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Quasicrystals and almost periodic functions

by Mariusz Zaja̧c (Warszawa)

Abstract. We consider analogies between the “cut-and-project” method of construct-
ing quasicrystals and the theory of almost periodic functions. In particular an analytic
method of constructing almost periodic functions by means of convolution is presented. A
geometric approach to critical points of such functions is also shown and illustrated with
examples.

1. Introduction. In 1984 D. Shechtman and co-workers published se-
lected electron diffraction patterns of an alloy of aluminium and manganese.
What must have seemed rather striking to many physicists was the fact that
the patterns showed sharp spots arrayed with icosahedral symmetry. Indeed,
it is a long-proved theorem that only one-, two-, three-, four- or sixfold ro-
tation axes are possible in a triply periodic crystal. Although a molecule
may certainly have fivefold symmetry, its environment in the crystal cannot
since the existence of such an axis is not compatible with the requirements
of translational symmetry.

By that time structures with similar type of symmetry had already been
known in mathematics. In 1978 R. Penrose published the paper [6], in which
the famous plane tiling first appeared. In his approach the plane is entirely
covered by rhombuses of two kinds (with angles 108o and 72o, and 144o

and 36o, respectively). The Penrose tiling has a fivefold symmetry axis and
therefore cannot be periodic, although it does behave “quasi-periodically’:
roughly speaking, for any bounded portion we can find infinitely many trans-
lated copies of it scattered throughout the plane.

In 1981 de Bruijn [4] showed how the Penrose tiling could be obtained
as a projection of a two-dimensional face of a polyhedral body that is the
sum of suitably chosen unit cubes in R

5. This “cut-and-project” method
of constructing quasicrystals, later generalized by V. I. Arnold [1], will be
briefly presented in Section 2.
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The connection between crystallography and the theory of periodic func-
tions is quite natural and has long been recognized. There can be nothing
surprising in the statement that every physical quantity that can be mea-
sured in a periodic crystal, viewed as a function of the space coordinates,
must have the same periods as the crystal itself. Although the question
whether the real quasicrystals bear actual resemblance to the structures
mentioned above is still open, it seems natural to link quasicrystals with
functions that are “not exactly periodic”. In Section 3 we shall give this
vague notion a strict meaning.

In Section 4 we show another method leading to the construction of al-
most periodic functions, and we study how it is connected with quasicrystals
as described in Section 2.

Finally in Section 5 we show a geometric way of finding critical points of
quasiperiodic functions, which form an important subclass of almost periodic
functions.

Acknowledgements. The author wishes to thank Professor S. Janeczko
for suggesting the problem and stimulating discussions.

2. The projection method. We fix a natural number n and choose an
irrational subspace R

k ⊂ R
n (irrational here means containing no integer

points besides the origin).
Let us divide the torus T

n = R
n/Z

n into a finite number of prisms par-
allel to the given irrational subspace. Such partitions will be called Penrose

partitions.
If we consider the traces of the Penrose partition on an affine k-dimensio-

nal subspace parallel to the given irrational subspace, then we can see that
they are polyhedra, obtained from the bases of the prisms by translations.
There are clearly only finitely many different polyhedra, because there are
finitely many prisms. A Penrose quasiperiodic tiling of R

k is now induced
by a Penrose partition of a torus.

We do not intend to show here how Penrose’s original tiling can be
obtained in this manner. Instead we shall consider a three-dimensional ex-
ample.

Example (following [1]). Consider the partition of R
3 into equal unit

cubes with integer vertices. The cubes intersecting a given irrational plane P
form an infinite polyhedral body bounded by two infinite polyhedral surfaces
whose square faces are translations of three faces of a cube with a common
vertex.

Project one of these surfaces onto the plane P along some straight line
l. The projections of the faces form a quasiperiodic tiling of the plane by
parallelograms of three kinds (translates of three parallelograms that are
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visible when we are looking at a unit cube along l). We shall show that it
is a Penrose tiling of the plane.

Indeed, consider the set of points x ∈ R
3 such that the affine plane

parallel to the given irrational plane P and passing through x is covered by
the projection of a given face F of the polyhedral surface along the given
direction l. We want to prove that this set is a prism with a base parallel
to P . Note that the condition “F is a face of the polyhedral boundary of the
union of cubes intersecting P” is a condition on P only and that it describes
a stratum between two planes parallel to P . If x is a point of a plane inside
this stratum, it is covered by the projection of F along l if and only if it
belongs to the union of the lines parallel to l which intersect F . Hence, the
point x lies in the part of the product of F and l inside the stratum between
two parallel planes. Such points form a prism with a base parallel to P .
Moreover, every point x ∈ R

3 is covered by the projection of some face F
of P .

