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Gradients and canonical transformations

by Gaetano Zampieri (Torino)

Abstract. The main aim of this paper is to give some counterexamples to global
invertibility of local diffeomorphisms which are interesting in mechanics. The first is a
locally strictly convex function whose gradient is non-injective. The interest in this func-
tion is related to the Legendre transform. Then I show two non-injective canonical local
diffeomorphisms which are rational: the first is very simple and related to the complex
cube, the second is defined on the whole R

4 and is obtained from a recent important
example by Pinchuk. Finally, a canonical transformation which is also a gradient (of a
convex function) is provided.

1. Introduction. To motivate our results, let us start from the au-
tonomous Lagrange equations of classical mechanics

(1.1)
d

dt

∂L

∂q̇
(q, q̇) − ∂L

∂q
(q, q̇) = 0, L ∈ C2(Ω; R), Ω = Ω◦ ⊆ R

2n.

We assume the open set Ω to be connected , and the Lagrangian function L
to be locally strictly convex with respect to q̇; more precisely, the following
n × n Hessian matrix is assumed to be positive definite:

(1.2)
∂2L

∂q̇2
(q, q̇) > 0 for all (q, q̇) ∈ Ω.

So, near any point (q, q̇), we can invert p = ∂L/∂q̇ with respect to q̇, and
plugging the local inverse function for q̇ into the formula p· q̇−L(q, q̇) (where
“·” is the scalar product), we have the local Hamiltonian function H(q, p).
The function H is called the Legendre transform of L with respect to q̇. A
natural question is now whether the gradient of a function with a positive
definite Hessian matrix, at each point of a connected open set, can fail to
be injective. The answer is yes. In Section 2 we show an analytic example.
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Notice that the gradient is injective if the domain is convex; Section 5 has
a proof of this elementary known fact.

In a recent paper, Pucci and Serrin [PS] proved an elegant sufficient
condition for the existence of global Hamiltonian functions on non-convex
sets (with a degree of smoothness weaker than above). I refer the reader to
[PS] also for a discussion of the previous literature on this topic where, as
far as I know, an example like the one in Section 2 is not shown. Hopefully,
further sufficient conditions for global Legendre transforms will appear in
the future; their importance is also related to other theories both in ODEs
and PDEs.

By means of the function H(q, p) we can pass from the second order
system (1.1) to the equivalent Hamiltonian system

(1.3) q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p).

Now, let us forget the local origin of (1.3), and assume for the sequel to
have a Hamiltonian function (q, p) 7→ H(q, p) of class C2 defined on the
whole open connected set D ⊆ R

2n. A C2 diffeomorphism f : D → f(D) is
called a canonical transformation if, for any H as above, the system (1.3) is
transformed by f into the Hamiltonian system defined by the transformed
Hamiltonian K = H ◦ f−1. We can check at once that this last property is
equivalent to

(1.4) f ′(q, p)

(

O In

−In O

)

f ′(q, p)T =

(

O In

−In O

)

for all (q, p) ∈ D

where f ′(q, p) is the Jacobian matrix of f at (q, p), O is the n×n zero matrix,
In is the n × n identity matrix, and the exponent T means transposition.
From (1.4) we have for the Jacobian determinant

(1.5) det f ′(q, p) = 1 for all (q, p) ∈ D

and we see at once that (1.5) is equivalent to (1.4) in the particular case of
dimension 2.

More generally, we consider canonical local diffeomorphisms, namely f as
above but possibly failing to be injective. The main point is not to be more
general, but to consider the very practical situation where condition (1.4)
is easily checked. We ask: is injectivity a corollary? The answer is no. In
Section 3 we see a very simple rational homogeneous example in dimension 2.
Can we give examples on the whole R

2n? In Section 3 we see a rational

example in dimension 4. To build it we use a famous recent polynomial
constructed by Pinchuk [P]. However, our example is not polynomial and
the question whether a polynomial example exists or not is equivalent to the
Jacobian conjecture, open since 1939 (see the references in [GTZ]).
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A final question: can a canonical transformation be the gradient of a
strictly convex function? We may consider affine canonical transformations.
Even non-linear functions can do the job. Section 4 shows an example, de-
fined on a bounded rectangle of R

2. To get it we used the technique in
Nitsche [N] starting from Scherk’s minimal surface z = ln cos x − ln cos y
(see [G], p. 190). On the whole R

2n these non-linear examples are impossi-
ble by a classical theorem of Jörgens, generalized to any dimension by Calabi
and Pogorelov [Po].

2. Non-injective locally convex gradient. Our first and main ex-
ample is the following homogeneous function of degree 2:

(2.1)

u : R
2 \ {(x, 0) : x ≤ 0} → R,

(x, y) 7→ (x2 + y2)

(

1 +
y2

(x +
√

x2 + y2)
2

)

The following picture shows the surface z = u(x, y):

The second picture displays a level curve. We check at once that
u(r cos θ, r sin θ)=2r2/(1 + cos θ). So the level curves have the simple polar
equation r = a

√
1 + cos θ and resemble cardioids.

