
1 +

1

2π

)
.
= 0, 5796.

Here n = 1, τ1 = 2π and α1(t) = (1 + (sin t)/2)/(2π) − E/t. Let us show
that neither the conditions of Theorem 8 nor those of Theorem 9 are valid
but the assumptions of Theorem 10 are satisfied.
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Indeed, concerning Theorem 8, we see that for sufficiently large t,

α1(t) =
1

2π

(
1 +

sin t

2

)
−
E

t
≤

1

2π
·
3

2
−
E

t
6<

1

2π
−
L1

t

with L1 > 1/2, i.e. the inequality (2.2) does not hold.
Let us verify that the inequality (2.4) in Theorem 9, with τ = 2π, does

not hold either: indeed, for t→ ∞ and the indicated values of E,

t+τ\
t

α1(s) ds =

t+2π\
t

(
1

2π

(
1 +

sin s

2

)
−
E

s

)
ds = 1 −E ln

(
1 +

2π

t

)

= 1 − 2πE ·
1

t
+O

(
1

t2

)
6< 1 −

2π

t
−

2π

t ln t
−

L

t ln t ln2 t

with L > 2π.
Now let us verify the inequality (2.5) with m = 1 and τ = 2π. An easy

computation gives

t+τ\
t

α1(s)
1

s
ds =

t+2π\
t

(
1

2π

(
1 +

sin s

2

)
−
E

s

)
·
1

s
ds

=
1

2π
ln

(
1 +

2π

t

)
+

1

4π

t+2π\
t

sin s

s
ds− E

t+2π\
t

1

s2
ds

=
1

2π

(
2π

t
−

(2π)2

2t2
+O

(
1

t3

))

+
1

4π

[
−

cos s

s

∣∣∣∣
t+2π

t

−
sin s

s2

∣∣∣∣
t+2π

t

− 2

t+2π\
t

sin s

s3
ds

]
+
E

s

∣∣∣∣
t+2π

t

=
1

t
−
π(1 + 2E)

t2
+

cos t

2t2
+O

(
1

t3

)

≤
1

t
+

(
−π(1 + 2E) +

1

2

)
1

t2
+O

(
1

t3

)
.

For the validity of (2.5) it is now sufficient that

−π(1 + 2E) +
1

2
< −2π,

i.e. E > 1
2

(
1 + 1

2π

)
, and so, by Theorem 10, all solutions of (2.6) converge.

Example 3. Consider the equation

(2.7) ẏ =

(
1

τ
−
a

t

)
· [y(t) − y(t− τ)]

where 0 < τ = const and a > 0 is a constant. Let us find the values of a for
which we have convergence of all solutions of (2.7). Here n = 1 and τ1 = τ .
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Theorem 8 and also Theorem 10 (with m = 1) guarantee the convergence
for a > 1/2. Theorem 9 gives only a > 1. Note that the value a = 1/2 is
the best possible. Indeed (see [7], Remark 1), for a ∈ (0, 1/2] there exists a
solution y = Y (t) of (2.7) with Y (∞) = ∞.

Remark 1. Theorems 6, 8 and 9 generalize some special criteria given
by F. V. Atkinson and J. R. Haddock [2]. Theorem 7 gives a generalization
of a result of S. N. Zhang [18]. Theorem 10 gives a new (and, as shown by
Examples 2 and 3, very efficient) result in this direction.

Remark 2. Note that each convergent solution y = y(t) of (1.1) (exis-
tence of which was established by Theorems 1, 3, 6 and 8–10) satisfies

|y(t) − y(∞)| < ψ(t), t ∈ I,

where the positive function ψ with ψ(∞) = 0 is defined in the sufficiency
part of the proof of Theorem 1.

Remark 3. The importance of the investigation of (1.1) consists, among
other things, in the fact that it is connected with the investigation of the
equation

ẋ(t) = −

n∑

j=1

βj(t)x(t− τj(t)),

where βj ∈ C(I,R+), j = 1, . . . , n, and
∑n

j=1 βj(t) > 0 on I. Indeed, if
there exists a positive solution x = ω(t) of the latter equation, then the
transformation x = ω(t)y gives an equation of type (1.1) where αj(t) ≡
βj(t)ω(t− τj(t))ω

−1(t), j = 1, . . . , n, i.e.