We have thus decomposed R
3 into prisms defined as above. This decom-

position is periodic and hence defines a Penrose partition of T
3. Its trace on

P is the quasiperiodic tiling by parallelograms, the projection of the polyhe-
dral boundary decomposition into faces. Hence, these parallelograms form
a Penrose tiling.

The above reasoning holds in a more general situation. Consider an irra-
tional k-dimensional subspace of an n-dimensional space. The cubes inter-
secting R

k form a polyhedral body. Consider its k-dimensional faces. Their
projections onto R

k along some space l (of dimension n−k) define a tiling of
R

k by polyhedra, which are intersections of parallelepipeds. Analysis similar
to that in the previous case shows that the tiling defined above is a Penrose
tiling.

Arnold has also introduced Penrose functions on T
n, i.e. functions con-

stant on every prism of a Penrose partition, and Penrose quasiperiodic func-

tions, i.e. restrictions of Penrose functions on T
n to irrational k-dimensio-

nal subspaces of Rn. These definitions enabled him to observe that any
quasiperiodic function, which by definition is the restriction of a function on
T

n to R
k, admits arbitrarily close approximation by Penrose quasiperiodic

functions.

3. Almost periodic functions. In 1923 H. Bohr introduced the fol-
lowing:

Definition. A continuous function f : R → C is called almost periodic

if for every ε > 0 there exists an l = l(ε) > 0 such that every interval [a, b]
of length b − a = l contains a number τ = τ(f, ε) for which

∀x ∈ R |f(x + τ) − f(x)| ≤ ε.
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We see that any metric space (X, ̺) can be used instead of the set C of
complex numbers provided that the last inequality is replaced by

∀x ∈ R ̺(f(x + τ), f(x)) ≤ ε.

A number τ for which this inequality holds is called an ε-quasiperiod.

The above definition is sufficient to prove several basic properties of
almost periodic functions, e.g.

• If f is almost periodic then f(R) is compact.

• Every almost periodic function is uniformly continuous.

• The limit of any uniformly convergent sequence of almost periodic
functions is almost periodic.

• If f, g are complex-valued almost periodic functions then so are f + g
and fg.

We shall not attempt to prove these facts here; the first three of them
are straightforward and the reader is referred to [3] for the details. On the
other hand, the direct proof that the class of almost periodic functions is
closed under addition is considerably more tedious: given an ε > 0 we try
to find a τ that is an ε-quasiperiod for both f and g.

For this purpose, however, another characterization of almost periodic
functions, given by Bochner in [2], seems more useful.

First, note that we have the notion of a fundamental (or Cauchy) se-
quence of functions fn : R → X where X is any metric space. To be precise,
{fn} is called fundamental if

(∀ε > 0)(∃N ∈ N)(∀m,n > N)(∀x ∈ X) ̺(fm(x), fn(x)) ≤ ε.

Recall that a family H of functions f : R → X is called conditionally

compact if any sequence fn, n ∈ N, of elements of H contains a fundamental
subsequence.

We can now state Bochner’s theorem.

Theorem 1. Let f : R → X be a continuous function. Then f is almost

periodic if and only if the family H = {x 7→ f(x+h) : h ∈ R} is conditionally

compact.

P r o o f. Let f be almost periodic and let {fhn} = {f(·+hn)} be any se-
quence of functions from H. Since f(R) is compact, for every fixed r ∈ R we
can choose a subsequence {hkn

} of {hn} such that {f(r +hkn
)} is a Cauchy

sequence in X. Applying the diagonal process we can find a subsequence
of {hn} (call it again {hn} to simplify notation) such that {f(r + hn)} is
Cauchy for all rational numbers r (we use the fact that the rationals form a
countable set). The assertion now follows easily by the uniform continuity
of f . The proof of the converse is easier and will be omitted.
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J. von Neumann observed that the above criterion can be used to extend
the theory to arbitrary groups. For example, we shall sometimes consider
functions f : R

n → X in the sequel.

4. Generalized quasicrystal constructions. In this section we es-
tablish some links between the “cut-and-project” method and the theory of
almost periodic functions.

Theorem 2. If f : R
n → X is an almost periodic function and R

k ⊂ R
n

is a subspace (rational or not) then f |Rk is also almost periodic.

