Abstract separation theorems of Rodé type and their applications

by Kazimierz Nikodem (Bielsko-Biała), Zsolt Páles (Debrecen) and Szymon Wa̧sowicz (Bielsko-Biała)

Abstract

Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π concave). As special cases several old and new separation theorems are obtained.

1. Introduction. The starting point of our investigations is one of the most general versions of the Hahn-Banach theorem due to Rodé [13]. This abstract theorem states that if a function f is Π-concave, g is Π-convex and $f \leq g$, then there exists a Π-affine function h such that $f \leq h \leq g$ (cf. the definitions below). A simpler proof of his result is given by König [7]. A geometric version of this separation theorem can be found in Páles [12]. The work [14] of Volkmann and Weigel offers an essential generalization of this result by showing that the linear combinations (in the definitions of the Π-convexity and concavity) can also be replaced by more abstract operations.

The above assumptions on f and g are sufficient but not necessary for f and g to admit a separation by a Π-affine function. In the present paper, we give a full characterization of functions which can be separated by Π-convex (resp. Π-concave, Π-affine) functions. As special cases of these results, we obtain several new and old separation (or sandwich) theorems, among them the theorems due to Kaufman, Kranz and Mazur-Orlicz.
2. Notations. The notations we use are similar to those of [7] (but our definition of a saturated family Π is different from that of [7]).

[^0]Let X be a non-empty set. For every $m \in \mathbb{N}$, denote by $\mathcal{P}^{m}(X)$ the family of all pairs (σ, s) such that $\sigma: X^{m} \rightarrow X$ is an arbitrary function and there exist $s_{0} \in \mathbb{R}$ and $s_{1}, \ldots, s_{m} \in[0, \infty)$ such that $s=\left[s_{0}, s_{1}, \ldots, s_{m}\right]: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an affine function defined by the formula

$$
s\left(y_{1}, \ldots, y_{m}\right):=s_{0}+s_{1} y_{1}+\ldots+s_{m} y_{m}
$$

(In the sequel the functions of the type $\sigma: X^{m} \rightarrow X$ are called operations).
Put $\mathcal{P}(X)=\bigcup_{m \in \mathbb{N}} \mathcal{P}^{m}(X)$.
Let Π be a fixed subset of $\mathcal{P}(X)$ and $\Pi^{m}=\Pi \cap \mathcal{P}^{m}(X), m \in \mathbb{N}$. The set Π is said to be commutative if for any $m, n \in \mathbb{N},(\sigma, s) \in \Pi^{m},(\tau, t) \in \Pi^{n}$, the operations σ, τ and s, t commute, i.e.

$$
\sigma\left(\tau\left(x_{1}^{1}, \ldots, x_{n}^{1}\right), \ldots, \tau\left(x_{1}^{m}, \ldots, x_{n}^{m}\right)\right)=\tau\left(\sigma\left(x_{1}^{1}, \ldots, x_{1}^{m}\right), \ldots, \sigma\left(x_{n}^{1}, \ldots, x_{n}^{m}\right)\right)
$$

for all $x_{j}^{i} \in X(i=1, \ldots, m, j=1, \ldots, n)$ and

$$
s\left(t\left(y_{1}^{1}, \ldots, y_{n}^{1}\right), \ldots, t\left(y_{1}^{m}, \ldots, y_{n}^{m}\right)\right)=t\left(s\left(y_{1}^{1}, \ldots, y_{1}^{m}\right), \ldots, s\left(y_{n}^{1}, \ldots, y_{n}^{m}\right)\right)
$$

for all $y_{j}^{i} \in \mathbb{R}(i=1, \ldots, m, j=1, \ldots, n)$.
It is easy to verify that s and t commute if and only if

$$
s_{0}+t_{0}\left(s_{1}+\ldots+s_{m}\right)=t_{0}+s_{0}\left(t_{1}+\ldots+t_{n}\right)
$$

This condition holds automatically in two important cases: (1) if $s_{0}=0$ for all $(\sigma, s) \in \Pi ;(2)$ if $s_{1}+\ldots+s_{m}=1$ for all $m \in \mathbb{N}$ and $(\sigma, s) \in \Pi^{m}$.

