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An approach to joint spectra

by Angel Mart́ınez Meléndez and
Antoni Wawrzyńczyk (México, D.F.)

Abstract. For a given unital Banach algebra A we describe joint spectra which satisfy
the one-way spectral mapping property. Each spectrum of this class is uniquely determined
by a family of linear subspaces of A called spectral subspaces. We introduce a topology
in the space of all spectral subspaces of A and utilize it to the study of the properties of
the spectra.

1. Introduction. Throughout this paper we denote by A a fixed unital
Banach algebra with unit e. For every C⊂A let Ck denote the kth Cartesian
product of C. We denote by Ckcom the set of all k-tuples of mutually com-
muting elements from C. We put Ccom =

⋃
k∈N C

k
com and C∞ =

⋃
k∈N C

k.
The norm in A is denoted by ‖ · ‖. The algebra Ak is provided with the
norm ‖(a1, . . . , ak)‖ = sup1≤i≤k ‖ai‖. For a = (a1, . . . , ak) we denote by
I lA(a) (resp. IrA(a)) the left (resp. right) ideal generated by the elements
a1, . . . , ak in A and by G(a) the unital subalgebra of A generated by the
same elements. We also set P (a) = IG(a)(a). All elements of P (a) are of
the form p(a1, . . . , ak), where p is a polynomial of k variables without the
constant term. For λ = (λ1, . . . , λk) ∈ Ck the k-tuple (a1− λ1, . . . , ak − λk)
is written as a− λe. If a = (a1, . . . , ak) and b = (b1, . . . , bm) then (a, b) will
denote the (k+m)-tuple (a1, . . . , ak, b1, . . . , bm). For a single element a ∈ A
we denote by σ(a) the usual spectrum of a.

In this paper we understand by joint spectrum a mapping σ̃ which assigns
to every k-tuple a = (a1, . . . , ak) ∈ Akcom a subset σ̃(a) ⊂ Ck not always
empty such that

(1) σ̃(a) ⊂
k∏
i=1

σ(ai)
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and

(2) p(σ̃(a)) ⊂ σ̃(p(a))

for every polynomial mapping p : Ck → Cm and every a ∈ Acom.
The second condition is called the one-way spectral mapping formula.
Unfortunately this terminology is not completely consistent with the

axiomatics introduced by W. Żelazko in [8] in which this term is reserved
for the perfect objects of spectral theory.

Recall that according to this axiomatics σ̃ is a joint spectrum, or simply
a spectrum if σ̃(a) is compact, satisfies (1), coincides with σ(a) for single
a ∈ A and has the (complete) spectral mapping property :

(3) p(σ̃(a)) = σ̃(p(a))

for all a ∈ Acom and all polynomial mappings p.
The mapping σ̃ is called a subspectrum if (1) and (3) are satisfied.
A special case of the spectral mapping property is the projection property

(4) π(σ̃(a)) = σ̃(π(a)),

where π(x1, . . . , xn) = (xi1 , . . . , xim) for 1 ≤ i1 ≤ . . . ≤ im ≤ n.
The following translation property can be deduced from the one-way

spectral mapping property:

(5) σ̃(a+ λe) = σ̃(a) + λ

for a ∈ Akcom and λ ∈ Ck.
A semispectrum, according to [8], is a mapping σ̃ which satisfies (1), (4)

and (5).
Finally, a generalized joint spectrum is defined on the whole A∞ and

satisfies the conditions (1) and (2).
It was proved in [8] that every subspectrum τ on an Abelian algebra A is

uniquely determined by a subset K of the space M(A) of the multiplicative
functionals on A by means of the formula

τ(a) = {(ϕ(a1), . . . , ϕ(ak)) | ϕ ∈ K}
= {λ ∈ Ck | ∃ϕ ∈ K, a− λe ∈ (kerϕ)k}.

Following this idea we propose to describe in a similar form and for
noncommutative A a wider class of joint spectra. In place of the maximal
ideals kerϕ which appear in the above formula we introduce families of linear
subspaces of the algebra A called spectral subspaces. With every set U of
spectral subspaces we associate a joint spectrum denoted by σU .