ẏ(t) =
1

ω(t)

n∑

j=1

βj(t)ω(t− τj(t))[y(t) − y(t− τj(t))].

3. Lemmas. We start with the following lemmas. Obviously in view of
the form of (1.1) we have

Lemma 1. If y(t∗, ϕ)(t) is a solution of (1.1) corresponding to an initial

point t∗ ∈ I, then the function y(t∗, ψ)(t), where ψ(t) = Kϕ(t) + L, is

a solution of (1.1) corresponding to the initial point t∗ for any constants

K,L ∈ R.

Lemma 2. Let the initial function ϕ(t) be defined and continuous on the

interval [tp, tp+1] for some p ∈ {−1, 0, 1, . . .} and either

(3.1) ϕ(t) < ϕ(tp+1)

or

(3.2) ϕ(t) > ϕ(tp+1)
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for all t ∈ [tp, tp+1). Then the corresponding solution y(tp+1, ϕ)(t) is in-

creasing on Ip+1 in the case (3.1), and decreasing on Ip+1 in the case (3.2).

P r o o f. It follows from (1.1) that sign ẏ(tp+1, ϕ)(tp+1 + 0) = +1 in the
case (3.1) and sign ẏ(tp+1, ϕ)(tp+1 + 0) = −1 in the case (3.2). The ca-
se ẏ(tp+1, ϕ)(t⋆) = 0 for a t⋆ ∈ (tp+1,∞) and sign ẏ(tp+1, ϕ)(t) 6= 0 for
all t ∈ (tp+1, t

⋆) is impossible because, by (1.1), we have y(tp+1, ϕ)(t⋆) 6=
y(tp+1, ϕ)(t⋆ − τ(t⋆)).

Consider the system of functional differential equations with retarded
argument

(3.3) ẏ(t) = f(t, yt)

where y(t) ∈ R
n, yt ∈ C = C([−r, 0], R

n), yt(θ) = y(t + θ) for θ ∈ [−r, 0],
f : Ω → R

n, Ω is an open subset of R × C and f is a continuous mapping
such that the element (δ, π) ∈ Ω determines a unique solution y(δ, π) on its
maximal existence interval Dδ,π = [δ, a), δ < a ≤ ∞ (see e.g. [10]).

In the proof of the sufficiency part of Theorem 1 the topological principle
of T. Ważewski [17] in the form of K. P. Rybakowski [16] (for retarded
functional differential equations) is used. A summary of this principle is
given below. (As usual, if ω ⊂ R×R

n, then intω and ∂ω denote the interior
and the boundary of ω, respectively.)

Definition 1 [16]. Let li(t, y), i = 1, . . . , p, and mj(t, y), j = 1, . . . , q, be
continuously differentiable functions defined on some open set ω0 ⊂ R×R

n.
The set

ω = {(t, y) ∈ ω0 : li(t, y) < 0, mj(t, y) < 0, i = 1, . . . , p, j = 1, . . . , q}

is called a regular polyfacial set with respect to the system (3.3) if (α) to
(γ) below hold:

(α) For (t, π) ∈ R × C such that (t + θ, π(θ)) ∈ ω for all θ ∈ [−r, 0), we
have (t, π) ∈ Ω.

(β) For all i = 1, . . . , p, all (t, y) ∈ ∂ω for which li(t, y) = 0, and all
π ∈ C for which π(0) = y and (t+ θ, π(θ)) ∈ ω for all θ ∈ [−r, 0), we have

Dli(t, y) ≡

n∑

r=1

∂li(t, y)

∂yr

fr(t, π) +
∂li(t, y)

∂t
> 0.

(γ) For all j = 1, . . . , q, all (t, y) ∈ ∂ω for which mj(t, y) = 0, and all
π ∈ C for which π(0) = y and (t+ θ, π(θ)) ∈ ω for all θ ∈ [−r, 0), we have

Dmj(t, y) ≡

n∑

r=1

∂mj(t, y)

∂yr

fr(t, π) +
∂mj(t, y)

∂t
< 0.
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In the sequel the elements (t, π) ∈ R × C are assumed to be such that
(t, π) ∈ Ω.