Given $(\sigma, s) \in \Pi^{m}$ and $\left(\tau_{1}, t^{1}\right) \in \Pi^{n_{1}}, \ldots,\left(\tau_{m}, t^{m}\right) \in \Pi^{n_{m}}$, we define an operation $\sigma \circ\left(\tau_{1}, \ldots, \tau_{m}\right): X^{n_{1}+\ldots+n_{m}} \rightarrow X$ by

$$
\begin{aligned}
& \sigma \circ\left(\tau_{1}, \ldots, \tau_{m}\right)\left(x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{m}, \ldots, x_{n_{m}}^{m}\right) \\
& \\
& \quad=\sigma\left(\tau_{1}\left(x_{1}^{1}, \ldots, x_{n_{1}}^{1}\right), \ldots, \tau_{m}\left(x_{1}^{m}, \ldots, x_{n_{m}}^{m}\right)\right)
\end{aligned}
$$

and set
$s \circ\left(t^{1}, \ldots, t^{m}\right)=\left[s_{0}+s_{1} t_{0}^{1}+\ldots+s_{m} t_{0}^{m}, s_{1} t_{1}^{1}, \ldots, s_{1} t_{n_{1}}^{1}, \ldots, s_{m} t_{1}^{m}, \ldots, s_{m} t_{n_{m}}^{m}\right]$.
We say that Π is saturated if (id, $[0,1]) \in \Pi^{1}$ and, for every $(\sigma, s) \in \Pi^{m}$ and $\left(\tau_{1}, t^{1}\right) \in \Pi^{n_{1}}, \ldots,\left(\tau_{m}, t^{m}\right) \in \Pi^{n_{m}}$, we have

$$
\left(\sigma \circ\left(\tau_{1}, \ldots, \tau_{m}\right), s \circ\left(t^{1}, \ldots, t^{m}\right)\right) \in \Pi^{n_{1}+\ldots+n_{m}}
$$

A function $f: X \rightarrow[-\infty, \infty)$ is called Π-convex if

$$
f\left(\sigma\left(x_{1}, \ldots, x_{m}\right)\right) \leq s_{0}+s_{1} f\left(x_{1}\right)+\ldots+s_{m} f\left(x_{m}\right)
$$

for all $m \in \mathbb{N},(\sigma, s) \in \Pi^{m}$ and $x_{1}, \ldots, x_{m} \in X ; f$ is Π-concave if it satisfies the reverse inequality, and f is Π-affine if it is Π-convex and Π-concave. Here, as usual, we adopt the following conventions:

$$
0 \cdot(-\infty)=0, \quad c \cdot(-\infty)=-\infty(\forall c>0), \quad c+(-\infty)=-\infty(\forall c \in \mathbb{R})
$$

It is easy to check that if a function is Π-convex (resp. Π-concave, Π affine), then it is also $\bar{\Pi}$-convex (resp. $\bar{\Pi}$-concave, $\bar{\Pi}$-affine), where $\bar{\Pi}$ is
the smallest saturated subset of $\mathcal{P}(X)$ containing Π. If Π is commutative, then it can also be proved that the smallest saturated subset $\bar{\Pi}$ of $\mathcal{P}(X)$ is commutative as well. Therefore, we may restrict our attention to saturated classes in the rest of the paper.

3. The main results

Theorem 1. Let $\Pi \subset \mathcal{P}(X)$ be saturated and $f, g: X \rightarrow[-\infty, \infty)$. The following two conditions are equivalent:
(i) there exists a Π-convex function $h: X \rightarrow[-\infty, \infty)$ such that $f \leq$ $h \leq g$;
(ii) $f\left(\tau\left(x_{1}, \ldots, x_{n}\right)\right) \leq t_{0}+\sum_{j=1}^{n} t_{j} g\left(x_{j}\right)$ for all $n \in \mathbb{N}$, $(\tau, t) \in \Pi^{n}$ and $x_{1}, \ldots, x_{n} \in X$.

Proof. Since the implication (i) \Rightarrow (ii) is obvious, it is enough to show its converse. For all $x, x_{1}, \ldots, x_{n} \in X$ and $(\tau, t) \in \Pi^{n}$ with $x=\tau\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\begin{equation*}
f(x) \leq t_{0}+\sum_{j=1}^{n} t_{j} g\left(x_{j}\right) \tag{1}
\end{equation*}
$$

In particular, taking $(\mathrm{id},(0,1)) \in \Pi^{1}$ and $x=x_{1}$, we get $f(x) \leq g(x)$.
Define

$$
\begin{aligned}
& A(x)=\left\{t_{0}+\sum_{j=1}^{n} t_{j} g\left(x_{j}\right): n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X\right. \\
&\left.\quad \text { and }(\tau, t) \in \Pi^{n} \text { with } \tau\left(x_{1}, \ldots, x_{n}\right)=x\right\}
\end{aligned}
$$

and put

$$
h(x)= \begin{cases}\inf A(x) & \text { if } A(x) \text { is bounded below } \tag{2}\\ -\infty & \text { otherwise }\end{cases}
$$

It follows from (1) that $f(x) \leq h(x)$. We also have $h(x) \leq g(x)$, because $1 \cdot g(x) \in A(x)$.

