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Monodromy, differential equations

and the Jacobian conjecture

by Shmuel Friedland (Chicago)

Abstract. We study certain problems on polynomial mappings related to the Jaco-
bian conjecture.

0. Introduction. Let F : Cn → Cn, n > 1, be a local polynomial dif-
feomorphism. The Jacobian conjecture claims that F is a diffeomorphism.
See [B-C-W], [Dru] and [Ess] for the surveys on this problem. It seems that
the solution of the Jacobian conjecture is still out of reach. The Jacobian
conjecture is on Smale’s list of the problems for the next century [Sma].
The object of this paper is to study certain problems on polynomial map-
pings which seem to be closely related to the Jacobian conjecture and are
of independent interest.

We now summarize the main results of our paper. Our main object of
study is a primitive polynomial f ∈ C[C2]. First we study the monodromy
action on the regular affine fiber Vt := f−1(t) ⊂ C2. There are two main
invariants here: fix1(f),fix1(f), which are the dimensions of the subspaces
of fixed elements in homology and cohomology, H1(Vt,C) and H1(Vt,C)
respectively, under the action of monodromy. It turns out that fix1(f) is
equal to the invariant introduced by Stein [Ste1]: Let δ(f, t) be the number
of irreducible components of f = t minus one. Then

(0.1) δ(f) :=
∑

t∈C

δ(f, t).

Then fix1(f) = δ(f). We show that in general fix1(f) 6= fix1(f). This shows
that the monodromy action on the first homology (cohomology) of Vt is not
semisimple. This contrasts with Deligne’s result that the monodromy action
on the first homology (cohomology) of Σt, the closure of the fiber Vt, is
semisimple [Del2].
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220 S. Friedland

Let F := C(f) be the field of rational functions in a variable f and
F [C2] := C[C2] ⊗ F ⊂ C(C2) be the ring of polynomials in x, y with co-
efficients in F . Let CVV(f) ⊂ C be the finite set of singular fibers Vt and
B := C \ CVV(f) be the set of regular fibers. Then Z := f−1(B) → B
is a fiber bundle. Let E → B be a holomorphic vector bundle with fiber
H1(Vt). Here H1(Vt) is the Grothendieck–de Rham cohomology of all closed
rational 1-forms on Σt which are holomorphic on Vt modulo the exact
forms. We assume that E is equipped with the Gauss–Manin connection.
Let R(E) be the set of rational sections on E which are induced by ra-
tional 1-forms on C2. Then R(E) is a vector space over F of dimension
N := dimH1(Vt) = dimH1(Vt,C).

Associate with f the differential operator

L := −∂f
∂y

∂

∂x
+
∂f

∂x

∂

∂y
.

As L(f) = 0 it follows that L : F [C2] → F [C2] is an F-linear operator. We
show that L is Fredholm: dimkerL = 1 and dim cokerL = N . There is a
natural isomorphism between U := F [C2]/L(F [C2]) and R(E).

A pair F = (f, g) : C2 → C2 is called a Jacobian pair if detJ(F ) = 1
everywhere and F is not a diffeomorphism. If Jacobian pairs exist, con-
trary to the Jacobian conjecture, then they have very remarkable properties
that we list. We mention the following two properties: Assume that F is a
Jacobian pair and let

M :=
∂g

∂y

∂

∂x
− ∂g

∂x

∂

∂y
.

Then LM = ML and L(g) = M(f) = 1. It turns out that M acts on U as a
derivation on R(E) with respect to the Gauss–Manin connection. A minimal
resolution of F yields a proper map F̌ : X → C2 whereX is an affine smooth
variety in Cn. It is known [For2] that X embeds properly holomorphically
into C4. Furthermore, X embeds into C3 iff X is parallelizable (as a complex
manifold) [For1]. We show that X is not parallelizable.

We briefly summarize the contents of our paper. §1 deals with some basic
notions of the primitive polynomial f ∈ C[C2], the properties of its fibers

Vt, and the minimal resolution f̃ : M → CP. We also discuss the minimal
resolution of a dominating polynomial map F = (f, g) : C2 → C2. In §2
we discuss the monodromy on the first homology and cohomology of the
regular fiber Vt. We prove the equality δ(f) = fix1(f) and discuss Deligne’s
example. In §3 we discuss 1-forms on Vt and their extensions to 1-forms
on C2. §4 deals with the operator L. In §5 we discuss the Jacobian pairs.

This paper evolved through many years and various preprints. Some of
the results presented here were given in [Fri]. I would like to thank all my
colleagues who helped me to understand the various concepts discussed here.
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After this paper was submitted to Annales Polonici Mathematici I
learned about the following results: Theorem (2.7) is a special case (n = 2)
of Theorem 2 of Artal-Bartolo, Cassou-Noguès and Dimca [A-C-D]. A differ-
ent treatment of the non-semisimplicity of monodromy (Proposition (2.9))
is given by Bailly-Maitre [Bai]. Theorem 1 of Dimca [Dim] gives a different
version of Theorem (4.4) for n = 2 and Corollary (4.5).

1. Preliminary results. Let Σ be an oriented compact Riemannian
surface Σ of genus gen. The first homology group H1(Σ,Z) has an intersec-
tion product [α] · [β] for any two closed curves α, β ⊂ Σ. The product · :
H1(Σ,Z)×H1(Σ,Z) → Z is a skew symmetric bilinear form. A set of closed
simple smooth curves γ1, . . . , γ2 gen ⊂ Σ is a canonical basis in H1(Σ,Z)
if the following conditions hold: γi intersects γgen +i in one point and the
intersection is transversal. Moreover, [γi] · [γgen +i] = 1, i = 1, . . . , gen. The
intersection of γi and γj for |i − j| 6= 0, gen is empty. Hence [γi] · [γj ] = 0,
|i− j| 6= gen. Let J = ([γi] · [γj ])

2n
i,j=1 be the skew symmetric matrix induced

by a canonical basis in H1(Σ,Z). Then the transition matrix between two
canonical bases in H1(Σ,Z) is given by an integer-valued symplectic matrix
from

Sp(gen,Z) := {A ∈ SL(2 gen,Z) : ATJA = J}.
The cohomology group H1(Σ,Z), i.e. the integer-valued linear functionals
on H1(Σ,Z), can be identified with H1(Σ,Z) using the intersection product.
Let

H1(Σ,F) = H1(Σ,Z) ⊗ F, H1(Σ,F) = H1(Σ,Z) ⊗ F,

be the first homology and cohomology of Σ over the field F = Q,R or C.

Assume that Σ is endowed with a Riemannian metric ds2. A classi-
cal result claims that H1(Σ,R) is represented by 2 gen harmonic 1-forms
ω1, . . . , ω2 gen such that\

γi

ωj = δij , i, j = 1, . . . , 2 gen .

The metric ds2 induces a complex structure on Σ. There exist gen lin-
early independent holomorphic 1-forms υ1, . . . , υgen whose real and imagi-
nary parts are 2 gen linearly independent harmonic 1-forms. One can nor-
malize υ1, . . . , υgen by the conditions

(1.1)
\
γi

υj = δij , i, j = 1, . . . , gen .

Then the Riemann matrix R := (
T
γgen +i

υj)
gen
i,j=1 is a symmetric matrix with

a positive definite imaginary part ℑR > 0 (see e.g. [F-K]). Let SHn be
the Siegel upper half plane of all n× n complex symmetric matrices with a
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positive definite imaginary part. Then Sp(n,Z) acts properly discontinuously
on SHn. As the Riemann matrix R is determined by the choice of a canonical
homology basis in Σ we denote by [R(Σ)] the unique point in SHn/Sp(n,Z)
determined by all Riemann matrices corresponding to Σ and the complex
structure (Σ, ds2). Conversely, [R(Σ)] determines the complex structure of
(Σ, ds2) (up to a biholomorphism). (See for example [Nag].)

Let Σ be a compact Riemann surface and assume that ζ1, . . . , ζk ∈ Σ.
Let V =Σ \ {ζ1, . . . , ζk} be the Riemann surface punctured at k≥1 points.
Let γ2 gen +i ⊂ V be a simple smooth curve bounding a simply connected
domain in Σ which contains only the point ζi out of the k points {ζ1, . . . , ζk}
for i = 1, . . . , k. We shall assume that γ2 gen +i is oriented positively with
respect to ζi. Then [γj ], j=1, . . . , 2 gen +k−1, form a basis forH1(V,Z). Let
H1(V,F) and H1(V,F) denote the first homology and cohomology of V with
coefficients in F. Let Or(V ) and Ω1

r (V ) be the sets of holomorphic functions
and holomorphic 1-forms (differentials) on V whose singularities on Σ \ V
are (at most) poles. Let H1(V ) := Ω1

r (V )/dOr(V ) be the Grothendieck–de
Rham cohomology of V . With each [ω] ∈ H1(V,Z) associate the following
linear functional:

[ω] : Ω1
r (V ) → C, [ω](̺) =

\
ω

̺.

The residue theorem [F-K, §2.5] yields

(1.2)

k∑

i=2gen +1

\
γi

̺ = 0, ̺ ∈ Ω1
r (V ).

Assume that [ω](̺) = 0 for all ω ∈ H1(V,Z). By integrating ̺ from a fixed
point ζ0 ∈ V we obtain f ∈ Or(V ) such that ̺ = df . Thus H1(V,Z) is a
set of linear functionals on H1(V ). Grothendieck’s theorem [Gro, Thm. 1]
yields

N := dim(H1(V )) = 2 gen +k − 1.

Hence H1(V,C) is isomorphic to H1(V ). Thus [γi], i = 1, . . . , N, give rise
to N linearly independent functionals on H1(V ). Therefore there exist N
linearly independent holomorphic 1-forms ̺j on V satisfying the condition

(1.3)
\
γi

̺j = δij , i, j = 1, . . . , N.

Let V ⊂ Cn be an irreducible smooth affine curve. Then V is a compact
Riemann surface Σ punctured at k points ζ1, . . . , ζk ∈ Σ for some k ≥ 1.
Note that V and hence Σ are equipped with the complex structure. As V
is smooth, it is well known that Or(V ) = C[V ].