The algebraic structure of a spectral subspace ensures that the one-way
spectral mapping formula is satisfied by σU . Other properties of spectra like
compactness, the projection formula and the spectral mapping property
depend on the structure of U .
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We define a topology T in the space of spectral subspaces in such a
way that T restricted to the set of maximal two-sided ideals coincides with
the Gelfand topology. It results that for the joint spectrum σU the formula
σU (a) = σU (a) is valid for all a ∈ Acom. This formula implies that the
compact spectra are exactly those defined by compact sets of spectral spaces.

Using the topology T we obtain in Section 4 an elementary proof of a
theorem which is an extension of results of A. So ltysiak about the existence
of multiplicative functionals on A. A generalized joint spectrum τ = σU is
nonvoid for every a ∈ A∞ if and only if U contains the kernel of a multi-
plicative linear form on A.

In Section 5 we study the relation between the projection property and
the spectral mapping property. The principal result states that for all joint
spectra the projection property implies the spectral mapping formula with-
out assuming the compactness of the spectrum.

In Section 6 we compare our approach to joint spectra with the method
used by V. Kordula and V. Müller [3] and by V. Müller [4] based on the
concepts of regularity and joint regularity.

The authors are very indebted to the reviewer for important observations
which enabled them to improve the paper.

2. Spectral linear subspaces in A

Definition 1. A linear subspace E ⊂ A is called spectral if it does not
contain invertible elements and P (a) ⊂ E for all a ∈ Ecom. We denote by
E(A) the set of all spectral linear subspaces in A.

The space E(A) contains in particular all left and right ideals of A and
all subalgebras consisting of noninvertible elements.

An example of a spectral subspace which is not a subalgebra can be
constructed in the algebra of 3×3 complex matrices. Let E be the subspace
of all matrices of the form

T (α, β, γ) =

α+ β γ 0
γ α− β 0
0 0 0

 for α, β, γ ∈ C.

If T, S ∈ E commute then one of them is a linear combination of the other
and of the matrix T (1, 0, 0). All powers of an element T ∈ E belong to E. It
follows that E is a spectral subspace. On the other hand T (0, 1, 0)T (0, 0, 1)
6∈ E, hence E is not an algebra.

Every set U of spectral linear subspaces defines a joint spectrum for all
a ∈ Ak by the formula

(6) σU (a) = {λ ∈ Ck | ∃E ∈ U , a− λe ∈ Ek}.
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The above formula makes sense for all a ∈ A∞ but in general the most
important properties of the spectrum are valid only for elements of Acom.

Proposition 2.1. For every U ⊂ E(A) the spectrum σU (a) has the
following properties:

(i) σU (a) ⊂
∏k
i=1 σ(ai) for a = (a1, . . . , ak) ∈ Ak,

(ii) the translation property : σU (a + λe) = σU (a) + λ for a ∈ Ak such
that σU (a) is nonvoid and for all λ ∈ Ck,

(iii) the one-way projection property : if a ∈ Ak, λ ∈ Ck, b ∈ Am, µ ∈ Cm
and (λ, µ) ∈ σU (a, b) then λ ∈ σU (a),

(iv) the one-way spectral mapping property p(σU (a)) ⊂ σU (p(a)) for all
a ∈ Akcom and every polynomial mapping p : Ck → Cm.

P r o o f. The properties (i)–(iii) are obvious. Let λ ∈ σU (a) for some
a ∈ Akcom. There exists E ∈ U such that a − λe ∈ Ek. By the remainder
theorem (see [2], p. 461) we know that

p(a)− p(λ) ∈ IG(a)(a− λe)m ⊂ P (a− λe)m ⊂ Em.
It follows that p(λ) ∈ σU (p(a)).

Proposition 2.1 says that σU is a joint spectrum.
All joint spectra are of this form.

Proposition 2.2. Let τ be a joint spectrum. Let U be the set of all linear
subspaces E ∈ E(A) such that for all a ∈ Ekcom the spectrum τ(a) contains
zero. Then

τ(a) = σU (a)
for all a ∈ Acom. In particular U contains all subalgebras of the form P (a)
for a ∈ Acom such that 0 ∈ τ(a).

P r o o f. Both spectra τ and σU have the translation property (ii), hence
in order to prove that they are identical it suffices to show that zero belongs
to τ(a) if and only if it belongs to σU (a).