To show that h is Π-convex, fix arbitrarily $x_{1}, \ldots, x_{m} \in X$ and $(\sigma, s) \in$ Π^{m}. If $h\left(\sigma\left(x_{1}, \ldots, x_{m}\right)\right)=-\infty$, then trivially

$$
\begin{equation*}
h\left(\sigma\left(x_{1}, \ldots, x_{m}\right)\right) \leq s_{0}+\sum_{i=1}^{m} s_{i} h\left(x_{i}\right) \tag{3}
\end{equation*}
$$

So, assume that $h\left(\sigma\left(x_{1}, \ldots, x_{m}\right)\right)$ is finite and take arbitrary representations $x_{i}=\tau_{i}\left(y_{1}^{i}, \ldots, y_{n_{i}}^{i}\right), i=1, \ldots, m$, where $\left(\tau_{i}, t^{i}\right) \in \Pi^{n_{i}}$. Since Π is saturated, $\left(\sigma \circ\left(\tau_{1}, \ldots, \tau_{m}\right), s \circ\left(t^{1}, \ldots, t^{m}\right)\right) \in \Pi$ and

$$
\sigma\left(x_{1}, \ldots, x_{m}\right)=\sigma \circ\left(\tau_{1}, \ldots, \tau_{m}\right)\left(y_{1}^{1}, \ldots, y_{n_{1}}^{1}, \ldots, y_{1}^{m}, \ldots, y_{n_{m}}^{m}\right)
$$

Hence, by condition (ii) of the theorem,

$$
\begin{equation*}
h\left(\sigma\left(x_{1}, \ldots, x_{m}\right)\right) \leq s_{0}+\sum_{i=1}^{m} s_{i}\left(t_{0}^{i}+\sum_{j=1}^{n_{i}} t_{j}^{i} g\left(y_{j}^{i}\right)\right) . \tag{4}
\end{equation*}
$$

The sums $t_{0}^{i}+\sum_{j=1}^{n_{i}} t_{j}^{i} g\left(y_{j}^{i}\right)$ are arbitrary elements of the sets $A\left(x_{i}\right), i=$ $1, \ldots, m$. Taking the infimum of $A\left(x_{i}\right), i=1, \ldots, m$, we get (3).

The next theorem gives a condition under which two functions f, g : $X \rightarrow[-\infty, \infty)$ can be separated by a Π-concave function. In the case when $f, g: X \rightarrow \mathbb{R}$, this result is an immediate consequence of the above theorem. The general case requires a separate (although similar) proof.

Theorem 2. Let $\Pi \subset \mathcal{P}(X)$ be saturated and $f, g: X \rightarrow[-\infty, \infty)$. The following conditions are equivalent:
(i) there exists a Π-concave function $h: X \rightarrow[-\infty, \infty)$ such that $f \leq$ $h \leq g$;
(ii) $g\left(\tau\left(x_{1}, \ldots, x_{n}\right)\right) \geq t_{0}+\sum_{j=1}^{n} t_{j} f\left(x_{j}\right)$ for all $n \in \mathbb{N},(\tau, t) \in \Pi^{n}$ and $x_{1}, \ldots, x_{n} \in X$.

Proof. The necessity is clear. To prove (ii) \Rightarrow (i), fix an $x \in X$, define

$$
\begin{aligned}
B(x)=\left\{t_{0}+\sum_{j=1}^{n} t_{j} f\left(x_{j}\right):\right. & n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X \\
& \left.\quad \text { and }(\tau, t) \in \Pi^{n} \text { with } \tau\left(x_{1}, \ldots, x_{n}\right)=x\right\}
\end{aligned}
$$

and put

$$
h(x)= \begin{cases}\sup B(x) & \text { if } B(x) \neq\{-\infty\} \tag{5}\\ -\infty & \text { otherwise }\end{cases}
$$

Since (id, 1) $\in \Pi^{1}$, we have $B(x) \neq \emptyset$ and $f(x) \leq h(x)$. By (ii) and the definition of $B(x)$, we also get $h(x) \leq g(x)$. As in the proof of Theorem 1, it can be shown that h is Π-concave.

Theorem 3. Let $\Pi \subset \mathcal{P}(X)$ be saturated and commutative, and f, g : $X \rightarrow[-\infty, \infty)$. The following conditions are equivalent:
(i) there exists a Π-affine function $h: X \rightarrow[-\infty, \infty)$ such that $f \leq$ $h \leq g$;
(ii) $s_{0}+\sum_{i=1}^{m} s_{i} f\left(x_{i}\right) \leq t_{0}+\sum_{j=1}^{n} t_{j} g\left(y_{j}\right)$ for all $m, n \in \mathbb{N},(\sigma, s) \in \Pi^{m}$, $(\tau, t) \in \Pi^{n}$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in X$ such that $\sigma\left(x_{1}, \ldots, x_{m}\right)=$ $\tau\left(y_{1}, \ldots, y_{n}\right)$.