The gradient as a column vector is

∇u(x, y) =

(

∂xu(x, y)
∂yu(x, y)

)

(2.2)

=
2
√

x2 + y2

(x +
√

x2 + y2)
2

(

2x2 − y2 + 2x
√

x2 + y2

3xy + 2y
√

x2 + y2

)

.
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The function ∇u : R
2 \ {(x, 0) : x ≤ 0} → R

2 is non-injective. Indeed, the
second picture suggests the existence of two points, on each level curve, with
the same x < 0 and opposite y, where the gradients are parallel to the x-axis
and coincide. The equation ∂yu(x, y) = 0, and y 6= 0, give y = ±

√
5 x/2.

Now, for any x < 0, we have

(2.3)

∇u(x,
√

5x/2) =
9

5
√

5

(√
5 (8x − 7

√
x2)

2 (x +
√

x2)

)

=

(

27x
0

)

,

∇u(x,−
√

5x/2) =
9

5
√

5

(√
5 (8x − 7

√
x2)

−2(x +
√

x2)

)

=

(

27x
0

)

,

so the non-injectivity of the gradient is proved.

However, ∇u : R
2 \ {(x, 0) : x ≤ 0} → R

2 is locally strictly convex since
it is defined in a connected open set, its derivative at (1, 0) (as well as at
any other point (x, 0) with x > 0) is

(2.4) u′′(1, 0) =

(

∂xxu(1, 0) ∂xyu(1, 0)
∂yxu(1, 0) ∂yyu(1, 0)

)

=

(

2 0
0 5/2

)

and the eigenvalues of u′′(x, y) must always be strictly positive since their
product, namely detu′′(x, y), is equal to

(2.5)
4(x2 + y2)

(x +
√

x2 + y2)6
(40x4 + 44x2y2 + 7y4 + 8x(5x2 + 3y2)

√

x2 + y2),

which has no zeros in R
2 \{(x, 0) : x ≤ 0}. Indeed, such zeros would be also

zeros of

(2.6) (40x4 + 44x2y2 + 7y4)2 − (8x(5x2 + 3y2)
√

x2 + y2)2

which is equal to y6(40x2 + 49y2). So y would vanish, and for y = 0 the

expression in (2.5) becomes 160x5/(x +
√

x2)5 6= 0 for (x, 0) ∈ R
2 \ {(x, 0) :

x ≤ 0}.
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3. Non-injective and canonical. Next, let us consider the homoge-
neous rational function of degree 1,

(3.1) f : R
2 \ {(0, 0)} → R

2, (x, y) 7→
(

x3 − 3xy2

√
3 (x2 + y2)

,
3x2y − y3

√
3 (x2 + y2)

)

.

It is a canonical local diffeomorphism, namely its Jacobian determinant is
constantly equal to 1:

(3.2) det f ′(x, y) = 1 for all (x, y) ∈ R
2 \ {(0, 0)}.

We can check this fact directly or remark that the numerators in (3.1) are
the components of the complex cube, so in polar coordinates we just have
r exp(i3θ)/

√
3. This last form should also clarify how f was built. Of course

f is not injective, for instance f(−
√

3/2,−1/2) = f(
√

3/2,−1/2).
Our next example is constructed starting from the Pinchuk polyno-

mial [P]. Here we do not need the specific form of that function, we just
recall that it is a function g : R

2 → R
2 with polynomial components such

that det g′(x) 6= 0 for all x ∈ R
2 but non-injective. There is a classic way

to build our map on it: we just consider

(3.3) F : R
2 × R

2 → R
2 × R

2, (x, y) 7→ (g(x), g′(x)−T y)

(−T denotes the inverse of the transpose matrix). We check at once that
condition (1.4) is satisfied. So we have a canonical local diffeomorphism
which fails to be injective. By the polynomiality of g, the function F is
rational.

Canonical transformations of the form (h(x), h′(x)−T y) are called
Mathieu in the literature.

4. Gradient and canonical. Now, consider the function

(4.1)
]−π/2, π/2[

2 → R
2,

(x, y) 7→ (sinh−1(cos y tan x), sinh−1(cos x tan y)).

Its Jacobian matrix can be written as

(4.2)
1

√

1 + tan2 x + tan2 y

(

sec2 x − tan x tan y
− tan x tan y sec2 y

)

.

By the symmetry of this matrix, the function in (4.1) is a gradient. Let v
be its primitive which vanishes at the origin. We have

(4.3) det v′′(x, y) = 1 for all (x, y) ∈ ]−π/2, π/2[
2
.

This was precisely our goal.

5. Strict convexity. To be self-contained we end with the following well
known proposition which, for instance, shows the injectivity of the function
(4.1) at once.
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Proposition. Let f : Ω → R
n be a C1(Ω) map with Ω ⊆ R

n open and

convex. If the quadratic form ξ 7→ ξ ·f ′(x) ξ is positive definite at any x ∈ Ω,
then f is injective. In particular , this holds for f = ∇u with u : Ω → R

such that u′′(x) > 0 for all x ∈ Ω.

P r o o f. Let x0, x1 ∈ Ω be two distinct points, and s the segment s :
[0, 1] → Ω, θ 7→ θx1 + (1 − θ)x0. Moreover, let

g : [0, 1] → Ω, θ 7→ (x1 − x0) · (f(s(θ)) − f(x0)).

We have g′(θ) = (x1 − x0) · f ′(s(θ))(x1 − x0) > 0 by hypothesis. So the
map g is strictly increasing and, in particular, g(1) 6= g(0) = 0. Finally
g(1) = (x1 − x0) · (f(x1) − f(x0)) 6= 0 implies f(x1) 6= f(x0).
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