Take a ∈ Akcom such that 0 ∈ τ(a). Let p = (p1, . . . , pm) be a polynomial
mapping of k variables without constant terms. By the one-way spectral
mapping property,

0 = p(0) ∈ p(τ(a)) ⊂ τ(p(a)).

This shows that P (a) ∈ U and 0 ∈ σU (a). The translation property yields
τ(a) ⊂ σU (a). The opposite inclusion follows from the definition of U .

Proposition 2.2 and the formula (6) enable us to extend an arbitrary
joint spectrum, defined initially on Acom, to the whole A∞ conserving at
least the properties (i)–(iii) from Proposition 2.1.

The representation of joint spectra in the form τ = σU can also be used
to classify them according to the properties of the corresponding family U .
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Repeating exactly the arguments in the proofs of Propositions 2.1 and 2.2
we obtain

Proposition 2.3. A joint spectrum τ satisfies the one-way spectral map-
ping property for all a ∈ A∞ if and only if there exists a subset U ⊂ E(A)
consisting of subalgebras of A such that τ(a) = σU (a) for all a ∈ A∞.

Proposition 2.3 describes all generalized joint spectra. In a similar way
we obtain

Proposition 2.4. A joint spectrum τ can be represented as σI , where I
is a family of left (right) ideals in A, if and only if τ satisfies the following
condition: for every a ∈ Ak such that 0 ∈ τ(a) and for every c ∈ I lA(a)m

(resp. c ∈ IrA(a)m) one has 0 ∈ τ(c).

In Sections 4 and 5 we characterize in a similar way the joint spectra
which have the complete spectral mapping property.

It is quite obvious that the same joint spectrum can be defined by dif-
ferent families of spectral subspaces. However, if the sets Uα, α ∈ I, lead to
the same spectrum and U =

⋃
α Uα, then σU = σUα for every α.

This means that for a fixed joint spectrum τ = σU there exists a unique
maximal family Uc such that τ(a) = σUc(a), a ∈ Acom. The family Uc is just
the union of all families which lead to the same joint spectrum τ . We refer
to Uc as the completion of the family U . We say that U is complete if it is
equal to its completion.
Uc can also be described in the following way:

Proposition 2.5.
Uc = {E ∈ E(A) | ∀a ∈ Ecom ∃F ∈ U , a ∈ Fcom}

= {E ∈ E(A) | 0 ∈ σU (a) ∀a ∈ Ecom}.

The proof is obvious.
The maximal family corresponding to a given joint spectrum τ has ap-

peared in the proof of Proposition 2.2. It just consists of all E ∈ E(A) such
that 0 ∈ τ(a) for every a ∈ Ecom.

Every complete family U of spectral subspaces is uniquely determined by
its maximal elements. If Eα ∈ U is an increasing family of spectral subspaces
then

⋃
αEα ∈ U . By the Kuratowski–Zorn Lemma, U contains maximal

elements. It follows from Proposition 2.5 that every spectral subspace F
which is a subset of an element E of a complete family U is also an element
of U . Denoting by M(U) the set of all maximal elements of a complete family
U we obtain

U = {E ∈ E(A) | ∃F ∈M(U), E ⊂ F}.
The following property of joint spectra is of great importance.
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Theorem 2.1. Let U ⊂ E(A). For every a ∈ A∞ define τ(a) = σU (a).
Then there exists a family V ⊂ E(A) such that τ(a) = σV(a).

P r o o f. It is sufficient to prove that τ is a joint spectrum, that is, has the
properties (1) and (2). The property (1) is obvious by the definition. The
one-way spectral mapping formula holds for σU , hence for every polynomial
mapping p and a ∈ Acom we have

p(τ(a)) = p(σU (a)) = p(σU (a)) ⊂ σU (p(a)) = τ(p(a)).

By Proposition 2.2 the assertion follows.

In the next section we define a topology in E(A) such that the map
U 7→ V becomes the closure operation corresponding to this topology.