Proof. The implication (i) \Rightarrow (ii) is clear. We prove its converse. Using (ii) and the fact that $(\mathrm{id},(0,1)) \in \Pi^{1}$, we obtain the inequalities appearing in Theorems 1 and 2. Hence we get a Π-convex function $\bar{h}: X \rightarrow[-\infty, \infty)$
and a Π-concave function $\underline{h}: X \rightarrow[-\infty, \infty)$ defined by (2) and (5) which separate f and g. Using (ii) once more, we infer that $\underline{h} \leq \bar{h}$. By the Theorem of Rodé (cf. [13]) and also by its extension due to Volkmann and Weigel [14], there exists a Π-affine function $h: X \rightarrow[-\infty, \infty)$ separating \underline{h} and \bar{h} (and also f and g).

We say that a function $h: X \rightarrow[-\infty, \infty)$ supports $g: X \rightarrow[-\infty, \infty)$ at a point $x_{0} \in X$ if $h\left(x_{0}\right)=g\left(x_{0}\right)$ and $h(x) \leq g(x)$ for all $x \in X$. As an immediate consequence of Theorem 3, we get the following

Proposition 1. Let $\Pi \subset \mathcal{P}(X)$ be saturated and commutative such that, for all $(\sigma, s) \in \Pi^{m}$, we have $s_{i}>0$ for $i=1, \ldots, m$. Assume that $g: X \rightarrow[-\infty, \infty)$ is Π-convex, $x_{0} \in X$ and for all $m \in \mathbb{N}$ and $(\sigma, s) \in \Pi^{m}$,

$$
\begin{equation*}
g\left(\sigma\left(x_{0}, \ldots, x_{0}\right)\right)=s_{0}+\sum_{i=1}^{m} s_{i} g\left(x_{0}\right) \tag{6}
\end{equation*}
$$

Then there exists a Π-affine function $h: X \rightarrow[-\infty, \infty)$ supporting g at x_{0}.
Proof. Take the function $f: X \rightarrow[-\infty, \infty)$ defined by

$$
f(x)= \begin{cases}g\left(x_{0}\right) & \text { if } x=x_{0} \\ -\infty & \text { if } x \neq x_{0}\end{cases}
$$

We show that f and g satisfy the condition (ii) of Theorem 3. Let $(\sigma, s) \in \Pi^{m}$, $(\tau, t) \in \Pi^{n}, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in X$ and $\sigma\left(x_{1}, \ldots, x_{m}\right)=\tau\left(y_{1}, \ldots, y_{n}\right)$. If $x_{i} \neq x_{0}$ for some $i \in\{1, \ldots, n\}$ then $f\left(x_{i}\right)=-\infty$ and (ii) holds. If $x_{i}=x_{0}$ for all $i \in\{1, \ldots, n\}$, then by (6) and by the Π-convexity of g, we get

$$
\begin{aligned}
s_{0}+\sum_{i=1}^{m} s_{i} f\left(x_{i}\right) & =s_{0}+\sum_{i=1}^{m} s_{i} g\left(x_{0}\right)=g\left(\sigma\left(x_{0}, \ldots, x_{0}\right)\right)=g\left(\tau\left(y_{1}, \ldots, y_{n}\right)\right) \\
& \leq t_{0}+\sum_{j=1}^{n} t_{j} g\left(y_{j}\right)
\end{aligned}
$$

Then, by Theorem 3, there is a Π-affine function $h: X \rightarrow[-\infty, \infty)$ separating f and g. Since $h\left(x_{0}\right)=g\left(x_{0}\right)$, this h supports g at x_{0}. \quad

Remark 1. If a function $h: X \rightarrow[-\infty, \infty)$ is Π-affine and $h\left(x_{0}\right) \neq-\infty$ for some $x_{0} \in X$ such that for every $x \in X$,

$$
x_{0} \in\left\{\sigma\left(x, x_{2}, \ldots, x_{m}\right):(\sigma, s) \in \Pi^{m}, s_{1} \neq 0, x_{2}, \ldots, x_{m} \in X, m \in \mathbb{N}\right\}
$$

then h has finite values only. Indeed, fix an $x \in X$ and take $(\sigma, s) \in \Pi^{m}$ with $s_{1} \neq 0$ and $x_{2}, \ldots, x_{m} \in X$ such that $x_{0}=\sigma\left(x, x_{2}, \ldots, x_{m}\right)$. Then

$$
h\left(x_{0}\right)=h\left(\sigma\left(x, x_{2}, \ldots, x_{m}\right)\right)=s_{0}+s_{1} h(x)+\sum_{i=2}^{m} s_{i} h\left(x_{i}\right)
$$