Let f ∈ C[C2] be a nonconstant polynomial. Consider the polynomial

map f : C2 → C. Extend this map to the rational map f̂ : CP2 → CP.
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This map has a finite number of indeterminacy points. Blow up CP2 at the
indeterminacy points to obtain a complex surface M so that f̂ lifts to a
holomorphic map f̃ : M → CP, which we call a holomorphic resolution of f .
(See for example [G-H].) We now recall known facts about M . Let lo be the
line at infinity in CP2 (lo := {(x : y : z) : z = 0}). Then M is obtained
from CP2 by blowing up starting at a finite number of points on lo. It is
convenient to describe the blow up procedure by the following undirected
graph (W,E), where W is the set of vertices and E is the set of undirected
edges. lo and all other CP1 obtained by the blow up are viewed as the
vertices of W . For v ∈W we let lv denote the corresponding CP1 (o ∈W ).
The undirected edge (u, v) is in E iff lu ∩ lv 6= ∅. Then (W,E) is a tree.
We let o be its root. Then there exists a unique orientation E′ ⊂ W ×W
of the undirected edges E such that there exists a unique dipath from o to
any vertex v∈W . The terminal vertices W of the directed tree (W,E′) are
called the leaves of the tree (W,E). Note that L :=M \C2 =

⋃
v∈W lv. View

CP1 as C∪{∞}. Set L∞ = f̃−1(∞). Then there exists a subset W (∞) ⊂W
so that L∞ =

⋃
v∈W (∞) lv . Clearly, o ∈W (∞).

(1.4) Theorem. Let f : C2 → C be a nonconstant polynomial map. Let

f̃ : M → CP1 be a holomorphic resolution of f. Then L∞ = f̃−1(∞) is a

connected divisor which induces a subtree (W (∞), E(∞)) ⊂ (W,E) rooted

at o. Let v1 be a leaf of (W (∞), E(∞)) which is not a leaf of (W,E).

Then there is exactly one connected component (W1, E1) of the forest (Ŵ , Ê)

(induced by Ŵ = W \W (∞)) which is connected to v1 at its root o1 ∈W1.

Furthermore,

f̃(lo1
) = CP1, f̃(lv) = const ∈ C, v ∈W1 \ o1.

See [Ore] and [L-W].

(1.5) Corollary. Let the assumptions of Theorem (1.4) hold. Then there

exits a minimal holomorphic resolution f̃ : M → CP1 with the following

property : Each connected component of the forest (Ŵ , Ê) consists of one

vertex. That is, M \ (C2 ∪ L∞) is the union
⋃

v∈K l̃v of k := |K| nonin-

tersecting affine lines, K := W \W (∞), such that each f̃ : l̃v → C is a

nonconstant polynomial map φv : C → C. Moreover ,
∑

v∈K

deg φv ≤ deg f.

P r o o f. Let M0 be any surface satisfying the assumption of Theo-
rem (1.4). We blow CP2 along the rooted subtree (W (∞), E(∞)) to ob-
tain the surface M(∞). Let f0 : M(∞) → CP1 be the rational map induced
by f . Let v1 be a leaf of the subtree (W (∞), E(∞)) as described in Theo-
rem (1.4). Blow up at the corresponding point of lv1

to obtain lo1
. LetM1 be
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the resulting surface and f1 : M1 → CP1 be the lifting of f0. We claim that
f1 is holomorphic in some neighborhood of lo1

. According to Theorem (1.4),
f1 may not be holomorphic at a finite number of points of lo1

at which we
need to blow up to obtainM0. However, in the neighborhood of these points,
f̃ and hence f1 are bounded. By the Riemann extension theorem f1 is holo-
morphic at these points. Hence f1 is holomorphic in some neighborhood of
lo1

in M1. According to Theorem (1.4), f1 : lo1
→ CP1 is a nontrivial ratio-

nal map. Furthermore, lo1
∩ f−1

1 (∞)={p1}. Let l̃o1
:= lo1

\ {p1} ∼ C. Then

f1|l̃o1
is given by a nonconstant polynomial map. Use the above arguments

for all leaves of (W (∞), E(∞)) (which are not the leaves of (V,E)) to ob-
tain the corollary for all v ∈ K. Recall that the closure of the affine curve
f = t in CP2 intersects the line at infinity in deg f points (counting with
multiplicities). Clearly the closure of a generic f = t in M has

∑
v∈K degφv

points. Hence
∑

v∈K degφv ≤ deg f .

Let f ∈ C[C2] be a nonconstant polynomial. Let f̃ : M → CP1 be the
minimal holomorphic resolution of f as described in Corollary (1.5). Let

Vt := {(x, y) ∈ C2 : f(x, y) = t}, Σt = f̃−1(t), t ∈ C.

Clearly,

Vt ⊂ Σt, Σt = Vt ∪
⋃

v∈K

(Σt ∩ l̃v).

Let CVV(f̃) ⊂ C be the finite set such that, for each t ∈ CVV(f̃), Σt

contains at least one critical (singular) point of f̃ . Then any two surfaces

Σt1 , Σt2 , t1, t2 ∈ C \ CVV(f̃), are homeomorphic. We call a fiber Σt, t ∈
C\CVV(f̃), a regular (compact) fiber. f is called primitive if a regular fiber
is connected, i.e. each regular fiber is homeomorphic to a fixed compact
(orientable) Riemann surface Σ of genus gen. If f is not primitive, then
there exists h ∈ C[C] and a primitive polynomial q ∈ C[C2] so that f = h(q)
(see [Suz]). In what follows we assume that f is primitive unless otherwise
stated.

For t ∈ CVV(f̃) the desingularized Σt is either a compact Riemann
surface whose genus is different from gen (hence smaller than gen), or a
finite union of compact Riemann surfaces (f − t is a reducible polynomial).
We call such a fiber Σt a singular (compact) fiber . Let T be the union of all
critical values of the polynomials φv , v ∈ K, given in Corollary (1.5). That

is, for each t ∈ C \ T , Σt intersects l̃v in a fixed number k(v) of points:

Σt ∩ l̃v = {ζv,1(t), . . . , ζv,k(v)(t)}, t ∈ C \ T.

Furthermore, for each t ∈ T there exists v ∈ K so that Σt ∩ l̃v has less than
k(v) points. Let CVV(f) = CVV(f̃) ∪ T . Then each Vt with t 6∈ CVV(f)
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is homeomorphic to Σ punctured at κ :=
∑

v∈K k(v) points. We call such
a fiber Vt a regular (affine) fiber. Furthermore, for each t ∈ CVV(f) the
singular (affine) fiber Vt is not homeomorphic to a regular fiber.

We view C × C (isomorphic to C2) as a subset of CP1 × CP1. Let

L′
∞ := CP1 × CP1 \ C × C = ∞× CP1 ∪ CP1 ×∞.

Let g∈C[C2] and assume that f, g are algebraically independent. Then the
map F = (f, g) : C2→C×C is dominating. Let F̌ = (f̌ , ǧ) : M → CP1×CP1

be a holomorphic resolution of F obtained as follows. We first blow up CP2

to obtain a minimal resolution f̃ : M1 → CP1 as described in Corollary (1.5).

Let F̃ = (f̃ , g̃) : M1 → CP1 ×CP1 be the lifting of F to M1. Then continue
to blow up M1 until we resolve the singularities of g̃ to obtain M and F̌ .
Let (W,E) be the rooted tree corresponding to the blow ups performed to
obtain M . Let L∞ = F̌−1(L′

∞) and denote by (W (∞), E(∞)) the rooted
subtree corresponding to L∞. Theorem (1.4) and Corollary (1.5) yield:

(1.6) Theorem. Let F = (f, g) : C2 → C × C be a polynomial dominating

map. Then there exists a minimal resolution F̌ = (f̌ , ǧ) : M → CP1 ×
CP1 with the following properties: L∞ = F̌−1(L′

∞) is a connected divisor

on M . Let (Ŵ , Ê) be the forest induced by Ŵ := W \W (∞). Then each

connected component of the forest (Ŵ , Ê) consists of one vertex. That is,

M \ (C2 ∪ L∞) is the union
⋃

v∈K l̃v of k := |K| nonintersecting affine

lines, K := W \W (∞), such that each f̌ , ǧ : l̃v → C is a polynomial map

φv, ψv : C → C and at least one of them is nonconstant (for each v ∈ K).

(1.7) Proposition. Let the assumptions of Theorem (1.6) hold. Let X :=
F̌−1(C×C) = M \L∞. Then X is a Stein manifold iff F is locally proper ,
i.e. F−1(x, y) is a finite (possibly empty) set for each (x, y) ∈ C × C.

P r o o f. Assume that F is not locally proper. Then there exists (a, b) ∈
C × C so that Va ⊃ F−1(a, b) ⊃ Ua, where Ua is an irreducible component
of Va. Let Ua ⊂ M be the closure of Ua. Then ǧ(Ua) = b. Hence Ua ⊂
F̌−1(a, b) ⊂ X and X is not a Stein manifold.

Conversely, assume that X is not a Stein manifold. As F̌ : X → C × C

is proper it follows that X is holomorphically convex. Hence X contains a
compact connected one-dimensional complex space U . Since M is a projec-
tive variety, U must be a projective curve. Since l̃v, v ∈ K, is Stein it follows
that U∩l̃v is a finite set, i.e. U ∩C2 is an infinite set. Clearly, F̌ (U)⊂C×C

must be a compact complex space. Since C×C is Stein it follows that
F̌ (U) = (a, b) and F−1(a, b) is an infinite set. (See [G-R, p. 33].)

2. Monodromy. Let f ∈ C[C2] be a nonconstant primitive polynomial.

Let f̃ : M → CP1 be the minimal resolution of f as given in Corollary (1.4).
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Define X := f̃−1(C) = M \ L∞. Corollary (1.5) yields that X is a two-
dimensional simply connected manifold. (M is holomorphically convex but
not Stein.) Let

(2.1)

CPV(f) :=
⋃

t∈CVV(f)

Vt, CPV1(f) :=
⋃

t∈CVV(f)

Σt,

B := C \ CVV(f), Y := X \ CPV1(f), Z := C2 \ CPV(f).