Definition 2. A system of initial functions pA,ω with respect to non-
empty sets A and ω where A ⊂ ω ⊂ R × R

n is defined to be a continuous
mapping p : A→ C such that (α) and (β) below hold:

(α) If z = (t, y) ∈ A ∩ intω, then (t+ θ, p(z)(θ)) ∈ ω for all θ ∈ [−r, 0].
(β) If z = (t, y) ∈ A∩∂ω, then (t+ θ, p(z)(θ)) ∈ ω for all θ ∈ [−r, 0) and

(t, p(z)(0)) = z.

The following lemma is the main result of [16].

Lemma 3. Let ω ⊂ ω0 be a regular polyfacial set with respect to the

system (3.3) and set

W = {(t, y) ∈ ∂ω : mj(t, y) < 0, j = 1, . . . , q}.

Let Z ⊂W ∪ω be such that Z∩W is a retract of W but not a retract of Z. If
a system of initial functions pZ,ω is fixed , then there exists z0 = (σ0, y0) ∈
Z ∩ ω such that for the corresponding solution y(σ0, p(z0))(t) of (3.3) we

have (t, y(σ0, p(z0))(t)) ∈ ω for each t ∈ Dσ0,p(z0).

4. Proofs of the theorems

Proof of Theorem 1. Necessity. Suppose all solutions are convergent.
By Lemmas 1, 2 there is a convergent solution y = y(t) corresponding to
the initial point t0 which is generated by a decreasing initial function and,
moreover, this solution is decreasing on I−1 with positive limit. Integrate
(1.1) (after dividing by y(t)) with limits t and t− τi(t) to obtain

y(t− τi(t))

y(t)
= exp

{ t\
t−τi(t)

n∑

j=1

αj(s)

[
− 1 +

y(s− τj(s))

y(s)

]
ds

}

for t ∈ I1, i = 1, . . . , n.
Define

(4.1) ki(t) ≡ −1 +
y(t− τi(t))

y(t)
, i = 1, . . . , n, t ∈ I.

This ends the proof of necessity since y(t) is decreasing and so ki(t) > 0,
i = 1, . . . , n, on I.

Sufficiency. Let us exclude the trivial case when a convergent solution
is generated by a constant initial function, i.e. let us exclude the set of
all constant solutions. In the sequel, we consider a solution y(t0, ϕ)(t) of
(1.1) which corresponds to a nonconstant initial continuous function ϕ(t),
t ∈ [t−1, t0]. Suppose that there are functions ki ∈ C(I,R+), i = 1, . . . , n,
which satisfy (1.2). Define the auxiliary function
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ψ(t) =





δ exp
[
−

t\
t0

n∑

j=1

αj(s)kj(s) ds
]

if

∞\ n∑

j=1

αj(t)kj(t) dt = ∞,

δ exp
[
−

t\
t0

n∑

j=1

αj(s)kj(s) ds
]
− δ exp

[
−

∞\
t0

n∑

j=1

αj(s)kj(s) ds
]

if

∞\ n∑

j=1

αj(t)kj(t) dt <∞,

where δ is a fixed positive number. Moreover, define

µ1(t) = L− ψ(t), µ2(t) = L+ ψ(t)

where L ∈ R is a fixed number. By the properties of αi and ki, i = 1, . . . , n,
the functions µ1, µ2 are well defined on I, ψ > 0 on I, µ1(t) < µ2(t) on I
and

lim
t→∞

µj(t) = L, j = 1, 2.

We show that the set ω = {(t, y) ∈ ω0 : l1(t, y) < 0} where ω0 = (t0,∞)×R

and l1(t, y) = (y − µ1(t))(y − µ2(t)) is a regular polyfacial set with respect
to (1.1). Set n = 1. Condition (α) of Definition 1 is obviously satisfied for
Ω = (t0,∞) × C. For (β), we have, for t > t0 + r,

Dl1(t, y) =
[ n∑

i=1

αi(t)[π(0) − π(−τi(t))] − µ′

1(t)
]
[π(0) − µ2(t)]

+ [π(0) − µ1(t)]
[ n∑

i=1

αi(t)[π(0) − π(−τi(t))] − µ′

2(t)
]
.