which implies that $h(x) \neq-\infty$.
4. Applications. Many known as well as new results can be obtained as corollaries of Theorems $1-3$ by an appropriate specification of X and Π. In this section we present several such results (for Π-convex and Π-affine case; the Π-concave versions are similar).
4.1. Separation by subadditive and additive functions. Let S be an abelian semigroup and $\Pi=\left\{\left(\sigma_{m},[0,1, \ldots, 1]\right): m \in \mathbb{N}\right\}$, where $\sigma_{m}: S^{m} \rightarrow S$ are defined by $\sigma_{m}\left(x_{1}, \ldots, x_{m}\right)=x_{1}+\ldots+x_{m}$. Clearly, Π is commutative and saturated, and a function $f: S \rightarrow[-\infty, \infty)$ is Π-convex (resp. Π-affine) iff it is subadditive (resp. additive). Therefore, as a consequence of Theorems 1 and 3 , we obtain the following corollaries. A direct proof of the first of them (for $f, g: S \rightarrow \mathbb{R}$) can be found in [10].

Corollary 1. Let $f, g: S \rightarrow[-\infty, \infty)$. There exists a subadditive function $h: S \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
f\left(\sum_{i=1}^{m} x_{i}\right) \leq \sum_{i=1}^{m} g\left(x_{i}\right)
$$

for all $x_{1}, \ldots, x_{m} \in S, m \in \mathbb{N}$.
Corollary 2. Let $f, g: S \rightarrow[-\infty, \infty)$. There exists an additive function $h: S \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
\sum_{i=1}^{m} f\left(x_{i}\right) \leq \sum_{j=1}^{n} g\left(y_{j}\right) \tag{7}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in S$ such that $\sum_{i=1}^{m} x_{i}=\sum_{j=1}^{n} y_{j}$.
Condition (7) is satisfied if, in particular, g is subadditive, f is superadditive and $f \leq g$, or if g is subadditive and

$$
\begin{equation*}
\sum_{i=1}^{m} f\left(x_{i}\right) \leq g\left(\sum_{i=1}^{m} x_{i}\right) \tag{8}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{m} \in S$ and $m \in \mathbb{N}$. Therefore Corollary 2 generalizes the following two results.

Corollary 3 (Kranz [8]). If $f: S \rightarrow[-\infty, \infty)$ is superadditive, $g: S \rightarrow$ $[-\infty, \infty)$ is subadditive and $f \leq g$, then there exists an additive function $h: S \rightarrow[-\infty, \infty)$ separating f and g.

Corollary 4 (Kaufman [6]). If $f, g: S \rightarrow[-\infty, \infty)$ satisfy (8) and g is subadditive, then there exists an additive function $h: S \rightarrow[-\infty, \infty)$ separating f and g.
4.2. Separation by midconvex and Jensen functions. Let D be a convex subset of a real vector space. A function $f: D \rightarrow[-\infty, \infty)$ is said to be
midconvex if

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad x, y \in D \tag{9}
\end{equation*}
$$

it is called a Jensen function if (9) holds with equality.
Let

$$
\begin{aligned}
& \Pi=\left\{\left(\sigma_{k_{1}, \ldots, k_{m}},\left[0,2^{-k_{1}}, \ldots, 2^{-k_{m}}\right]\right): m \in \mathbb{N}\right. \\
& \left.\qquad k_{1}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}, \sum_{i=1}^{m} 2^{-k_{i}}=1\right\}
\end{aligned}
$$

where $\sigma_{k_{1}, \ldots, k_{m}}: D^{m} \rightarrow D$ are defined by $\sigma_{k_{1}, \ldots, k_{m}}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} 2^{-k_{i}} x_{i}$. It is easy to check that Π is commutative and saturated. Moreover, f is Π convex (resp. Π-affine) iff it is a midconvex (resp. Jensen) function. Hence, using Theorems 1 and 3, we get the following results.

Corollary 5. Let $f, g: D \rightarrow[-\infty, \infty)$. There exists a midconvex function $h: D \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
f\left(\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} x_{i}\right) \leq \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} g\left(x_{i}\right) \tag{10}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{2^{n}} \in D$.
Proof. The necessity is obvious. To prove the sufficiency, we show that (10) yields

$$
\begin{equation*}
f\left(\sum_{i=1}^{m} 2^{-k_{i}} x_{i}\right) \leq \sum_{i=1}^{m} 2^{-k_{i}} g\left(x_{i}\right) \tag{11}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and $x_{1}, \ldots, x_{m} \in D$ and $k_{1}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}$ with $\sum_{i=1}^{m} 2^{-k_{i}}=1$.
Indeed, take $x_{1}, \ldots, x_{m} \in D$ and k_{1}, \ldots, k_{m} as above and define