Then Y,Z are fiber bundles on B given by the maps

f̃ : Y → B, f : Z → B

with fibers Σt, Vt, t ∈ B. Consider the Z-bundles Ai → B, i = 0, 1,
with fibers H1,0(t) := H1(Σt,Z) for i = 0 and H1,1(t) := H1(Vt,Z) for
i = 1 respectively for t ∈ B. Then Ai is endowed with the unique lo-
cally trivial (Hurewicz) connection, which associates with any continuous
path γ : [0, 1] → B a Z-isomorphism Di(γ) : H1,i(γ(0)) → H1,i(γ(1)),
i = 0, 1. Assume that γ′ : [0, 1] → B is another continuous path with
γ(0) = γ′(0) = t0 and γ(1) = γ′(1). If the closed curve γ′−1γ represents a
trivial element in π1(B, t0) then Di(γ) = Di(γ

′), i = 0, 1. The fundamental
group π1(B, t0) has the monodromy representations

φ′0 : π1(B, t0) → Aut(H1(Σt0 ,Z)), φ′1 : π1(B, t0) → Aut(H1(Vt0 ,Z)).

Let l̃v, v ∈ K, be an affine line on M and consider the nonconstant
polynomial map φv of degree k(v) given in Corollary (1.5). Then

(2.2)

κ :=
∑

v∈K

k(v),

φ−1
v (t) = {ζv,1(t), . . . , ζv,k(v)(t)}, v ∈ K,

{ζ1(t), . . . , ζκ(t)} =
⋃

v∈K

φ−1
v (t), t ∈ B.

Let Vt be a regular fiber. Choose a basis in H1(Vt,Z) as described at the
beginning of §1. More precisely, γ1(t), . . . , γ2 gen(t) ⊂ Vt is a basis of the reg-
ular fiber Σt of genus gen. For each v ∈ K we have the simple Jordan curve
γv,i(t) ⊂ Vt whose interior in Σt includes only ζv,i(t) for i = 1, . . . , k(v).
Then a basis of H1(Vt,Z) consists of γj(t), j = 1, . . . , 2 gen, and the set
(
⋃

v∈K

⋃
1≤i≤k(v){γv,i(t)}) \ {γv′,i′(t)}, for any curve γv′,i′(t).

Choose a base point t0 ∈ B. Let π1 = π1(B, t0) be the fundamental
group of the base space. It is a free group on l generators, where CVV(f) =
{c1, . . . , cl}. Consider the following set of generators τ1, . . . , τl of π1(B, t0).
Each τj is a closed Jordan curve passing through t0 so that its interior
contains only the point cj ∈ CVV(f) while all other points of CVV(f) are
outside τj . Furthermore, any pair τi, τj intersects only at t0. Each τj induces
a monodromy diffeomorphism φj : Σt0 → Σt0 which fixes the set Σt0 \ Vt0 ,
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i.e. φj : Vt0 → Vt0 . Since π1(B, t0) is a free group generated by [τ1], . . . , [τl]
we obtain the following homomorphisms:

φ0 : π1(B, t0) → Diffeo(Σt0),

φ1 : π1(B, t0) → Diffeo(Vt0),

φ2 : π1(B, t0) → Perm({ζ1(t0), . . . , ζκ(t0)}).
Here, Perm(S) is the group of permutations on a finite set S. (The above
homomorphisms are determined uniquely modulo the group of diffeomor-
phisms isotopic to the identity.)

Then φ0, φ1 induce the monodromy representations φ′0, φ
′
1 discussed

above. Moreover, we have the following induced homomorphism:

φ′2 : π1(B, t0) → Ut0 , Ut0 = span(γ2 gen +1(t0), . . . , γ2 gen +κ(t0)).

Note that the dimension of Ut0 is κ− 1. Furthermore, φ1(τ), τ ∈ π1(B, t0),
acts as a transitive subgroup of permutations on the curves γv,i(t0), i =
1, . . . , k(v), for each v ∈ K. Let τ0 ∈ B be a circle of a big radius passing
through t0 so that CVV(f) lies inside this circle. Then φ′0(τi), i=0, . . . , l, are
called the local monodromies. (Each τi, i = 1, . . . , l, encloses a finite singular
fiber, and τ0 encloses the singular fiber at ∞.) Then all the eigenvalues of
φ′0(τi), i=0, . . . , l, are roots of unity and the Jordan blocks are of dimension
2 at most (see e.g. [Gri]). Clearly, φ′2(τ), τ ∈π1(B, t0), is a semisimple matrix
whose eigenvalues are roots of unity. Observe next that φ′1(τ) can be viewed
as a 2 × 2 lower block triangular matrix:

φ′1(τ) = (aij(τ))
N
i,j=1 = (Aij(τ))

2
i,j=1, A12 = 0,

φ′1(τ)[γi(t0)] =
N∑

j=1

aji(τ)[γj(t0)], i = 1, . . . , N.

Here A11(τ) and A22(τ) represent the actions of τ on H1(Σt0 ,Z) and Ut0

respectively. Hence all the eigenvalues of φ′1(τi), i = 0, . . . , l, are roots of
unity.

Consider the complex vector bundles Ei → B, i = 0, 1, with fibers
H1(Σt) and H1(Vt), t ∈ B, respectively. (H1(Σt) denotes the subspace of
holomorphic 1-forms on Σt.) The Gauss–Manin connection on E1 is a holo-
morphic flat connection which is compatible with the Hurewicz connection
(by (1.3)). The Gauss–Manin connection on E0 is slightly more complicated.
Observe first that dimH1(Σt) = gen. Then the Gauss–Manin connection is
compatible with the Hurewicz connection by (1.1).

The Gauss–Manin connection induces the dual (cohomology) mono-
dromies

φ∗1 : π1 → Aut(H1(Vt0)), φ∗0 : π1 → Aut(H1(Σt0)).
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A fundamental result due to Deligne [Del2] states that the representations
φ∗0 and φ′0 are semisimple.

(2.3) Proposition. Let f ∈ C[C2] be a nonconstant primitive polynomial.

Then the eigenvalues of each φ′0(τ), τ ∈ π1(B, t0), are roots of unity iff

φ0(π1(B, t0)) is a finite group.

To prove this proposition we quote a theorem due to T. Laffey and the
author:

(2.4) Theorem. Let G be a subgroup of GL(n,Z) and assume that the

eigenvalues of each element of G are roots of unity. Then G is virtually

unipotent. That is, there exists a subgroup G0 of G of a finite index and

T ∈ GL(n,Z) so that TG0T
−1 is a subgroup of integer upper triangular

matrices with 1 on the main diagonal.

P r o o f. Let A ∈ G. Then det(λI − A) is a monic polynomial with
integer coefficients. As all eigenvalues of A are roots of unity it follows
that det(λI −A) is a product of cyclotomic polynomials p1(λ), . . . , pm(λ)
where deg pi ≤ n, i = 1, . . . ,m. Hence the set of all possible polynomials
det(λI − A), A ∈ G, is a finite set. Let H be the Zariski closure of G in
GL(n,R) and denote by H0 the identity component. Note that H0 has a fi-
nite index i in H. Clearly, det(λI−B) = (λ−1)n, B ∈ H0. Then there exists
T0 ∈ GL(n,R) so that T0H0T

−1
0 is a subgroup of upper triangular matrices

with 1 on the main diagonal [Kol, Prop. 40, p. 369]. Hence G0 := G ∩H0

has index i in G. Since G0 ∈ GL(n,Z) it is straightforward to show that T0

can be replaced by T ∈ GL(n,Z).

Proof of Proposition (2.3 ). Let G := Aut(H1(Σt0 ,Z)) ⊂ Sp(gen,Z).
Suppose first that G is finite. Then the eigenvalues of each A ∈ G are roots
of unity. Assume now that the eigenvalues of each A ∈ G are roots of unity.
From Theorem (2.4) we deduce the existence of unipotent G0 ≤ G of a finite
index. By Deligne’s theorem G is semisimple. Hence G0 is semisimple and
unipotent, which implies that it is trivial. Therefore G is finite.

Let

Fix(φ′1) := {a ∈ H1(Vt0 ,Z) : φ1(τ)(a) = a, τ ∈ π1(B, t0)},
Fix(φ∗1) := {ω ∈ H1(Vt0) : φ∗1(τ)(ω) = ω, τ ∈ π1(B, t0)},

fix1(f) := dimFix(φ′1), fix1(f) := dimFix(φ∗1).

(2.5) Theorem. Let f ∈ C[C2] be a nonconstant primitive polynomial. Then

the monodromy action on the regular affine fiber Vt has a nontrivial fixed

element in H1(Vt) iff the polynomial f − c is reducible for some c ∈ C.

P r o o f. Suppose first that f − c = f1f2, where f1, f2 are nonconstant
polynomials. Then ω := df1/(2π

√
−1f1) is a nonzero 1-form on Z. The
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restriction ωt to a regular fiber Vt gives an element ωt ∈ H1(Vt,Z). (
T
γ
ωt

is the change of the argument of f1 along γ ⊂ Vt.) Hence the monodromy
acts on ωt. As f1 cannot be a constant function on Vt it follows that ωt is a
nontrivial element of H1(Vt) which is fixed under the monodromy action.

Assume now that each fiber Vt, t ∈ C, is irreducible. According to
Libgober [Lib1], H1(Z,Z) is a free abelian group of rank l. Thus any
element ̺ ∈ H1(Z,Z) is of the form

(2.6) ̺ =
1

2π
√
−1

l∑

i=1

midfi

fi
, mi ∈ Z, i = 1, . . . , l.

Let B0 ⊂ B be the union of l closed Jordan curves τ1, . . . , τl which were
described at the beginning of this section. (B0 is a bouquet of l circles.)
Hence, π1(B, t0) = π1(B0, t0). Moreover, B0 is a deformation retract of B.
Let Z0 ⊂ Z be the fiber bundle Z0 = f−1(B0). Then Z0 is a deformation
retract of Z. (Deform each point on Vt along the gradient flow (fx, fy).
See [Mil] for details.) In particular, H1(Z0,Z) is a free abelian group on
l generators. (Note that there is a 2-complex Z1 which is a deformation
retract of Z0 and which can be constructed explicitly from Z0 according to
[Lib2].) Then each element ̺ ∈ H1(Z0,Z) is still given by (2.6). Note that
for each closed curve γ ⊂ Vt, t ∈ B, we have ̺(γ) = 0. Consider the injection
ι : H1(Vt0 ,Z) → H1(Z0,Z). The equality ̺(γ) = 0 yields that ι is trivial.