Since µ1(t + θ) < π(θ) < µ2(t + θ) for θ ∈ [−r, 0) and π(0) = µ1(t) or
π(0) = µ2(t), we have, in view of (1.2) (if π(0) = µ2(t), t > t0 + r),

Dl1(t, y) > (µ2(t) − µ1(t))
[ n∑

i=1

αi(t)[µ2(t) − µ2(t− τi(t))] − µ′

2(t)
]

= 2ψ(t)
[ n∑

i=1

αi(t)[L+ ψ(t) − L− ψ(t− τi(t))] − ψ′(t)
]

= 2δψ(t) exp
[
−

t\
t0

n∑

j=1

αj(s)kj(s) ds
]

×

n∑

i=1

αi(t)
[
1 + ki(t) − exp

[ t\
t−τi(t)

n∑

j=1

αj(s)kj(s) ds
]]

≥ 0

and, consequently, Dl1(t, y) > 0 for t > t0+r. By analogy we get Dl1(t, y) >
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0 if π(0) = µ1(t) and t > t0+r. So (β) holds. In our case q = 0 and condition
(γ) is not considered. Thus all conditions of Definition 1 are satisfied.

Now we verify the assumptions of Lemma 3. In our case

W = {(t, y) ∈ ∂ω : mj(t, y) < 0, j = 1, . . . , q} ≡ {(t, y) ∈ ∂ω : l1(t, y) = 0}.

Put Z = {(t, y) ∈ ω : t = t0 + 2r}. The previous computations were inde-
pendent of the choice of the positive number δ. Take now

δ > M
{

min
[t0+r,t0+2r]

[
exp

[
−

t\
t0

n∑

j=1

αj(s)kj(s) ds
] n∑

j=1

αj(t)kj(t)
]}

−1

with M = max[t0+r,t0+2r] |(y(t0, ϕ)(t))′|. In this case, as can be shown easily,

|(y(t0, ϕ)(t))′| < |ψ′(t)|

for each t ∈ [t0 + r, t0 + 2r]. Thus we can define a system of initial functions
pZ,ω which satisfies the conditions of Definition 2 by

(4.2) p(z) = p(t, ε) = y(t0, ϕ)(t) + ε

for all t ∈ [t0 + r, t0 + 2r] and some ε ∈ [µ1(t0 + 2r) − y(t0, ϕ)(t0 + 2r),
µ2(t0 + 2r) − y(t0, ϕ)(t0 + 2r)]. Define Π : W → Z ∩W by

Π : W ∋ (t∗, y∗) 7→ (t0 + 2r, y∗∗) ∈ Z ∩W

where

y∗∗ = µ2(t0 + 2r) sign(y∗ − µ1(t
∗)) + µ1(t0 + 2r) sign(µ2(t

∗) − y∗).

Clearly, Π is continuous and is the identity on Z ∩W , so Z ∩W is a retract
of W. Finally, Z ∩W is not a retract of Z because the boundary of an n-
dimensional disc is not a retract of the disc (see e.g. [4]). By Lemma 3 there
exists z0 = (t0 + 2r, y0) ∈ Z ∩ ω such that the graph of the corresponding
solution y = ξ(t) of (1.1) with initial condition (t0 + 2r, p(z0)) lies in ω for

all t ∈ Dt0+2r,p(z0) ≡ Ĩ1 = [t0 +2r,∞). That is, µ1(t) < ξ(t) < µ2(t) on Ĩ1 or

|ξ(t) − L| < ψ(t) on Ĩ1. Since ψ(∞) = 0, we have limt→∞ ξ(t) = L. Clearly
ξ(t) ≡ p(t, ε) for some ε = ε∗ ∈ [µ1(t0 + 2r)− y(t0, ϕ)(t0 + 2r), µ2(t0 + 2r)−
y(t0, ϕ)(t0 + 2r)]. Therefore, by (4.2),

y(t0, ϕ)(t) = ξ(t) − ε∗

for all t ≥ t−1 and, consequently,

lim
t→∞

y(t0, ϕ)(t) = L− ε∗.

This means that each solution converges.