3. A topology in E(A). Compactness of the spectrum σU (a). Fix
E ∈ E(A). For every a ∈ (E + Ce)k there exists a unique λa(E) ∈ Ck such
that a−λa(E)e ∈ Ek. Obviously σ{E}(a) = {λa(E)} and σU (a) = {λa(E) |
E ∈ U}. Let T be the weakest topology on E(A) for which the functions

λa : E 7→ λa(E) ∈ Ck

are continuous on their domains for all k ∈ N and all a ∈ Ak.
The sets Oa,ε(E) = {F ∈ E(A) | |λa(E) − λa(F )| < ε}, 0 6= a ∈

(E + Ce)∞, are a base of neighbourhoods of E of the topology T .
The topology T is not Hausdorff. Every element F ∈ E(A) which con-

tains E ∈ E(A) belongs to each neighbourhood of E. Nevertheless, if neither
of the spaces E,F ∈ E(A) is contained in the other, then they can be sepa-
rated in the topology T .

Denote by U 7→ U the closure operation with respect to the topology T .

Proposition 3.1. Let U ⊂ E(A). Then

(i) U is a complete family.
(ii) For every U ⊂ E(A) and a ∈ Acom,

σU (a) = σU (a).

P r o o f. The formula (U)c = U follows from Proposition 2.5. If λ ∈ σU (a)
for a ∈ Akcom then there exists E ∈ U such that a − λe ∈ Ek. This means
by the definition of T that for every b ∈ (E + Ce)lcom and ε > 0 there exists
F ∈ U such that |λb(E)−λb(F )| < ε. Since a ∈ (E+Ce)kcom and λ = λa(E)
this implies that λ ∈ σU (a). The inclusion σU (a) ⊂ σU (a) is proved.

By Theorem 2.1, σU (a) = σV(a) for some V ⊂ E(A). The elements of
V are defined as spectral subspaces E ⊂A such that for every a ∈ Ek the
spectrum σU (a) has zero as an accumulation point. Explicitly, this means
that there exists a sequence Ck 3 λ(n)(a) → 0 and En ∈ U such that
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a−λ(n)(a)e∈En. By the definition of the topology T it follows that E ∈ U .
We have proved in this way that V ⊂ U and hence σU (a) ⊂ σU (a).

Corollary 3.1. If U ⊂ E(A) is closed in E(A) then σU (a) is closed
for every a ∈ Acom. If σU (a) is closed for every a ∈ Acom then there exists
a closed set V ⊂ E(A) such that σU (a) = σV(a).

Corollary 3.2. If U ,V ⊂ E(A) and σU (a) ⊂ σV(a) for all a ∈ Acom

then U ⊂ V.

P r o o f. As we have seen in the proof of Proposition 3.1 the closures U
and V are the sets of elements E of E(A) such that σU (a) (resp. σV(a))
contains zero for every a ∈ Ek.

By our assumption σU (a) ⊂ σV(a). The assertion follows.

Fix E ∈ E(A) and c ∈ Em. Let a ∈ Akcom \ (Ce)k. We introduce

Q(c,a) = {F ∈ E(A) | c ∈ Fm, and ∃λ, a− λe ∈ F k}.

Proposition 3.2. The sets of the form Q(c,a) are compact.

P r o o f. Let c = (c1, . . . , cm) and a = (a1, . . . , ak). Let {Uα} be a family
of subsets of Q(c,a) which are closed in Q(c,a). Suppose that this family has
the finite intersection property. Let Uα denote the closure of Uα in E(A).
Obviously the family {Uα} has the finite intersection property as well.

The sets σUα(a) ⊂ Ck are nonempty and have the finite intersection
property, hence the sets σUα(a) = σUα(a) which are bounded and closed
have a nontrivial intersection. If µ ∈ σUα(a) for all α then (0, µ) ∈ σUα(c, a)
for all α because every element of Q(c,a) contains all ci, 1 ≤ i ≤ m. This
means that the set S =

⋂
α σUα(c, a) is nonempty and contains an element

of the form (0, µ).
For every b ∈ Acom we define

τ(b) =
⋂
α

σUα(b).

The property τ(b) ⊂
∏
i σ(bi) is obvious. For every polynomial mapping p

we have

p(τ(b)) = p
(⋂

α

σUα(b)
)
⊂
⋂
α

p(σUα(b)) ⊂
⋂
α

σUα(p(b)) = τ(p(b)).