Assume to the contrary that we have a nontrivial fixed element ω ∈
H1(Vt0). Since monodromy is generated by l integer-valued matrices it fol-
lows that we can assume that ω ∈ H1(Vt0 ,Z). In particular, any element
β in the kernel of ω is mapped to another element of the kernel under the
action of monodromy. As ι is trivial it follows that for any [γ] ∈ H1(Vt0 ,Z)
the subspace spanned by φ([τ ])([γ]), [τ ] ∈ π1(B0, t0), is H1(Vt0 ,Z). This
contradicts the existence of ω.

A. Libgober pointed out that Theorem (2.5) can be generalized as fol-
lows:

(2.7) Theorem. Let f ∈ C[C2] be a nonconstant primitive polynomial. Then

fix1(f) = δ(f) (see (0.1)).

P r o o f. Assume that Vc reduces to n irreducible curves. That is, f−c =
gm1

1 . . . gmn
n , where g1, . . . , gn are nontrivial coprime factors of f − c. Then

dg1

g1
|Vt0 , . . . ,

dgn

gn
|Vt0 ∈ Fix(φ∗1). Note that these n 1-forms satisfy exactly one

relation:
n∑

i=1

mi
dgi

gi

∣∣∣∣Vt0 = 0.

Hence fix1(f) ≥ δ(f). According to [Lib1], dimH1(Z,C) = l+δ(f). A basis
ofH1(Z,C) is given by dfi/fi, i = 1, . . . , l+δ(f), where Z(f1), . . . , Z(fl+δ(f))
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are the irreducible components of CPV(f). As observed above, only δ(f) of
those give rise to linearly independent forms in Fix(φ∗1).

(2.8) Lemma. Let f ∈ C[C2] be a nonconstant primitive polynomial. Then

fix1(f) ≥ |K|− 1 ≥ m− 1, where K is given in Corollary (1.5) and m is the

number of points at which the closure of any Vt in CP2 intersects the line

at infinity.

P r o o f. From the definition ofK it follows that |K| ≥ m. Let v1, v2 ∈ K,
v1 6= v2. Then the element

[γ(t)] := k(v2)

k(v1)∑

i=1

[γv1,i(t)] − k(v1)

k(v2)∑

i=1

[γv2,i(t)]

is a nonzero element which is fixed under the action of the monodromy.
Hence fix1(f) ≥ |K| − 1.

We now present the following example of Deligne which shows that the
monodromy action on an affine fiber Vt does not have to be semisimple.

(2.9) Proposition. Let f = xy2 + x2 + y. Then each fiber f = t is irre-

ducible, and the regular fiber Vt is an elliptic curve (of genus one) punctured

at two points which are fixed under the monodromy action. The monodromy

action on H1(Vt,C) (and on H1(Vt,C)) is not semisimple.

P r o o f. Consider the fiberΣt. Let (x, y) 7→ x be the projection ψ : Σt →
CP1. Then Σt is a double (branched) cover of CP1. Consider f(x, y) = t.
Then

y =
−1 ±

√
1 − 4x(x2 − t)

2x
.

The branching points over C are given by 4x(x2 − t) = 1. For t3 6= 27/64
we have exactly 3 branching points over C, each one of multiplicity 2. In
particular, for all the above values Vt is irreducible. For t3 =27/64 we have
exactly one branching point of multiplicity 2. Hence the three singular fibers
are also irreducible. The point at infinity (1 : 0 : 0) is also a branching point
of multiplicity 1. The point at infinity (0 : 1 : 0) is a regular point. Use the
Riemann–Hurwitz formula to deduce that the regular fibers Σt are elliptic
curves, while the three exceptional fibers are CP. Since each Vt is irreducible
we deduce that

H1

(
C2 −

⋃

t3=27/64

Vt,Z
)

= Z3.

Theorem (2.5) yields that fix1(f) = 0. Lemma (2.8) implies that fix1(f) ≥
2 − 1 = 1. Since fix1(f) 6= fix1(f) it follows that φ′1(π1(B, t0)) is not semi-
simple.
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(2.10) Corollary. Let f ∈ C[C2] be a primitive polynomial so that a regular

fiber Vt is a Riemann sphere (Σt = CP1) punctured at two points at least.

Suppose furthermore that the monodromy does not act transitively on Σt\Vt

(|K| > 1). Then f − c is reducible for some c ∈ C.

P r o o f. The monodromy acts as a subgroup of permutations on
H1(Vt,Z). Hence the action of the monodromy is semisimple. Therefore
fix1(f) = fix1(f) ≥ |K|−1 > 0. Theorem (2.5) yields that f − c is reducible
for some c.

f = xy is an example satisfying the conditions of Corollary (2.10).

(2.11) Theorem. Let f ∈ C[C2] be a primitive polynomial so that a regular

fiber Vt is either a punctured Riemann sphere or a punctured elliptic curve

(torus). Suppose that there exists g ∈ C[C2] and a finite set T ⊂ C such

that g : Vt → C is not injective and has no critical (ramification) points for

t ∈ C \ T . Then f − c is reducible for some c ∈ C.

P r o o f. Let gt : Σt → CP1 be the extension of g : Vt → C. Without
loss of generality we may assume that T ⊃ CVV(f). Suppose first that
Σt = CP1. Since g : Vt → C is not an injection the degree of gt is two at
least. Hence gt has to have at least two critical points. Moreover, at least
one of the critical points is not in g−1

t (∞). (Recall that an unramified cover
of C is a homeomorphism.) Clearly, g−1

t (∞) is invariant under the action of
monodromy. According to Corollary (2.10), f − c is reducible.

Assume now that the genus of a regular fiber Σt is equal to 1. Since
gt has degree two at least and has no ramification points on Vt, the
1-form dgt has zeros and poles on Σt \Vt. Let ωt be the holomorphic 1-form
on Σt. Recall that ωt is unique up to a nonzero factor. Normalize ωt by as-
suming that

T
γ1(t)

ωt = 1. Then ωt is locally continuous in the parameter t.

(However, the monodromy will act on ωt.) Let ht := ωt/dgt : Σt → CP1.
Then ht is a nonconstant function such that all poles and zeros of ht lie on
Σt \ Vt. Consider the nontrivial 1-form θt := dht/(2π

√
−1ht) ∈ H1(Vt). As

in the proof of Theorem (2.5) we deduce that θt ∈ H1(Vt,Z) is a nontrivial
invariant 1-form under the monodromy action. Theorem (2.5) implies that
f − c is reducible for some c.

The pair f = xy, g = x2 satisfies the assumptions of Theorem (2.11).
We do not know if Theorem (2.11) generalizes to a primitive f such that
the regular fiber Σt has genus two at least. We prove a weaker version for
the higher genus case:

(2.12) Proposition. Let f ∈ C[C2] be a primitive polynomial so that a

regular fiber Vt is a punctured Riemann surface of genus two at least. Suppose

that there exists g ∈ C[C2] and a finite set T ⊂ C such that g : Vt → C is
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not injective and has no critical (ramification) points for t ∈ C\T . Assume

furthermore that fxdg/dy is not a constant function on Vt for t ∈ C \ T .

Then f − c is reducible for some c ∈ C.

P r o o f. Observe that df = fxdx + fydy. Hence on a regular fiber Vt,
ωt := dy/fx = −dx/fy ∈ H1(Vt). Let ht be defined as in the proof of
Theorem (2.11). Our assumptions yield that ht is a nonconstant function
whose poles and zeros lie on Σt \ Vt. Then the arguments of the proof of
Theorem (2.11) yield the proposition.

3. 1-forms. Let Y be a smooth projective variety and X ⊂ Y be a
quasi-projective variety. Denote by Or(X) and Ωp

r (X) all rational functions
and rational p-forms respectively on Y which are holomorphic on X. Denote
by Hp(X), p ≥ 1, the space of all closed forms in Ωp

r (X) modulo dΩp−1
r (X)

(Ω0
r (X) := Or(X)). Let ω ∈ Ω1

r (C2). Then

(3.1) ω = p(x, y)dx+ q(x, y)dy,

where p, q ∈ C[C2]. Let f ∈ C[C2] and assume that Ṽt is a smooth irreducible

component of Vt. Then ωt ∈ Ω1
r (Ṽt) is the restriction of ω to the fiber Vt.

(3.2) Lemma. Let f ∈ C[C2] be a nonconstant primitive polynomial. Let

Ṽt be a smooth irreducible component of the fiber Vt and assume that α ∈
Ω1

r (Ṽt). Then there exists a 1-form ω ∈ Ω1
r (C2) such that α = ωt.

P r o o f. Assume that Ṽt = Z(u) for some irreducible u. As Ṽt is smooth
it follows that

θt :=
dy

ux

∣∣∣∣Ṽt = −dx
uy

∣∣∣∣Ṽt ∈ Ω1
r (Ṽt).

Furthermore, θt does not have zeros on Ṽt. We first prove the lemma
for θt. Denote by C all the critical values of the map u : C2 → C. Let
h =

∏
τ∈C(τ −u). Hence h vanishes at every critical point of u. The Hilbert

Nullstellensatz yields

hm = −h1uy + h2ux, h1, h2 ∈ C[C2],

for some integer m≥1. Then hm|Ṽt =a :=
∏

τ∈C τ
m 6= 0. Let ̺ = 1

a(h1dx+

h2dy)∈Ω1
r (C2). Hence ̺t = θt. Let α∈Ω1

r (Ṽt). Then α/θt ∈ Or(Ṽt). Since

Ṽt is smooth, α/θt = r|Ṽt, r ∈ C[C2]. Then ω := r̺ satisfies the conditions
of the lemma.

(3.3) Corollary. Let f ∈ C[C2] be a nonconstant primitive polynomial.

Assume furthermore that f does not have singular points. Then there exists

ω ∈ Ω1
r (C2) so that the restriction of ω to any irreducible component of Vt

is the 1-form θt := dy/fx = −dx/fy ∈ H1(Vt).

P r o o f. In the proof of Lemma (3.2) choose h = 1.