Proof of Theorem 2. This proof can be done in a similar fashion to the
proof of the necessity of Theorem 1 if we take into consideration that the
functions ki(t), i = 1, . . . , n, defined by (4.1) satisfy (1.3) and ki(∞) = 0.
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Proof of Theorem 3. The assertion follows from the proof of Theorem 1.
Indeed, the existence of a nonconstant monotone convergent solution of (1.1)
corresponding to the initial point t0 yields (in view of Lemma 1) the exis-
tence of a convergent, decreasing on I−1, solution y = y(t) of (1.1) with
positive limit, corresponding to the initial point t0. Consequently, this so-
lution satisfies the conditions required in the necessity part of the proof of
Theorem 1. Then the positive functions ki(t), i = 1, . . . , n, t ∈ I, given by
(4.1), satisfying (1.2), exist. The remaining part of the proof follows from
Theorem 1.

Proof of Theorem 4.Necessity. Assume there is a solution of (1.1) defined
on I−1 with y(∞) = ∞. Then there is no solution of (1.2) on I1 with the
above indicated properties since in the opposite case we get a contradiction
with Theorem 1.

Sufficiency. Suppose that there is no solution of (1.2) with the indicated
properties. Then, by Lemma 2, the solution y(t0, ϕ)(t) generated by the
initial function ϕ(t) on [t−1, t0] which satisfies condition (3.1) for p = −1
is increasing on I. If the limit of this solution is finite, then, by the proof
of necessity of Theorem 1, there is a solution of (1.2) with the indicated
properties (in this part of the proof we use the solution w(t) ≡ −y(t),
shifted by a constant if necessary, instead of the solution y(t)). This is
a contradiction with Theorem 1.

Proof of Theorem 5. Necessity. Suppose each solution of (1.1) is conver-
gent. Then by Theorem 2 there is a solution of (1.3) and we get

1 + ki(t) ≥ exp
[
b

t\
t−r̃

n∑

j=1

kj(s) ds
]
, i = 1, . . . , n, t ∈ I1.

Set k(t) = mini{ki(t)}. Since

lim
t→∞

k(t) = lim
t→∞

ki(t) = 0, i = 1, . . . , n,

and k(t) > 0 on I, there is t∗ ∈ I1 such that k(t∗ − θτ(t∗)) ≥ k(t∗) for
all θ ∈ [0, 1]. Moreover, there is i ∈ {1, . . . , n} such that ki(t

∗) = k(t∗).
Therefore

1 + k(t∗) ≥ enbr̃k(t∗).

This is only possible if nbr̃ < 1 and so (1.4) holds.
Sufficiency. We use Theorem 1. We verify that the inequalities (1.2) for

ki(t) ≡ k, i = 1, . . . , n, hold where k is a positive solution of the equation
1 + k = enark (its existence follows from (1.5)). Indeed, obviously

1 + k = enark ≥ exp
[ t\

t−τi(t)

n∑

j=1

αj(s)k ds
]
, i = 1, . . . , n, t ∈ I1.
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Proof of Theorem 6. This theorem follows immediately from Theorem 1
if ki(t) ≡ k, i = 1, . . . , n, where k is a sufficiently small positive number and
t0 is sufficiently large. Indeed, in this case we can (without loss of generality)
suppose that on I1,

n∑

j=1

t\
t−τi(t)

αj(s) ds ≤ q < 1

for all i = 1, . . . , n and some q ∈ (maxi{
∑n

j=1 qji}, 1). Then there is k ∈ R
+

such that

1 + k ≥ ekq ≥ exp
[
k

t\
t−τi(t)

n∑

j=1

αj(s) ds
]
, i = 1, . . . , n, t ∈ I1.

Proof of Theorem 7. In view of (2.1) the inequality

n∑

j=1

t\
t−τi(t)

αj(s) ds ≥ q ≥ 1

holds on I1 for all i = 1, . . . , n and some q ∈ [1,mini{
∑n

j=1 qij}]. Suppose
that there is no solution of (1.1) with y(∞) = ∞. Then by Theorem 4 there
is a positive solution of (1.2). Therefore, by Theorem 1, all solutions of
(1.1) are convergent and by Theorem 2 there are functions ki ∈ C(I,R+),
i = 1, . . . , n, which satisfy (1.3). Set k(t) = mini{ki(t)}. As in the proof of
necessity of Theorem 5, there is t∗ ∈ I1 such that k(t∗ − θτ(t∗)) ≥ k(t∗)
for all θ ∈ [0, 1]. Moreover, there is i ∈ {1, . . . , n} such that ki(t

∗) = k(t∗).
From (1.3) we get

1 + ki(t
∗) = exp

[ t∗\
t∗−τi(t∗)

n∑

j=1

αj(s)kj(s) ds
]

≥ exp
[
k(t∗)

t∗\
t∗−τi(t∗)

n∑

j=1

αj(s) ds
]
≥ eqk(t∗), i = 1, . . . , n.