The map τ is a joint spectrum such that τ(c, a) 6= ∅. If (0, µ) ∈ τ(a) and
x = (c, a) − (0, µ)e then 0 ∈ τ(x) and 0 ∈ σUα(x) for every α. Since Uα is
a closed family it follows that P (x) ∈ Uα by Proposition 2.2. On the other
hand we observe that P (x) ∈ Q(c,a). The sets Uα are closed in Q(c,a), hence
P (x) ∈ Uα for every α. This proves the compactness of Q(c,a).
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4. Joint spectra and multiplicative functionals. In this section we
consider joint spectra extended to the whole space A∞ according to the
formula (6). In general the one-way spectral mapping property is not valid
in this case. Nevertheless, according to Proposition 2.1 the extended spec-
trum σU obeys the translation formula (4) and has the one-way projection
property.

In the case of a joint spectrum defined by a closed family U ⊂ E(A)
we prove that σU (a) is nonvoid for all a ∈ A∞ if and only if there exists
on A a linear multiplicative functional ϕ such that kerϕ ∈ U . In this way
we generalize and complete the investigations initiated by C.-K. Fong and
A. So ltysiak in [1] and developed by A. So ltysiak [5]–[7], concerning the
existence of multiplicative functionals on A. Our proof is elementary, based
on the theorem of Gleason–Kahane–Żelazko.

Next we prove that a generalized joint spectrum of the form σU defined
on the whole A∞ has the spectral mapping property if and only if M(U)
consists of two-sided ideals maximal in A.

Both results are consequences of the following

Theorem 4.1. Let U be a closed subset of E(A). Let E ∈ U . Then the
following conditions are equivalent :

(i) There exists W ∈ U such that codimW = 1 and E ⊂W .
(ii) For every c ∈ Ek and every a ∈ Am there exists λ ∈ Cm such that

(0, λ) ∈ σU (c, a).

P r o o f. If (i) is valid thenA = W+Ce and there exists a linear functional
ϕ on A such that b − ϕ(b)e ∈ W for all b ∈ A. Given c ∈ Ek and a =
(a1, . . . , am) set λ = (ϕ(a1), . . . , ϕ(am)); then λ witnesses (ii).

Suppose now that (ii) is valid. When applied to c = 0 this property
implies that σU (a) 6= ∅ for all a ∈ A∞.

For given c ∈ Ek, a ∈ Am define

Z(c,a) = Q(c,a) ∩ U = {F ∈ U | ∃λ ∈ Cm, (c, a− λe) ∈ F k+m}.

The condition (ii) ensures that Z(c,a) 6= ∅.
The one-way projection property implies

(7) Z((c1,c2),(a1,a2)) ⊂ Z(c1,a1) ∩ Z(c2,a2)

for all ci ∈ Eki , ai ∈ Ami .
It follows that the family {Z(c,a)}(c,a)∈E∞×A∞ has the finite intersection

property.
Let us also introduce for every (c, a) ∈ E∞×A∞ the family F(c,a) of all

functions ϕ on A satisfying the following conditions:
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(a) There exists F ∈ Z(c,a) such that F ⊂ kerϕ and b − ϕ(b)e ∈ F for
every b ∈ F + Ce.

(b) ϕ(b) ∈ σU (b) for every b ∈ A.

Notice that by (a) the restriction of ϕ to F+Ce is the function b 7→ λb(F ).
In particular ϕ(e) = 1.

The set F(c,a) is nonempty because for every F ∈ Z(c,a) we can construct
a function ϕ ∈ F(c,a) putting ϕ(b) = λb(F ) for b ∈ F + Ce. The conditions
(a) and (b) are satisfied on F + Ce and the function can be extended to A
arbitrarily keeping the property (b).

This construction together with the formula (7) shows that the family
of all sets F(c,a) has the finite intersection property as well.

All sets F(c,a) are subsets of the product K =
∏
a∈A σU (a), which is a

compact space with respect to the product topology.
We now show that the sets F(c,a) are closed in K.
Let ϕ ∈ K be a limit of a net ϕα ∈ F(c,a) and let Fα ∈ Z(c,a) witness (a)

for ϕα on Fα. By Proposition 3.2 there exists V ∈ Q(c,a) and a subnet Fβ
such that V = limβ Fβ . The space V is an element of Z(c,a), because U is
closed. By the definition of the topology in E(A) for every b ∈ (V + Ce)mcom
and for β “sufficiently large”, λb(Fβ) is well defined and converges to λb(V ).