Jacobian conjecture 233

Let f ∈ C[C2] be a nonconstant primitive polynomial. Consider the
complex vector bundle E1 → B with fiber H1(Vt), as defined in §2. Clearly,
any ω ∈ Ω1

r (C2) induces a holomorphic section by viewing ωt ∈ Ω1
r (Vt) as

an element in H1(Vt). Usually, the set of all holomorphic sections obtained
from the restriction of Ω1

r (C2) is too small. We now introduce the “right”
classes of holomorphic and rational sections Or(E1), R(E1) as follows. Let
ω be a rational 1-form on C2 of the form (3.1) where p, q ∈ C(C2). We say
that ω defines a rational section on E1 if there exists a finite set T ⊂ C so
that ωt ∈ Ω1

r (Vt) for all t ∈ C \ (T ∪ CVV(f)). Then the restriction of ω to
all but a finite number of Vt gives the element ωt ∈ H1(Vt). We will abuse
the notation by denoting this section by ω and its value on H1(Vt) by ωt.
(For a rational 1-form ωi which defines a rational section in E1 we denote
by ωi,t its restriction to H1(Vt) when this restriction exists.) We denote the
set of these sections by R(E1). Denote by Or(E1) ⊂ R(E1) all the rational
sections which are holomorphic at each t ∈ B. Let F ⊂ C(C2) be the field
of all rational functions in the variable f :

F := {a : a = b(f), b ∈ C(C)}.
Clearly, if ω ∈ R(E1) then aω ∈ R(E1) for any a ∈ F . Hence R(E1) is
a vector space over F . Two rational 1-forms ω, θ define the same rational
section if there exists a finite set T ⊂ C such that ωt and θt represent the
same element in H1(Vt) for all t ∈ C \ (T ∪ CVV(f)). Let

F [C2] := {a ∈ C(C2) : a = b/c(f), b ∈ C[C2], c ∈ C[C]}.
(3.4) Theorem. Let f, g ∈ C[C2] be such that f is primitive and F = (f, g) :
C2 → C2 is a dominating map. Then any rational 1-form

(3.5) ̺ := r
dg

det J(F )
, r ∈ F [C2],

defines a rational section in R(E1). Moreover , any rational section in R(E1)
is given by some ̺ of the above form. Furthermore, the dimension of R(E1)
as a vector space over F is N := dimH1(Vt) = 2 gen +k − 1, t ∈ B.

P r o o f. Recall that θt := dy
fx

∣∣Vt = −dx
fy

∣∣Vt ∈ Ω1
r (Vt), t ∈ B, is a nonvan-

ishing 1-form. Let T ⊂ C be a finite set such that gt := g|Vt is a nonconstant
map. A straightforward calculation shows that dg

det J(F )

∣∣
t

= θt, t ∈ B \ T .

Hence any ̺ of the form (3.5) induces a rational section in E1. Suppose that
ω is a rational 1-form on C2 of the form (3.1) such that ωt ∈ Ω1

r (Vt) for all
but a finite number of t. Let r = −pfx + qfy and assume that ̺ is defined
by (3.5). Then ωt = ̺t. Hence r|Vt ∈ Or(Vt) for all but a finite number of
t, i.e. r ∈ F [C2].

We now show that the dimension of R(E1) is N . For t0 ∈B fix a basis
of N elements in H1(Vt0 ,Z) and N 1-forms in Ω1

r (Vt0) which satisfy (1.3)
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(as described in §1). Use Lemma (3.2) and the above arguments to deduce
that there exist p1, . . . , pN ∈ C[C2] such that the restrictions of the 1-forms
̺j := pjdg/det J(F ), j = 1, . . . , N , to Vt0 satisfy (1.3). Hence ̺j |Vt, j =
1, . . . , N , form a basis for H1(Vt) for all but a finite number of t. This shows
that dimF R(E1) ≥ N . Let ̺ be of the form (3.5). Then for all but a finite

number of t we have unique a1(t), . . . , an(t) so that ̺ − ∑N
i=1 ai(t)̺i|Vt is

an exact 1-form on Vt. Hence a1(t), . . . , aN (t) are holomorphic functions on
C \ T for a finite set T ⊂ C.

We claim that each ai(t) is meromorphic at T and at ∞. For t1 ∈
T \ CVV(f) the argument is quite straightforward. Consider N 1-forms
˜̺1, . . . ., ˜̺N ∈ Ω1

r (C2) whose restriction to Vt1 gives a basis in H1(Vt1). Then

̺̂ := ̺−∑N
i=1 ãi(t)˜̺i|Vt are exact 1-forms on Vt where |t− t1| < ε for some

ε > 0. Here ã1(t), . . . , ãN (t) are holomorphic in |t− t1| < ε. Change the ba-
sis from ˜̺1, . . . , ˜̺N to ̺1, . . . , ̺N (in R(E1)) to deduce that a1(t), . . . , aN (t)
are meromorphic at t1. For t1 ∈ CVV(f) ∪ ∞ we have to use the growth
estimates (see e.g. [Mal]) to deduce that a1(t), . . . , aN (t) are meromorphic
at t1. Hence a1(t), . . . , aN (t) are rational functions. Thus ̺̂|t is a trivial (0)
section for all but a finite number of t. Therefore ̺1, . . . , ̺N form a basis of
rational sections in R(E1) over F .

Let ̺1, . . . , ̺N be a basis of rational sections in R. Then ̺1, . . . , ̺N

is called a basis of Or(E1) if ̺1, . . . , ̺N ∈ Or(E1) and for each t ∈ B,
̺1,t, . . . , ̺N,t is a basis for H1(Vt).

(3.6) Lemma. Let the assumptions of Theorem (3.4) hold. Then Or(E1) has

a basis of holomorphic sections ̺1, . . . , ̺N , given by the restrictions of the

rational 1-forms

̺j = pj
dg

detJ(F )
, pj ∈ F [C2], j = 1, . . . , N.

Let

(3.7) ˜̺i =
N∑

j=1

aij(t)̺j , i = 1, . . . , N, A(t) := (aij(t))
N
i,j=1.

Then ˜̺1, . . . , ˜̺N is a holomorphic basis in Or(E1) iff aij(t), i, j = 1, . . . , N,
are rational functions which are holomorphic on B and detA(t) does not

vanish on B.

P r o o f. Use Lemma (3.2) to deduce the existence of ω1, . . . , ωN ∈Ω1
r (C2)

so that ω1,t0 , . . . , ωN,t0 form a basis in H1(Vt0), t0 ∈ B. As pointed out in the
proof of Theorem (3.4) we may assume that g = y, i.e. dg/det J(F ) = dy/fx.
Fix t ∈ B and a basis [γi(t)], i = 1, . . . , N , in H1(Vt,Z) as in §1. Let
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b(t) =
(

det
( \

γi(t)

ωj

)N

i,j=1

)2

.

Note that b(t) does not depend on the choice of the basis. Moreover, b(t) is
holomorphic on B. Because of the growth conditions on CVV(f)∪{∞} (see
e.g. [Mal]), it follows that b(t) is meromorphic on CVV(f)∪{∞}. Hence b(t)
is a rational function which is holomorphic on B. Let T ⊂ B be the zero set
of b in B. If T = ∅ then ωi, i = 1, . . . , N, form a basis in Or(E1) as claimed.
Assume now that b(t1) = 0 for some t1 ∈ B. That is, ωi,t1 , i = 1, . . . , N , are
linearly dependent elements of H1(Vt1). Let

ω̃i =

N∑

j=1

cijωj , i = 1, . . . , N, (cij)
N
i,j=1 ∈ SL(N,C),

be such that ω̃1|Vt1 is a zero element in H1(Vt1). Hence ω̂1 := ω̃1/(f − t1)

induces a holomorphic section in E1. Let b̂(t) be defined as above for the

holomorphic sections ω̂1, ω̃2, . . . , ω̃N . Then b(t) = (t − t1)
2b̂(t) and b̂(t) is

a rational function which is holomorphic in B. Continuing in this manner
we obtain N holomorphic sections ̺1, . . . , ̺N ∈ Or(E1) such that the corre-
sponding rational function b(t) is a holomorphic nonvanishing function on B.
Hence ̺1, . . . , ̺N form a basis in Or(E1). The specific form of ̺1, . . . , ̺N fol-
lows from Theorem (3.4).

Let ˜̺1, . . . , ˜̺N be another basis in Or(E1). Then (3.7) holds, with each
aij(t) a rational function which is holomorphic on B. Since A(t)−1 has simi-
lar properties, detA(t) is a rational function which is holomorphic on B and
does not vanish there.

Assume that ˜̺1, . . . , ˜̺N are given by (3.7), where A(t) has rational en-
tries which are holomorphic in B. Then ˜̺i ∈ Or(E1). The assumption that
detA(t) does not vanish on B yields that ˜̺1, . . . , ˜̺N is a holomorphic basis
in Or(E1).

(3.8) Problem. Does there exist a basis ̺1, . . . , ̺N of Or(E1) so that

̺j = pj
dg

det J(F )
, pj ∈ C[C2], j = 1, . . . , N.

Let ̺ ∈ Or(E1). As we chose the Gauss–Manin connection, we deduce
that d̺t/dt is a holomorphic section on E1. The growth estimates (see e.g.
[Mal]) yield that d̺t/dt ∈ Or. Let ̺1, . . . , ̺N be a holomorphic basis in
Or(E1). Then we obtain a Picard–Fuchs system:

(3.9)
dx

dt
= B(t)x, x(t) = (̺1,t, . . . , ̺N,t)

T , B(t) = (bij(t))
N
i,j=1.

The entries of B(t) are rational functions which are holomorphic on B.
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(3.10) Proposition. Let f ∈ C[C2] be a nonconstant primitive polynomial.

Let N = dimH1(Vt,Z), t ∈ B. Let t0 ∈ B and choose a basis [γ1], . . . , [γN ]
in H1(Vt0 ,Z) as in §1. Assume that ̺1, . . . , ̺N is a holomorphic basis in

Or(E1) such that \
γi(t0)

̺j = δij , i, j = 1, . . . , N.

Consider the system

dY

dt
= −B(t)TY, Y (t0) = I, t ∈ B,

where B(t) is the matrix induced by the Gauss–Manin connection given by

(3.9). Then the analytic continuation of Y (t0) along τ ∈ π1(B, t0) gives the

monodromy element φ∗1(τ).

P r o o f. Let Y (t) = (yij(t))
N
i,j=1 and set

ωi,t :=

N∑

j=1

yji(t)̺j,t, i = 1, . . . , N.