We obtain a contradiction since 1 + k(t∗) ≥ eqk(t∗) with k(t∗) > 0 is impos-
sible.

Proof of Theorem 8. Without loss of generality, suppose τi ≤ r, j =
1, . . . , n, t > r and t sufficiently large. Set

kj(t) =
ε

t

(
1

τj
−
Lj

t

)−1

, j = 1, . . . , n,

where ε > 0. Let us verify inequalities (1.2). The ith left hand side of (1.2)



Convergence of solutions of differential equations 127

has the asymptotic expansion

Li(t) = 1 + ki(t) = 1 +
ετi

t(1 − Liτi/t)
= 1 +

ετi
t

+
εLiτ

2
i

t2
· (1 + o(1)).

Now we estimate the ith right hand side Ri(t) of (1.2). We have

Ri(t) = exp
[ t\

t−τi(t)

n∑

j=1

αj(s)kj(s) ds
]
≤ exp

[
ε

t\
t−τi

1

s
ds

]

= exp

[
ε ln

t

t− τi

]
=

(
1 −

τi
t

)
−ε

= 1 +
ετi
t

+
ε+ 1

2
· ε ·

τ2
i

t2
· (1 + o(1)).

We conclude that (1.2) will hold (supposing t0 is sufficiently large) if

Li(t) = 1 +
ετi
t

+
εLiτ

2
i

t2
· (1 + o(1))

> 1 +
ετi
t

+
ε+ 1

2
· ε ·

τ2
i

t2
· (1 + o(1)) ≥ Ri(t), i = 1, . . . , n.

Comparing corresponding terms, we can see that this will hold when Li >
(ε+ 1)/2. Since ε > 0 may be chosen arbitrarily small, we get the condition
Li > 1/2.

Proof of Theorem 9. Without loss of generality, suppose τ ≤ r, t >
max{1, τ} and t is sufficiently large. Set kj(t) ≡ k(t), j = 1, . . . , n, where

k(t) =
1

t ln t(ln2 t)ε

and ε > 1 is a constant. Obviously, (1.2) will hold if

(4.3) L(t) ≡ 1 + k(t) ≥ R(t) ≡ exp
[ t\

t−τ

n∑

j=1

αj(s)k(s) ds
]
.

We estimate the right hand side R(t) of (4.3). By (2.4), we have

R(t) ≤ exp(R⋆(t))

where

R⋆(t) ≡
1

(t− τ) ln(t− τ)(ln2(t− τ))ε

×

(
1 −

τ

t− τ
−

τ

(t− τ) ln(t− τ)
−

L

(t− τ)(ln(t− τ))(ln2(t− τ))

)
.
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Let us find the asymptotic expansion of R⋆(t). First, we clearly have

1

t− τ
=

1

t

(
1 +

τ

t
+
τ2

t2
+ o

(
1

t2

))
,

1

ln(t− τ)
=

1

ln t

(
1 +

τ

t ln t
+

τ2

2t2 ln t
+ o

(
1

t2 ln t

))
,

1

ln2(t− τ)
=

1

ln2 t

(
1 +

τ

t ln t ln2 t
+

τ2

2t2 ln t ln2 t
+ o

(
1

t2 ln t ln2 t

))
.