It follows that for b ∈ V we have ϕ(b) = limβ>β0 ϕb(Fβ) = λb(V ) = 0.
The space V is contained in the kernel of ϕ. Now, for b ∈ V + Ce,

ϕ(b) = lim
β>β0

ϕβ(b) = lim
β>β0

λb(Fβ) = λb(V ).

This implies that b−ϕ(b)e ∈ V and the conditions (a) and (b) are satisfied
for ϕ. We have proved that the set F(c,a) is closed.

By the compactness of K there exists ϕ ∈
⋂

(c,a) F(c,a). It follows that
the whole space E is contained in kerϕ. For every b ∈ Ak there exists
F ∈ Z(0,b) ⊂ kerϕ such that ϕ(x) = λx(F ) and x−ϕ(x)e ∈ F for x ∈ F+Ce.
The function x 7→ λx(F ) is linear on F+Ce, hence in particular on the space
〈b〉 linearly generated by the elements b1, . . . , bk. This proves that ϕ is linear
everywhere.

If b ∈ (kerϕ)kcom then by the above property b ∈ F k for some F ∈ Z(0,b).
It follows that W = kerϕ ∈ U , because U is complete.

Corollary 4.1. Let U ⊂ E(A) be a closed subset. Then σU (a) 6= ∅ for
all a ∈ A∞ if and only if there exists a linear multiplicative functional µ on
A such that kerµ ∈ U .

P r o o f. It suffices to apply Theorem 4.1 in the case of E=0. There exists
a linear form on A whose kernel is an element of U . By the Gleason–Kahane–
Żelazko theorem every linear form which vanishes uniquely on non-invertible
elements is multiplicative.
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Corollary 4.2. Let τ be a joint spectrum defined on A∞ such that τ(a)
is compact for all a ∈ A∞. Let U ⊂ E(A) be the maximal family such that
τ(a) = σU (a). The spectral mapping property is valid for τ if and only if
M(U) consists of maximal two-sided ideals. This being the case,

(8) τ(a1, . . . , ak) = {(ϕI(a1), . . . , ϕI(ak)) | I ∈M(U)}.

We have denoted by ϕI the multiplicative functional corresponding to
the maximal ideal I.

P r o o f. Assume that τ has the spectral mapping property. The condi-
tion (ii) in Theorem 4.1 is a special case of the formula (3), hence every
element I maximal in U is of codimension 1 in A. Let ϕ be the linear form
such that ϕ(e) = 1 and kerϕ = I. By the theorem of Gleason–Kahane–
Żelazko ϕ is multiplicative and hence I is a maximal two-sided ideal in A.
Now, if a − λe ∈ Ek ⊂ Ik ∈ M(U)k then by the definition of ϕI we obtain
λi = ϕI(ai). The formula (8) is proved.

If we suppose that M(U) consists of ideals which are maximal in A then
(8) is valid and the spectrum defined by the right hand side of (8) has the
spectral mapping property.

5. The spectral mapping property. In this section we study the case
of a joint spectrum τ which has the complete spectral mapping property for
all a ∈ Akcom, which means that for every polynomial mapping p : Ck → Cm
we have

(9) p(τ(a)) = τ(p(a)).

A special case of the spectral mapping property is the projection prop-
erty (4), which in the case of a joint spectrum is equivalent to the following
condition: for every a ∈ Akcom, λ ∈ τ(a) and b ∈ Am such that (a, b) ∈ Acom

there exists µ ∈ Cm such that (λ, µ) ∈ τ(a, b).
If we represent τ as σU where U ⊂ E(A) is complete then the projection

property of τ is equivalent to the following property of U : for every E ∈ U ,
a ∈ Ekcom and b ∈ Am such that (a, b) ∈ Ak+mcom there exist E1 ∈ U and
µ ∈ Cm such that (a, b− µe) ∈ Ek+m1 .

This property of U will also be called the projection property.