Then ωi describes a multivalued locally holomorphic section of E1. Use
(3.9) and the definition of Y to deduce that dωi,t/dt = 0, i = 1, . . . , N .
Thus ω1, . . . , ωN are locally constant holomorphic sections with respect to
the Gauss–Manin connection. Note that the initial value ω1,t0 , . . . , ωN,t0 is
the dual basis to the basis [γ1], . . . , [γN ]. Hence the analytic continuation of
ω1, . . . , ωN along τ will yield the dual basis to φ′1(τ)([γ1]), . . . , φ

′
1(τ)([γN ]).

Let ω be a rational 1-form on C2 which induces a rational section in E1.
Assume that ωt is holomorphic in some open set U ⊂ C. Fix t ∈ U and a
basis in H1(Vt,Z) as in §2. Let

(3.11)

c(ω, γj(t)) :=
\

γj(t)

ωt, j = 1, . . . , 2 gen,

c1(ω, t) := (c(ω, γ1(t)), . . . , c(ω, γ2 gen(t)),

c(ω, γv,i(t)) =
\

γv,i(t)

ωt, i = 1, . . . , k(v), v ∈ K,

c(ω, v, t) := (c(ω, γv,i(t)))1≤i≤k(v),

c2(ω, t) := (c(ω, v, t))v∈V , c(ω, t) := (c1(ω, t), c2(ω, t)).

Recall the equality (1.2) to deduce

∑

v∈K

k(v)∑

i=1

c(u, γv,i(t)) = 0.
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Observe

(3.12)

c(p(f)ω, t) = p(t)c(ω, t), p ∈ C(C),

ω = q
dg

det J(F )
, q ∈ F [C2].

The following proposition is straightforward.

(3.13) Proposition. Let f ∈ C[C2] be a nonconstant primitive polynomial.

Assume that ω is a rational 1-form on C2 which induces a holomorphic

section on E1. Then ωt, t ∈ B is a nontrivial fixed element under the action

of the monodromy iff

d

dt
c(ω, t) = 0, t ∈ B, c(ω, t) 6≡ 0.

Problem (3.8) is closely related to the following problem. Let ω∈Ω1
r (C2).

When is c(ω, t) ≡ 0? Clearly, this holds if ω is of the form

(3.14) ω = dh+ rdf = (hx + rfx)dx+ (hy + rfy)dy, h, r ∈ C[C2].

That is, if ω is given by (3.1), when we can solve the system

hx = rfx − p, hy = rfy − q.

The above system has a solution iff the following PDE is solvable:

(3.15) −fyrx + fxry = −qx + py

for some r ∈ C[C2]. This equation will be studied in the next section.

4. A differential operator. Let F = (F1, . . . , Fn) : Cn → Cn be a
polynomial map. Let J(F ) = (∂Fi/∂zj)

n
i,j=1 be the Jacobian matrix of F .

Assume that F is dominating , i.e. detJ(F ) 6= 0. Let

SPV(F ) := {z ∈ Cn : detJ(F )(z) = 0}.
Let ∂i = ∂/∂zi, i = 1, . . . , n, be the n standard commuting vector fields
on Cn. We can pull back these abelian vector fields at all points F (Cn) \
F (SPV(F )) to a set of n rational commuting vector fields Di = F−1(∂i),
i = 1, . . . , n. More specifically, the chain rule yields the following formula
for Di:

DT = (J(F )−1)T∂T , D = (D1, . . . ,Dn), ∂ = (∂1, . . . , ∂n).

For n = 2 we have

D1 =
1

detJ(F )

(
∂F2

∂z2

∂

∂z1
− ∂F2

∂z1

∂

∂z2

)
,

D2 =
1

detJ(F )

(
−∂F1

∂z2

∂

∂z1
+
∂F1

∂z1

∂

∂z2

)
.
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Let

L = detJ(F )Dn.

Note that L is a linear differential operator of first order with polynomial
coefficients which depend only on F1, . . . , Fn−1. For n = 2 the operator −L
is the standard Hamiltonian vector field associated with F1:

L = −∂F1

∂z2

∂

∂z1
+
∂F1

∂z1

∂

∂z2
.

Note that the left-hand side of (3.15) is L(r) where F1 = f . L is a nontrivial
operator iff F1, . . . , Fn−1 are algebraically independent. In what follows we
shall assume that F1, . . . , Fn−1 are algebraically independent. By picking
a polynomial Fn such that F is a dominating map and using the above
interpretation of L we obtain

L(vu) = vLu, u ∈ C(z1, . . . , zn), v ∈ C(F1, . . . , Fn−1).

Let F = C(F1, . . . , Fn−1) be the field of rational functions in the n − 1
variables F1(z), . . . , Fn−1(z). Denote by F [Cn] ⊂ C(Cn) the ring of poly-
nomials in z1, . . . , zn with coefficients in F . Then u ∈ F [Cn] iff u = pv
where p = p(z1, . . . , zn) is a polynomial and v ∈ F . Note that F [Cn]
is an infinite-dimensional vector space over the field F and the operator
L : F [Cn] → F [Cn] is a linear operator over F . Let L(F [Cn]) be the range
of L. In this section we show that L is Fredholm.

Consider the map Φ = (F1, . . . , Fn−1) : Cn → Cn−1. Recall that z is
called a singular point for Φ if rankJ(Φ) < n − 1. ξ ∈ Cn−1 is called a
singular value if ξ = Φ(z) for some singular point z. Clearly, the set of
all singular points is a closed variety of codimension at least one. Sard’s
theorem (see e.g. [Mil]) yields that the set of all singular values is a closed
subvariety of codimension at least one. Moreover, as in the case n = 2,
there exists a closed proper subvariety CVV(Φ) ⊂ Cn−1 with the following
property: For any ξ∈Cn−1\CVV(Φ), the fiber Φ−1(ξ) is a union of d smooth
irreducible curves, each homeomorphic to a fixed compact Riemann surface
Σ punctured at k points. We call these fibers regular. If d = 1, Φ is called
primitive. If d > 1, one can show that there exists a dominating polynomial
map H : Cn−1 → Cn−1, with deg(H) = d and a primitive polynomial map
Ψ : Cn → Cn−1 so that Φ = H ◦ Ψ . (We are not going to use this fact.) In
what follows we assume that Φ is primitive. Let a ∈ Cn be a regular point
of Φ. Set ξ = Φ(a). Then there exists a unique fiber Vξ = Φ−1(ξ) which
passes through a. Furthermore, a is a smooth point of Vξ. Define a local
1-form on Vξ in the neighborhood of a as follows. Consider the n−1 1-forms
dF1, . . . , dFn−1. They are linearly independent in the neighborhood of a. Let
θ =

∑n
i=1 θidzi be an analytic 1-form in the neighborhood of a so that

dF1 ∧ . . . ∧ dFn−1 ∧ θ = dz1 ∧ . . . ∧ dzn.



Jacobian conjecture 239

Define α to be the restriction of θ to Vξ in the neighborhood of a. It is
straightforward to show that α is defined uniquely, independently of the
choice of θ. In particular, if Fn is algebraically independent of F1, . . . , Fn−1

and a 6∈ SPV(F ), then

(4.1) α = detJ(F )−1dFn|Vξ

in the neighborhood of a.

(4.2) Theorem. Let Φ = (F1, . . . , Fn−1) : Cn → Cn−1 be a primitive

dominating polynomial map. For a Zariski open set T ⊂ Cn−1 of regu-

lar fibers Vξ = Φ−1(ξ), ξ ∈ Cn−1, let α be a 1-form defined by (4.1) for

some Fn ∈ C[Cn] such that F = (F1, . . . , Fn) is dominating. Assume that

f ∈ F [Cn]. Then f ∈ L(F [Cn]) iff

(4.3)
\
γ

fα = 0

for any closed path γ ⊂ Vξ, ξ ∈ T .

P r o o f. Assume first that Lu = f for some u ∈ F [Cn]. By multiplying u
and f by an appropriate polynomial p(F1, . . . , Fn−1) it is enough to assume
that u, f are polynomials. We claim that the restriction of du to any regular
fiber Vξ is fα. Indeed, let a ∈ Vξ with det J(F )(a) 6= 0. Let w = F (z).
Then

du =
n∑

i=1

∂u

∂wi
dwi.

The restriction of du to wi = ξi, i = 1, . . . , n− 1, yields

du =
∂u

∂wn
dwn = Lu

dFn

det J(F )
= fα.

Hence the condition of the theorem is necessary.

We now prove the sufficiency. Pick a linear function λ on Cn such that
the hyperplane λ = t0 intersects a Zariski open set of regular fibers Vξ at d
distinct points ζ1(ξ), . . . , ζd(ξ). Assume that Vξ is a regular fiber such that
f |Vξ is holomorphic, the condition (4.3) holds and λ = t0 intersects Vξ at
d distinct points. Hence there exists u ∈ Or(Vξ) so that du = fα. Fix u
uniquely by the condition

d∑

i=1

u(ζi(ξ)) = 0.

Then u is analytic on Cn \ S, where S is the zero set of some polynomial
p(F1, . . . , Fn−1). Clearly, Lu=f on Cn\S. By construction, the singularities
of u are rational, i.e. u ∈ F [Cn].
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(4.4) Theorem. Let Φ = (F1, . . . , Fn−1) : Cn → Cn−1 be a primitive dom-

inating polynomial map. Then L : F [Cn] → F [Cn] is Fredholm. More pre-

cisely ,

dimker(L) = 1, dimF [Cn]/L(F [Cn]) = dimH1(V ),

where V is any regular fiber Φ−1(ξ).

P r o o f. Assume that L(u) = 0 and u ∈ F [Cn]. Multiply u by an
appropriate polynomial in F1, . . . , Fn−1 to obtain a polynomial v so that
L(v) = 0. Choose Fn so that (F1, . . . , Fn) is dominating. Then v is algebraic
in F1, . . . , Fn−1. As v is a polynomial, it follows that v = q(F1, . . . , Fn−1).
Thus u ∈ F and ker(L) is the one-dimensional space over F spanned by the
function 1.