$$
\left(\bar{x}_{1}, \ldots, \bar{x}_{2^{n}}\right)=(\underbrace{x_{1}, \ldots, x_{1}}_{2^{n-k_{1}} \text { times }}, \ldots, \underbrace{x_{m}, \ldots, x_{m}}_{2^{n-k_{m} \text { times }}})
$$

where n is defined to be the maximum of the integers k_{1}, \ldots, k_{m}. If we apply (10) to the elements $\bar{x}_{1}, \ldots, \bar{x}_{2^{n}}$, the resulting inequality reduces to (11). Now, applying Theorem 1, we get the existence of a separating midconvex function.

The proof of the following result is completely analogous to that of the previous corollary.

Corollary 6. Let $f, g: D \rightarrow[-\infty, \infty)$. There exists a Jensen function $h: D \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
\sum_{i=1}^{2^{n}} f\left(x_{i}\right) \leq \sum_{i=1}^{2^{n}} g\left(y_{i}\right) \tag{12}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{2^{n}}, y_{1} \ldots, y_{2^{n}} \in D$ such that $\sum_{i=1}^{2^{n}} x_{i}=\sum_{i=1}^{2^{n}} y_{i}$.
Proof. It suffices to prove that (12) is equivalent to the following condition:

$$
\sum_{i=1}^{m} 2^{-k_{i}} f\left(x_{i}\right) \leq \sum_{j=1}^{n} 2^{-l_{j}} g\left(y_{j}\right)
$$

for all $m, n \in \mathbb{N}, k_{1}, \ldots, k_{m}, l_{1}, \ldots, l_{n} \in \mathbb{N} \cup\{0\}$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ $\in D$ such that $\sum_{i=1}^{m} 2^{-k_{i}}=\sum_{j=1}^{n} 2^{-l_{j}}=1$ and $\sum_{i=1}^{m} 2^{-k_{i}} x_{i}=\sum_{j=1}^{n} 2^{-l_{j}} y_{j}$.

Then, by Theorem 3, the result follows.
4.3. Separation by convex and affine functions. Let D be a convex subset of a real vector space and

$$
\Pi=\left\{\left(\sigma_{s_{1}, \ldots, s_{m}},\left[0, s_{1}, \ldots, s_{m}\right]\right): m \in \mathbb{N}, s_{1}, \ldots, s_{m} \geq 0, \sum_{i=1}^{m} s_{i}=1\right\}
$$

where $\sigma_{s_{1}, \ldots, s_{m}}: D^{m} \rightarrow D, \sigma_{s_{1}, \ldots, s_{m}}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} s_{i} x_{i}$. Then Π is commutative and saturated and a function $f: D \rightarrow[-\infty, \infty)$ is Π-convex (resp. Π-affine) iff it is convex (resp. affine) in the usual sense. By Theorem 1, we get the following result due to Baron, Matkowski and Nikodem (in the case $f, g: D \rightarrow \mathbb{R})[1$, Theorem 1b].

Corollary 7. Let $f, g: D \rightarrow[-\infty, \infty)$. There exists a convex function $h: D \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
f\left(\sum_{i=1}^{m} s_{i} x_{i}\right) \leq \sum_{i=1}^{m} s_{i} g\left(x_{i}\right) \tag{13}
\end{equation*}
$$

for all $m \in \mathbb{N}, x_{1}, \ldots, x_{m} \in D$ and $s_{1}, \ldots, s_{m} \geq 0$ summing up to 1 .
Remark 2. It is proved in [1] that if D is a convex subset of \mathbb{R}^{k}, then it is enough to take in (13) the convex combinations of $k+1$ points. In particular, two real functions f, g defined on an interval $I \subset \mathbb{R}$ can be separated by a convex function iff

$$
f(s x+(1-s) y) \leq s g(x)+(1-s) g(y), \quad x, y \in I, s \in[0,1]
$$

The next result is a direct consequence of Theorem 3. It can also be found in [4, p. 35].

Corollary 8. Let $f, g: D \rightarrow[-\infty, \infty)$. There exists an affine function $h: D \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
\sum_{i=1}^{m} s_{i} f\left(x_{i}\right) \leq \sum_{j=1}^{n} t_{j} g\left(y_{j}\right) \tag{14}
\end{equation*}
$$

for all $m, n \in \mathbb{N}, s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{n} \geq 0$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in D$ such that $\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} t_{j}=1$ and $\sum_{i=1}^{m} s_{i} x_{i}=\sum_{j=1}^{n} t_{j} y_{j}$.