Lemma 5.1. Let U ,V ⊂ E(A) with U ⊂ V. Suppose that σU has the
projection property and σV has the spectral mapping property. Then σU also
has the spectral mapping property.

P r o o f. The one-way spectral mapping property is valid for σU , hence it
remains to prove that σU (p(a)) ⊂ p(σU (a)) all a ∈ Akcom and all polynomial
mappings p. Suppose that λ ∈ σU (p(a)). By the projection property of U
there exists µ ∈ Ck such that (λ, µ) ∈ σU (p(a), a). The one-way spectral
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mapping property implies µ ∈ σU (a). The inclusion U ⊂ V and the spectral
mapping formula for σV yield

(λ, µ) ∈ σU (p(a), a) ⊂ σV(p(a), a) = {(p(µ), µ) | µ ∈ σV(a)}.

It follows that all elements of the spectrum σU (p(a), a) have the form
(p(µ), µ) for µ ∈ σU (a). We obtain λ = p(µ), which was to be proved.

Proposition 5.1. Assume that the joint spectrum τ has the projection
property. Then τ(a) = τ(a) is also a joint spectrum with the projection
property.

P r o o f. It was proved in Theorem 2.1 that τ is a joint spectrum. Let λ∈
τ(a) for some a ∈ Akcom and let (a, b) ∈ Ak+mcom . There exists a sequence λ(n)∈
τ(a) which converges to λ. By the projection property applied to τ there
exists µ(n) ∈ Cm such that (λ(n), µ(n)) ∈ τ(a, b). The sequence (λ(n), µ(n))
has a convergent subsequence whose limit (λ, µ) belongs to τ(a, b). The
assertion follows.

Corollary 5.1. If a joint spectrum τ on a Banach algebra A has the
projection property , then it has the spectral mapping property.

P r o o f. Let a ∈ Akcom. Let B be the maximal unital Abelian subalgebra
of A which contains a1, . . . , ak. The joint spectrum τ restricted to B is
a joint spectrum on B with the projection property. Denote it by τ1. By
Proposition 5.1, τ1 has the projection property, and by Corollary 4.2, it
has the spectral mapping property. Lemma 5.1 implies that τ1 itself has the
spectral mapping property, which ensures the same property for τ .

6. Regularities and joint spectra. The papers [3] by V. Kordula and
V. Müller and [4] by V. Müller describe wide classes of spectra and joint
spectra using the concepts of regularities and of joint regularities.

According to [3] a regularity in A is a nonempty subset R of A which
satisfies the following conditions:

(i) if a ∈ A and n ∈ N then a ∈ R if and only if an ∈ R,
(ii) if (a, b, c, d) ∈ A4

com and ac+ bd = e, then ab ∈ R if and only if a ∈ R
and b ∈ R.

A regularity defines a spectrum for single elements a ∈ A by the formula

σ̃R(a) = {λ ∈ C | a− λe 6∈ R}.

In general σ̃R(a) is neither compact nor non-empty. One of the most
important properties of the spectrum σ̃ proved in [3] is the following

Theorem 6.1. Let R be a regularity in A. Then for all a ∈ A and for
every function f analytic in a neighbourhood of σ(a) and nonconstant on



142 A. Mart ı́nez Meléndez and A. Wawrzyńczyk

every connected component of its domain,

σ̃R(f(a)) = f(σ̃R(a)).

Note. If 0 6∈ R then the one-way spectral mapping formula is also valid
for the constant function f .

Not every spectrum of the form σ̃R can be extended to a subspectrum.
A necessary condition is that ab ∈ R should imply a ∈ R and b ∈ R
for all a, b ∈ A. It is not satisfied in general because there exist examples of
regularities which contain zero. If we exclude this case we can always extend
σ̃R to a semispectrum.

Proposition 6.1. Let R be a regularity in A such that 0 6∈ R. Let J be
the set of all subalgebras of A of the form P (a), a ∈ Rc. Then

σJ (a) = σ̃R(a)

for a ∈ A and

p(σJ (a)) ⊂ σJ (p(a))

for every a ∈ A∞ and every polynomial mapping p.

P r o o f. If 0 ∈ σ̃R(a) for a ∈ A then a ∈ P (a) ∈ J , which means that
0 ∈ σJ (a).