We now prove the second part of the theorem. Pick a regular fiber V .
Let N = dimH1(V ). Choose a basis ω1, . . . , ωN ∈ H1(V ). Then ωi/α =
pi ∈ C[Cn], i = 1, . . . , N . Hence the forms piα, i = 1, . . . , N, span H1(Vξ),
for a Zariski open set of regular fibers Vξ. Theorem (4.2) yields that

L(u) =
N∑

i=1

aipi, ai ∈ F , i = 1, . . . , N,

is not solvable in F [Cn] unless a1 = . . . = aN = 0. Hence dim coker(L) ≥ N .
We now show that dim coker(L) ≤ N . Let f ∈ F [Cn]. Assume that Vξ is
a regular fiber so that f is analytic on Vξ and p1α, . . . , pNα span H1(Vξ).
Then there exist unique a1(ξ), . . . , am(ξ) ∈ C so that

(
f +

N∑

i=1

ai(ξ)pi

)
α ∈ dOr(Vξ).

Since f ∈ F [Cn] and p1, . . . , pN are polynomials, we deduce that ai(ξ),
i = 1, . . . , N , are rational functions in n− 1 variables. Then

g = f +
N∑

i=1

ai(F1, . . . , Fn−1)pi

satisfies the condition of Theorem (4.2). Thus there exists u∈F [Cn] so that
Lu = g. Hence dimcoker(L) = N .

Consider the example f=x2y. Then for t 6=0 the fiber f= t is a complex
plane punctured at the origin with coordinate x. Hence H1(Vt,Z) = Z. As
f = 0 is reducible it follows that CVV(f) = {0}. Clearly

L = −x2 ∂

∂x
+ 2xy

∂

∂y
.

Let g = x. Then α = −dx/x2. As xα has a nontrivial residue on C \ {0},
Theorem (4.2) yields that x 6∈ L(F [C2]). Theorem (4.4) implies that U :=
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F [C2]/L(F [C2]) is one-dimensional. We now show explicitly that x is a basis
in U . Let p(x, y) ∈ F [C2]. Set

q(x, t) := p(x, tx−2) =

n∑

i=−m

αi(t)x
i, αi ∈ C(C), i = −m, . . . , n,

q1(x, t) :=
∑

−m≤i≤n, i 6=1

−αi(t)
xi−1

i− 1
, q2(x, y) := q1(x, x

2y).

As x−k = (xy/f)k, k ≥ 1, it follows that q2(x, y) ∈ F [C2]. The equalities
L(f) = 0 and L(x) = −x2 yield p(x, y) − α1(f)x = L(q2(x, y)). Hence x
spans U .

Compare Theorems (3.4) and (4.4) to deduce:

(4.5) Corollary. Let F1 = f ∈ C[C2] be a nonconstant primitive polyno-

mial. Then R(E1) is isomorphic to

U := F [C2]/L(F [C2]).

More precisely , two rational forms pdg/det J(F ), qdg/det J(F ), p, q ∈
F [C2], induce the same section in R(E1) iff p− q ∈ L(F [C2]).

Let f ∈ C[C2] be a nonconstant polynomial with no critical points, i.e.
every affine fiber Vt is smooth. For example,

(4.6) f = x+ xmyn, m, n ≥ 1.

Let L be the operator associated with f and consider the equation

(4.7) L(u) = h, h ∈ C[C2].

Note that (3.15) is of the above form. For a given point ζ ∈ C2 it is possible
to find a linear function g = ax+ by so that detJ(F )(ζ) 6= 0 and F = (f, g).
Pushing (4.7) to the image plane (u, v) = (f, g) we deduce that (4.7) is
locally solvable at any point ζ. Assume that ui ∈ Oi, i = 1, 2, are two local
solutions in two open sets O1, O2 with nontrivial intersection. (Here Oi is
the ring of holomorphic functions in Oi.) Then L(u1 − u2) = 0 in O1 ∩O2.
It is straightforward to deduce that u1 − u2 = φ(f) in O1 ∩ O2 for some
holomorphic function φ on f(O1 ∩ O2) ⊂ C. Let Of be the pull back of
the sheaf of holomorphic functions on C by the map f : C2 → C. Then the
obstruction to patching together the local solutions of (4.7) is H1(C2,Of )
(see [G-H]). Our results show that

rankH1(C2,Of ) ≥ dimH1(Vt),

for a regular fiber Vt. (We do not know if the above inequality is sharp.)
For the example (4.6) it follows that dimH1(Vt) ≥ 1, as Vt, t 6= 0, is a
compact Riemann surface punctured at two points at least. Hence for some
h ∈ C[C2], (4.7) does not have a global holomorphic solution.
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5. The plane Jacobian conjecture. Let F = (F1, . . . , Fn) : Cn → Cn

be a polynomial map. Assume that F is a local diffeomorphism. Then
detJ(F ) = const 6= 0. The Jacobian conjecture claims that F is a diffeomor-
phism. Then the form α defined in (4.1) is given globally by dFn/det J(F ).
In this case the operators D1, . . . ,Dn were studied in [N-S]. In what fol-
lows we study the plane Jacobian conjecture (n = 2). We assume that
F = (f, g) : C2 → C2 is a local polynomial diffeomorphism. Furthermore,
we assume the normalization J(F )(0) = I. In particular, det J(F ) = 1. Let
L = D2, M = D1 be the first order differential operators defined in §4. Note

L(g) = M(f) = 1, L(f) = M(g) = 0.

The following theorem is due to T. Krasiński and S. Spodzieja [K-S,
Thm. 4.1]. (Theorem 4.1 of [K-S] holds for any n ≥ 2.) An earlier ana-
lytic version of this theorem for n=2 is proved in [Ste2]. We recall its proof
for n = 2 for convenience:

(5.1) Theorem. Let F : C2 → C2 be a local polynomial diffeomorphism.

Then F is a diffeomorphism iff cokerL is trivial.

P r o o f. Clearly, if F is a diffeomorphism then cokerL is trivial. Assume
that F is a local diffeomorphism and cokerL = 0. As f does not have
critical points, f is primitive. According to Theorem (4.4), H1(Vt) = 0 for
a regular fiber Vt = f−1(t). Hence V ∼ C. As the map g : V → C is a local
diffeomorphism it follows that it is a diffeomorphism. Hence deg(F ) = 1
and F is a diffeomorphism.

We call F a Jacobian pair if F is a local diffeomorphism which is not a
diffeomorphism. Theorems (2.5) and (2.11) yield:

(5.2) Corollary. Let F = (f, g) be a Jacobian pair. Assume that each fiber

Vt is irreducible. Then the monodromy action on the cohomology H1(Vt) does

not have a nontrivial fixed element. In particular , the genus of the closure

Σt of the regular fiber Vt is at least two.

The inequality part of Corollary (5.2) was proved by Razar [Raz]
(gen>1), Heitmann [Hei] and Lê and Weber [L-W] (gen > 0). Assume that
F is a Jacobian pair. Then Kaliman [Kal] showed that there exists a plane
polynomial diffeomorphism G so that for G ◦ F := (f1, g1) all the fibers
f−1
1 (t) are irreducible.

In what follows we assume that F is a Jacobian pair unless otherwise
stated. Let u ∈ C[C2]. Then a necessary condition for the existence of a
solution L(v) = u, v ∈ C[C2], is given by Theorem (4.2). In view of The-
orem (5.1) there exist u for which L(v) = u is not solvable. However, the
following result holds.
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(5.3) Proposition. Let F = (f, g) be a Jacobian pair. Then for any u ∈
C[C2] there exist v,w ∈ C[C2] so that L(v) +M(w) = u.

P r o o f. Let s(x, y)=
Tx
0
u(t, y) dt. Then udx∧ dy=d(sdy). Observe that

for any h ∈ C(C2) we have dh = L(h)dg +M(h)df . Hence

dy = L(y)dg +M(y)df = fxdg − gxdf,

d(sdy) = d(sfxdg − sgxdf) = (M(sfx) + L(sgx))df ∧ dg
= (M(sfx) + L(sgx))dx ∧ dy,

u = M(sfx) + L(sgx).

(5.4) Lemma. Let F = (f, g) be a Jacobian pair. Let u ∈ F [C2] and assume

that u is analytic on each Vt, where t varies in D(t0, ε) (disk of radius ε
centered at t0). Let γ(t0) ⊂ Vt0 be a closed smooth curve which extends

continuously to a family of smooth closed curves in Vt, t ∈ D(t0, ε). Then

d

dt

\
γ(t)

u dg =
\

γ(t)

M(u) dg.

In particular

(5.5)
d

dt
c(udg, t) = c(M(u)dg, t), u ∈ F [C2]

(see (3.11)).

P r o o f. The closed smooth curve F (γ(t0)) ⊂ C2 is of the form (t0, δ(t0)),
where δ(t0) is the projection of F (γ(t0)) on the second coordinate. Let
µ(t) := (t, δ(t0)) ⊂ C2 be the closed curve whose projection on the first
coordinate is t and on the second coordinate is the closed curve δ(t0). Since
F is a local diffeomorphism it follows that there exists ε′, 0 < ε′ < ε, such
that for each t ∈ D(t0, ε

′) there exists a smooth closed path δ′(t), depending
continuously on t, which satisfies

δ′(t) ⊂ Vt, F (δ′(t)) = µ(t), δ′(t0) = γ(t0).

Clearly, [δ′(t)] = [γ(t)] ∈ H1(Vt,Z), t ∈ D(t0, ε
′). Hence\

γ(t)

u dg =
\

δ′(t)

u dg =
\

s∈δ(t0)

ũ(t, s) ds.

Here ũ is a multivalued algebraic function on C2 obtained by pushing forward
u using F . Since the branches of ũ appearing in the above integral do not
have singular points in the neighborhood of µ(t0), we deduce
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∂

∂t

\
s∈δ(t0)

ũ(t, s) ds =
\

s∈δ(t0)

∂

∂t
ũ(t, s) ds =

\
δ′(t)

M(u) dg

=
\

γ(t)

M(u) dg.

In particular, (5.5) holds.

(5.6) Corollary. Let F = (f, g) be a Jacobian pair. Let

N := {c(ω, t) : ω ∈ Ω1
r (C2), t ∈ B}.

Then N is a C[t]-module which satisfies the equality d
dtN = N .