Remark 3. A similar result for real functions defined on a convex subset of \mathbb{R}^{k} is obtained in [2]. In that case, it is enough to take in (14) $m, n \in \mathbb{N}$ such that $m+n=k+2$. For $k=1$, we get the result obtained earlier by Nikodem and Wąsowicz [11] stating that two real functions f, g defined on an interval $I \subset \mathbb{R}$ can be separated by an affine function iff

$$
\left\{\begin{array}{l}
f(s x+(1-s) y) \leq s g(x)+(1-s) g(y), \\
g(s x+(1-s) y) \geq s f(x)+(1-s) f(y)
\end{array}\right.
$$

for all $x, y \in I$ and $s \in[0,1]$.
4.4. Separation by sublinear and linear functions. Let E be a real vector space and

$$
\Pi=\left\{\left(\sigma_{s_{1}, \ldots, s_{m}},\left[0, s_{1}, \ldots, s_{m}\right]\right): m \in \mathbb{N}, s_{1}, \ldots, s_{m} \geq 0\right\}
$$

where $\sigma_{s_{1}, \ldots, s_{m}}: E^{m} \rightarrow E$ is given by $\sigma_{s_{1}, \ldots, s_{m}}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} s_{i} x_{i}$. Obviously, Π is commutative and saturated, and a function $f: E \rightarrow[-\infty, \infty)$ is Π-convex (resp. Π-affine) iff it is sublinear (resp. linear). In this case, Theorem 1 reduces to the following result (for the real case cf. [10]).

Corollary 9. Let $f, g: E \rightarrow[-\infty, \infty)$. There exists a sublinear function $h: E \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
f\left(\sum_{i=1}^{m} s_{i} x_{i}\right) \leq \sum_{i=1}^{m} s_{i} g\left(x_{i}\right)
$$

for all $m \in \mathbb{N}, x_{1}, \ldots, x_{m} \in E$ and $s_{1}, \ldots, s_{m} \geq 0$.
The next result is a consequence of Theorem 3.
Corollary 10. Let $f, g: E \rightarrow[-\infty, \infty)$. There exists a linear function $h: E \rightarrow[-\infty, \infty)$ such that $f \leq h \leq g$ iff

$$
\begin{equation*}
\sum_{i=1}^{m} s_{i} f\left(x_{i}\right) \leq \sum_{j=1}^{n} t_{j} g\left(y_{j}\right) \tag{15}
\end{equation*}
$$

for all $m, n \in \mathbb{N}, s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{n} \geq 0$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in E$ such that $\sum_{i=1}^{m} s_{i} x_{i}=\sum_{j=1}^{n} t_{j} y_{j}$.

Condition (15) is satisfied if, in particular, g is sublinear and

$$
\begin{equation*}
\sum_{i=1}^{m} s_{i} f\left(x_{i}\right) \leq g\left(\sum_{i=1}^{m} s_{i} x_{i}\right) \tag{16}
\end{equation*}
$$

for all $m \in \mathbb{N}, x_{1}, \ldots, x_{m} \in E$ and $s_{1}, \ldots, s_{m} \geq 0$. Hence we get a result which is an analogue of Kaufman's theorem (cf. Corollary 4 above). It is also a special version of the well known Mazur-Orlicz Theorem [9].

Corollary 11. If $f, g: E \rightarrow[-\infty, \infty)$ satisfy (16) and g is sublinear, then there exists a linear function $h: E \rightarrow[-\infty, \infty)$ separating f and g.

By the above result (using a method similar to [6]), we can also obtain the full version of the Mazur-Orlicz Theorem.

Corollary 12 ([9, Theorem 2.41]; cf. also [3, Theorem 37]). Let T be a non-empty set and $\varphi: T \rightarrow E, \alpha: T \rightarrow \mathbb{R}$. Assume that $g: E \rightarrow \mathbb{R}$ is a sublinear function. Then the following conditions are equivalent:
(i) there exists a linear function $h: E \rightarrow \mathbb{R}$ such that $h \leq g$ on E and $\alpha(u) \leq h(\varphi(u)), u \in T$;
(ii) $\sum_{i=1}^{m} s_{i} \alpha\left(u_{i}\right) \leq g\left(\sum_{i=1}^{m} s_{i} \varphi\left(u_{i}\right)\right)$ for all $m \in \mathbb{N}, s_{1}, \ldots, s_{m} \geq 0$ and $u_{1}, \ldots, u_{m} \in T$.