Thus

R⋆(t) =
1

t ln t(ln2 t)ε

(
1 +

τ

t
+
τ2

t2
+ o

(
1

t2

))

×

(
1 +

τ

t ln t
+

τ2

2t2 ln t
+ o

(
1

t2 ln t

))

×

(
1 +

ετ

t ln t ln2 t
+

ετ2

2t2 ln t ln2 t
+ o

(
1

t2 ln t ln2 t

))

×

(
1 −

τ

t
−
τ2

t2
+ o

(
1

t2

)
−

τ

t ln t

(
1 +

τ

t
+ o

(
1

t

))

×

(
1 +

τ

t ln t
+ o

(
1

t ln t

))

−
L

t ln t ln2 t

(
1 +

τ

t
+ o

(
1

t

))(
1 +

τ

t ln t
+ o

(
1

t ln t

))

×

(
1 +

τ

t ln t ln2 t
+ o

(
1

t ln t ln2 t

)))

=
1

t ln t(ln2 t)ε

(
1 +

ετ − L

t ln t ln2 t
−
τ2

t2
+ o

(
1

t2

))
.

Finally, we get

exp(R⋆(t)) = 1 +
1

t ln t(ln2 t)ε

(
1 +

ετ − L

t ln t ln2 t
−
τ2

t2
+ o

(
1

t2

))

+
1

2t2 ln2 t(ln2 t)2ε

(
1 +

ετ − L

t ln t ln2 t
−
τ2

t2
+ o

(
1

t2

))2

+ . . .

= 1 +
1

t ln t(ln2 t)ε
+

ετ − L

t2 ln2 t ln1+ε
2 t

+
1

2t2 ln2 t ln2ε
2 t

+ o

(
1

t3

)
.

For the validity of (4.3) it is sufficient to suppose that L(t) ≥ exp(R⋆(t))
(for sufficiently large t), i.e. that

1+
1

t ln t(ln2 t)ε
≥ 1+

1

t ln t(ln2 t)ε
+

ετ − L

t2 ln2 t ln1+ε
2 t

+
1

2t2 ln2 t ln2ε
2 t

+o

(
1

t3

)
.
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This will hold (we take into account the supposition ε > 1) if L > ετ . Since
ε may be chosen arbitrarily close to 1, we obtain the condition L > τ .

Proof of Theorem 10. Without loss of generality, suppose τ ≤ r, t > τ
and t is sufficiently large. Set kj(t) ≡ k(t), j = 1, . . . , n, where

k(t) = 1/tm+p

and p is a positive constant. Obviously, (1.2) will be satisfied if, as above,
the inequality (4.3) holds. Let us find the asymptotic expansion of the right
hand side of (4.3) as t→ ∞. We get

R(t) = exp

[ t\
t−τ

( n∑

j=1

αj(s)
) 1

sm+p
ds

]

≤ exp

[
1

(t− τ)m+p
−

L

(t− τ)m+p+1

]

= 1 +
1

(t− τ)m+p
−

L

(t− τ)m+p+1
+

1

2(t− τ)2(m+p)
+ . . .

= 1 +
1

tm+p

(
1 −

τ

t

)
−(m+p)

−
L

tm+p+1

(
1 −

τ

t

)
−(m+p+1)

+O

(
1

t2(m+p)

)

= 1 +
1

tm+p

(
1 +

(m+ p)τ

t
+O

(
1

t2

))

−
L

tm+p+1

(
1 +O

(
1

t

))
+O

(
1

t2(m+p)

)

= 1 +
1

tm+p
+

(m+ p)τ − L

tm+p+1
+O

(
1

tm+p+2

)
+O

(
1

t2(m+p)

)
.

Now, for

L(t) ≡ 1 +
1

tm+p

≥ 1 +
1

tm+p
+

(m+ p)τ − L

tm+p+1
+O

(
1

tm+p+2

)
+O

(
1

t2(m+p)

)
≥ R(t)

to hold, m+ p > 1 and L > (m+ p)τ are sufficient. Since p may be chosen
arbitrarily small positive, we obtain the condition L > τm.
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[1] O. Ar ino, I. Gy őr i and M. Pituk, Asymptotically diagonal delay differential sys-
tems, J. Math. Anal. Appl. (in the press).

[2] F. V. Atk inson and J. R. Haddock, Criteria for asymptotic constancy of solutions
of functional differential equations, J. Math. Anal. Appl. 91 (1983), 410–423.

[3] R. Bel lman and K. L. Cooke, Differential-Difference Equations, Academic Press,
New York, 1963.

[4] K. Borsuk, Theory of Retracts, PWN, Warszawa, 1967.
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