P r o o f. (3.11)–(3.12) show that N is a C[t]-module. Let ω = pdx +
qdy, p, q ∈ C[C2]. As detJ(F ) = 1 we deduce ω = udg + u1df , u, u1 ∈
C[C2]. Clearly, c(ω, t) = c(udg, t). Use Proposition (5.3), Theorem (4.2)
and Lemma (5.4) to deduce

c(ω, t) = c(udg, t) = c(L(v)dg +M(w)dg, t)

= c(M(w)dg, t) =
d

dt
c(wdg, t).

(5.7) Proposition. Let F = (f, g) be a Jacobian pair. Consider the isomor-

phism ι : R(E1) → U given in Corollary (4.5). Then the following diagram

commutes:

R(E1) R(E1)

U U

ι

��

d/dt
//

ι

��
M //

That is,

(5.8)
d

dt
(udg)t = (M(u)dg)t, u ∈ F [C2], t ∈ B.

P r o o f. As ML = LM it follows that M : U → U is a linear differential
operator on U :

(5.9) M(a(f)u+ b(f)v) = a(f)M(u) + b(f)M(v) + a′(f)u+ b′(f)v,

a(t), b(t) ∈ C(t), u, v ∈ U .
Let p1, . . . , pN ∈ C[C2] be a basis in U . Choose t0 ∈ B and let a1, . . . , aN

be holomorphic functions in an open set U ⊂ B with t0 ∈ U . Let u :=∑N
i=1 ai(f)pi. Then u is holomorphic on U ′ :=

⋃
t∈U Vt. Suppose that (udg)t,

t ∈ U , gives a constant section in O(E1)(U), i.e. d
dt(udg)t = 0. From the

definition of the Gauss–Manin connection it follows that c(udg, t) is a con-
stant vector on U . Use the arguments of Lemma (5.4) to deduce the validity
of (5.5) in this case, i.e. c(M(u)dg, t) = 0. Vice versa, if u ∈ O(U ′) and
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c(M(u)dg, t) = 0 then (udg)t is a holomorphic constant section of O(E1)(U).
Combine (3.12) and (5.9) to deduce (5.8).

View V ′ := C[C2] ∩ L(F [x, y]) as a module over the ring K := C[f ]. Let
V be the quotient module C[x, y]/V ′. Clearly, F is the field generated by K
and U = V ⊗ F . Moreover, M : V → V is a differential operator over K.
Corollary (5.6) is equivalent to

(5.10) M(V) = V.

(5.11) Theorem. Let F = (f, g) be a Jacobian pair. Then the monodromy

action on the cohomology H1(Vt) of the regular fiber Vt has a nontrivial fixed

element iff the operator M : U → U is not injective.

P r o o f. Assume first that M(u) = 0 for some 0 6= u ∈ U . Suppose
that u is represented by v ∈ F [C2] \L(F [C2]). Proposition (5.7) shows that
vdg induces a nonzero constant section of Or(E1). This section represents a
nontrivial fixed element under the action of monodromy.

Assume now that φ ∈ H1(Vt0), t0 ∈ B, is a nontrivial invariant element
under the monodromy action. Let φt ∈ H1(Vt), t ∈ B, be the continuation
of φ using the monodromy action. Pick a basis ̺1, . . . , ̺N in Or(E1). Then

φt =

N∑

i=1

ei(t)̺i,t, e1, . . . , eN ∈ O(B).

We claim that e1, . . . , eN are meromorphic on CVV(f)∪{∞}. Use the argu-
ments of the proof of Proposition (3.10) to deduce that e := (e1, . . . , eN )T

satisfies the differential equation de/dt = −B(t)T e. Recall that a local
change of basis around t1 ∈ CVV(f) ∪ {∞} will replace the system (3.9)

by a matrix B̃(t) which has at most a pole at t1 ([Del1]). In this new ba-

sis the equation dẽ/dt = −B̃(t)T ẽ has a regular singular point. Hence ẽ
and e are meromorphic at t1. Thus e1(t), . . . , eN (t) are rational functions.

The 1-form ψ :=
∑N

i=1 ei(f)̺i induces the constant section φt = ψt. Use
Proposition (5.7) to deduce the existence of 0 6= u ∈ U so that M(u) = 0.

Let p1, . . . , pN ∈ F [C2] be a basis in U . Then

(5.12) M(pi)dg −
N∑

j=1

bij(f)pjdg ∈ L(F [C2]),

bij(t) ∈ C(C), i, j = 1, . . . , N.

Suppose furthermore that ̺1 := p1dg, . . . , ̺N := pNdg induces a basis in
Or(E1). Then the matrix B(t) = (bij(t))

N
i,j=1 is given in (3.9). For a sim-

ply connected open set U ⊂ B choose a basis in H1(Vt,Z) which depends
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continuously on t as in §2. Set

(5.13) xij(t) =
\

γj(t)

pi dg, i, j = 1, . . . , N, t ∈ U, X = (xij(t))
N
i,j=1.

Lemma (5.4) yields that

(5.14)
d

dt
X = B(t)X(t)

for t ∈ U . In fact, (5.14) is dual to the system given in Proposition (3.10).
(Y (t)TX(t) is a constant matrix.) Let τ ∈ π1(B, t0). Continue the solution
of (5.14) using the path τ to obtain Xτ (t0). Then

A(τ) = (aij(τ))
N
i,j=1 := φ′1(τ),\

φ1(τ)(γj(t0))

pi dg =

N∑

n=1

anj(τ)
\

γn(t0)

pi dg, i, j = 1, . . . , N.

Hence

(5.15) Xτ (t0) = X(t0)A(τ), τ ∈ π1(B, t0).

Recall that the system (5.14) at any singular point t1 can be reduced locally
to a system with a regular singular point at t1 ([Del1]).

Let R(gen, 0) be the moduli space of all compact orientable closed Rie-
mann surfaces of genus gen.Consider the holomorphic map θ : B→R(gen, 0)
given by t 7→ [R(Σt)] (see §1). According to [Gri, §13], θ has at most a log-
arithmic singularity at each singular point of (5.14).

Let F = (f, g) be a Jacobian pair. Let F̌ be the minimal resolution given
in Theorem (1.6). According to Proposition (1.7), X := F̌−1(C × C) is a
Stein manifold. Hence X can be (properly) embedded as an affine smooth
algebraic variety X1 ⊂ Cn for some n > 2. It is known that X can be
properly embedded as a Stein manifold Y ⊂ C4 (see [For2]). See also [B-N,
§3]. Furthermore, X embeds in C3 iff X is parallelizable (as a complex
manifold) [For1].

(5.16) Theorem. Let F =(f, g) be a Jacobian pair. Assume that each affine

fiber f = t is irreducible. Let F̌ be the minimal resolution of F given by The-

orem (1.6). Then the Stein manifold X = F̌−1(C × C) is not parallelizable.

P r o o f. Assume to the contrary that X is parallelizable. Then there
exists a proper embedding ι : X → C3. ι(X) is a two-dimensional connected
Stein manifold in C3. As Hq(C3,O∗) = 0 for q > 0, there exists h ∈ O(C3)
such that ι(X) = Y is the zero set of h. Since ι : X → Y is a proper
embedding, h does not have critical points on Y . Let V̌t := f̌−1(t) ⊂ X,
t ∈ B. Let B′ ⊂ B be all the regular values of f̌ : X → C. Clearly, B \ B′

is a finite set. Note that Vt ⊂ V̌t and ǧt : V̌t → C is a proper map of a
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fixed degree d > 1 for t ∈ B′. In fact, V̌t can be viewed as follows. Let
f̃ : M → CP1 be the minimal resolution described in Corollary (1.5). Let

g̃ : M → CP1 be the lifting of g : C2 → C. For each l̃v , v ∈ K, we have three
possibilities. The first one is that g̃ is holomorphic on l̃v and g̃(z) = ∞ for

all z ∈ l̃v. Then for each t ∈ C the points ζv,1(t), . . . , ζv,k(v)(t) are not in X.

The second possibility is that g̃ is holomorphic on l̃v \ Tv and g̃(z) = ∞ for

all z ∈ l̃v \Tv. Here Tv is a finite set. Then ζv,1(t), . . . , ζv,k(v)(t), t ∈ C \T ′
v ,

are not in X, for some finite set T ′
v ⊃ Tv. The third possibility is that g̃ is

holomorphic on l̃v and g̃ : l̃v → C. (Note that g̃|l̃v is given by the polynomial
map ψv which may be constant. See Theorem (1.6).) Let K ′ ⊂ K be the set
of v which correspond to the third case. Then

V̌t = Vt ∪
⋃

v∈K′

{ζv,1(t), . . . , ζv,k(v)(t)} = f̌−1(t), t ∈ B′.

Let f := f̌ ◦ ι−1 : Y → C. We now show how to obtain a holomorphic
1-form ω on V̌t which does not vanish on V̌t, t ∈ B′. Take a point ζ ∈
Vt. Extend f to a local function e in the neighborhood of i(ζ) ∈ C3 so
that e − t = h = 0 in the neighborhood of i(ζ) which is the image of the
neighborhood of ζ ∈ V̌t under i. Since u and h intersect transversally at
i(ζ), one can define a 1-form on u − t = h = 0 in the neighborhood of i(ζ)
as follows:

dz1/p1 = dz2/p2 = dz3/p3 = ω1.

Here z1, z2, z3 are the coordinates of C3, pi is the 2×2 determinant of partial
derivatives of u, h which are not with respect to zi (up to sign). Note that ω1

does not vanish. Let ω be the pullback of ω1 to V̌t. Consider now the 1-form
θt which is the restriction of dǧ to V̌t. The assumption that F is a Jacobian
pair yields that θt does not vanish on Vt but does vanish on V̌t. Hence the
function φt = θt/ω gives a holomorphic function on V̌t which does not vanish
on Vt but vanishes at least at one point of V̌t. Consider the 1-form dφt/φt.
It is holomorphic on Vt, and it has a nontrivial residue at some point of V̌t.
Hence dφt/φt gives a nontrivial element in H1(Vt). This element is invariant
under the monodromy action. Contradiction to Corollary (5.2).
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[Del2] —, Théorie de Hodge, II , Publ. Math. I.H.E.S. 40 (1971), 5–58.

[Dim] A. Dimca, Invariant cycles for complex polynomials, Rev. Roumaine Math.
Pures Appl. 43 (1998), 113–120.
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