Proof. The implication $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is obvious. To prove the converse take

$$
f(x)= \begin{cases}\sup \{\alpha(u): u \in T \text { such that } \varphi(u)=x\} & \text { if } x \in \varphi(T), \\ -\infty & \text { if } x \notin \varphi(T)\end{cases}
$$

By (ii), $f: E \rightarrow[-\infty, \infty)$ is well defined and $f \leq g$. We show that f and g satisfy (16). Fix $s_{1}, \ldots, s_{m} \geq 0$ and $x_{1}, \ldots, x_{m} \in E$. If $x_{i} \notin \varphi(T)$ for some $i \in\{1, \ldots, m\}$, then (16) is obvious. If $x_{i} \in \varphi(T)$ for all $i \in\{1, \ldots, m\}$, then for arbitrary $u_{i} \in T$ such that $\varphi\left(u_{i}\right)=x_{i}, i=1, \ldots, m$, we have

$$
\sum_{i=1}^{m} s_{i} \alpha\left(u_{i}\right) \leq g\left(\sum_{i=1}^{m} s_{i} x_{i}\right)
$$

Taking the suprema over all u_{i} we obtain (16). By Corollary 11, there exists a linear function $h: E \rightarrow[-\infty, \infty)$ separating f and g. Notice that h is finite. Indeed, fix an $x_{0} \in \varphi(T)$ and take any $x \in E$. Then $-\infty<h\left(x_{0}\right)=$ $h\left(x_{0}-x\right)+h(x)$, whence $h(x)>-\infty$. It is easy to see that h satisfies (i).

Note that the condition (16) is satisfied if, in particular, f is concave and g is sublinear. Therefore, the following theorem of Hirano, Komiya and Takahashi is a consequence of Corollary 11.

Corollary 13 ([5, Theorem 1]). Let $g: E \rightarrow \mathbb{R}$ be sublinear, $C \subset E$ be a non-empty convex set and let $f: C \rightarrow \mathbb{R}$ be a concave function such that $f(x) \leq g(x)$ for all $x \in C$. Then there exists a linear function $h: E \rightarrow \mathbb{R}$ such that $f(x) \leq h(x), x \in C$, and $h \leq g$ on E.

Proof. Let E_{0} be the subspace of E generated by C. Put

$$
\bar{f}(x)= \begin{cases}f(x) & \text { if } x \in C \\ -\infty & \text { if } x \in E_{0} \backslash C\end{cases}
$$

It is easy to check that $\bar{f}: E_{0} \rightarrow[-\infty, \infty)$ is a concave function such that $\bar{f} \leq g$ on E_{0}. Moreover, \bar{f} and g satisfy (16) on E_{0}. By Corollary 11 there exists a linear function $\bar{h}: E_{0} \rightarrow[-\infty, \infty)$ such that $\bar{f} \leq \bar{h} \leq g$ on E_{0}. Since
\bar{f} is finite on C, also \bar{h} must be finite on E_{0}. Now, by the Hahn-Banach Theorem we get a linear extension $h: E \rightarrow \mathbb{R}$ of \bar{h} such that $h \leq g$ on E. Clearly, $f \leq h$ on C.

References

[1] K. Baron, J. Matkowski and K. Nikodem, A sandwich with convexity, Math. Pannonica 5 (1994), 139-144.
[2] E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48.
[3] G. Buskes, The Hahn-Banach Theorem surveyed, Dissert. Math. 327 (1993).
[4] B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981.
[5] N. Hirano, H. Komiya and W. Takahashi, A generalization of the HahnBanach theorem, J. Math. Anal. Appl. 88 (1982), 333-340.
[6] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269272.
[7] H. König, On the abstract Hahn-Banach Theorem due to Rodé, Aequationes Math. 34 (1987), 89-95.
[8] P. Kranz, Additive functionals on abelian semigroups, Comment. Math. Prace Mat. 16 (1972), 239-246.
[9] S. Mazur et W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
[10] K. Nikodem, E. Sadowska and S. Wassowicz, A note on separation by subadditive and sublinear functions, Ann. Mat. Sil., to appear.
[11] K. Nikodem and S. Wassowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164.
[12] Z. Páles, Geometric versions of Rodé's theorem, Rad. Mat. 8 (1992), 217-229.
[13] G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481.
[14] P. Volkmann and H. Weigel, Systeme von Funktionalgleichungen, ibid. 37 (1981), 443-449.

Department of Mathematics
Institute of Mathematics
Technical University of Łódx́
L. Kossuth University

Branch in Bielsko-Biała
Willowa 2
H-4010 Debrecen, Pf. 12
Hungary
43-309 Bielsko-Biała, Poland
E-mail: pales@borel.math.klte.hu
E-mail: knik@merc.pb.bielsko.pl
swasowicz@pb.bielsko.pl

[^0]: 1991 Mathematics Subject Classification: Primary 26A51, $39 B 72$.
 Key words and phrases: Rodé's theorem, separation theorem; convex (midconvex), affine (Jensen) function; subadditive, additive, sublinear, linear function.

 Research of Z. Páles supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-016846.