If 0 ∈ σJ (a), then there exists a polynomial p without constant term
and an element b 6∈ R such that a = p(b). By the spectral mapping formula,
σ̃R(a) = p(σ̃R(b)). Since 0 ∈ σ̃R(b) we obtain 0 ∈ σ̃R(a). Both spectra have
the translation property, hence they coincide.

The joint spectrum σJ is defined by means of a family of subalgebras
of A, hence by Proposition 2.3 it has the one-way spectral mapping property
for all k-tuples in A.

In [4], V. Müller has introduced the concept of joint regularity and of
spectral system, which is just the joint spectrum associated with a joint
regularity.

Definition 2. A joint regularity is a subset R ⊂ Acom of the form
R =

⋃∞
n=1Rn, where Rn ⊂ Ancom and for all n ∈ N the following conditions

are satisfied:

(i) If (x1, . . . , xn, y1, . . . , yn) ∈Acom and
∑n
i=1 xiyi = e then (x1, . . . , xn)

∈ Rn.
(ii) If (x1, . . . , xn, xn+1) ∈ Acom and (x1, . . . , xn) ∈ Rn then (x1, . . .

. . . , xn, xn+1) ∈ Rn+1.
(iii) If (x0−λ, x1, . . . , xn) ∈ Rn+1 for every λ ∈ C then (x1, . . . , xn) ∈ Rn.
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The joint spectrum associated with the regularity R is defined for
x ∈ Ancom as

(10) σ̃R(x) = {λ ∈ Cn | x− λe 6∈ Rn}.
The map σ̃R is an example of a spectral system.

Definition 3. A spectral system for A is a mapping which assigns to
every x ∈ Akcom a subset σ̃(x) which has the projection property (4) and
satisfies the condition σ̃(x) ⊂ σG(x)(x), where the latter set is the usual
joint spectrum of x in the Abelian algebra G(x).

As proved in [4] there exists a one-to-one correspondence between joint
regularities and spectral systems. Formula (10) describes the spectral sys-
tem associated with a given regularity R. Conversely, if for a given spectral
system σ̃ we define Rn = {x ∈ Ancom | 0 6∈ σ̃(x)} then σ̃(x) = σ̃R ([4], Theo-
rem 5). All spectral systems have the spectral mapping property.

Theorem 6.2 ([4], Theorem 7). Let σ̃ be a spectral system in the algebra
A. Let x ∈ Acom and let f = (f1, . . . , fk) be a k-tuple of functions analytic
in some neighbourhood of σG(x)(x). Then

σ̃(f(x)) = f(σ̃(x)).

The definitions of regularity and of joint regularity admit the case of R=
Acom, which corresponds to σ̃R(x)=∅ for all x. Excluding this (pathological,
in our opinion) case we can describe the regularities and spectral systems in
terms of spectral subspaces in A.

Theorem 6.3. Let σ̃= σ̃R be a spectral system such that R 6=Acom. Let

U = {E ∈ E(A) | ∀k ∈ N, x ∈ Ekcom, 0 ∈ σ̃(x)}.
Then the family U has the projection property , σU (x) = σ̃(x) and

(11) Rn = Ancom \
( ⋃
E∈U

En
)
.

P r o o f. Let x ∈ A and 0 ∈ σ̃(x). Assume that x is invertible. By the
projection property of σ̃ there exists µ ∈ C such that (0, µ) ∈ σ̃(x, x−1) ⊂
σG(x,x−1)(x, x−1). This is a contradiction which shows that x is noninvertible
and P (x) ∈ U .

The equality σ̃ = σU follows from Proposition 2.2. The projection prop-
erty of U is now obvious since σ̃ has the spectral mapping property. Com-
paring the definition of the regularity associated with σ̃ with the definition
of σU we obtain the description (11) of Rn in terms of elements of spectral
subspaces belonging to U .

If we describe spectral systems in terms of regularities we must construct
an infinite family of sets Rn satisfying 3 axioms. Using for this purpose
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spectral subspaces we must determine only a set of subspaces E ⊂ R1 such
that R1 =

⋂
E∈U E

c and then the higher regularities are uniquely described
by formula (11).
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Reçu par la Rédaction le 13.7.1998
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