P r o o f. First, note the obvious fact that if a sequence of functions fi :
R

n → X is fundamental then a fortiori so is the sequence fi|Rk . Application
of the Bochner criterion is now sufficient to complete the proof.

Example. Let f : R
2 → R be a periodic function, e.g. f(x, y) =

sin x + sin y, and let a one-dimensional subspace be defined by the equa-
tion y =

√
2 x. Since all periodic functions are almost periodic we can

apply the preceding theorem to see that the restricted function f |R(x) =
sin x + sin

√
2 x is almost periodic.

The same argument proves that any function f(x)=
∑k

i=1
ai sin(λix+ϕi)

is almost periodic (it is periodic iff all the quotients λi/λj are rational). In
fact, according to Bohr’s approximation theorem, the functions of this type
form a dense subset in the set of all almost periodic functions equipped with
the uniform convergence metric.

Theorem 3. If f : R
n → C is an almost periodic function and g :

Rn → C is integrable (say
T
|g(u)| du = I < ∞) then the function F (x) =T

f(x − u)g(u) du is also almost periodic.

P r o o f. Observe that

|F (x+τ)−F (x)|=
∣

∣

∣

\
(f(x+τ−u)−f(u))g(u) du

∣

∣

∣
≤I sup |f(x+τ−u)−f(u)|.

Hence every ε-quasiperiod of f becomes an Iε-quasiperiod of F and the
conclusion follows by definition.

Example. For practical reasons we have to choose the integrable func-
tion g in such a way that the integral

T
f(x − u)g(u) du can be explicitly

computed at least for f(x) = sin(λix+ϕi). In the one-dimensional case this

is possible for instance if g(u) = e−u2

, g(u) = e−|u| or g(u) = 1/(u2 + 1).

Put g(u) = e−u2

/
√

π. If

f(x) =

k
∑

i=1

ai sin(λix + ϕi)
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then we can directly calculate that

F (x) =

k
∑

i=1

bi sin(λix + ϕi),

where bi = e−λ2

i
/4ai. We see that F has exactly the same frequencies λi as f

but the corresponding amplitudes have changed considerably. The exact
formula for the new coefficients bi depends on the choice of g, e.g. in the
case described above oscillations with high frequencies are almost completely
eliminated.

It is evident that the preceding theorem remains valid in the case where g
is replaced by a suitable distribution (the simplest case could be Dirac’s
δ—but then F (x) = f(x)).

Combining Theorems 2 and 3 we obtain a new method of transforming a
periodic (or even almost periodic) function f : R

n → X into a new function
F on R

k, which can be proved to be almost periodic as well.

This procedure seems to be slightly more natural from the physical point
of view because it replaces the rather unusual choice of the nearest element
with integration over the whole domain, which we are more likely to en-
counter if we apply physical methods to explain why atoms sometimes form
a quasicrystal rather than a periodic crystal.

Note also that the formula for F in the last theorem resembles the defi-
nition of convolution, which is widely used in the theory of integral transfor-
mations. It is worth pointing out that what can be measured in experiments
is usually a diffraction pattern, i.e. a particular Fourier transform. This con-
nection can also be investigated further.

5. Singularities of almost periodic functions. We now investigate
the behaviour of critical points of almost periodic functions. Let us start
with a simple example of a straightforward computation.

Example. Consider the function f(x) =
√

2 sin x − sin
√

2 x. From the
Taylor formula it is obvious that x = 0 is a degenerate critical point of this
function, since its expansion begins with −(

√
2/3)x3. In order to find other

critical points of f we compute the derivative

f ′(x) =
√

2(cos x − cos
√

2x) = 2
√

2 sin

√
2 + 1

2
x sin

√
2 − 1

2
x.

We can easily see that

f ′(x) = 0 ⇔ x = 2(
√

2 − 1)nπ or x = 2(
√

2 + 1)nπ for some n ∈ Z,

i.e. we obtain two infinite sequences of critical points. It is worth pointing
out that the only common point of these sequences is x = 0.
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We can also check whether any of these critical points is degenerate.
Having in mind that

f ′′(x) = −
√

2 sinx + 2 sin
√

2 x

we see that x would be a degenerate critical point if and only if cos x =
cos

√
2x and sin x =

√
2 sin

√
2 x. These equalities imply immediately

1 = cos2 x + sin2 x = cos2
√

2x + 2 sin2
√

2 x = 1 + sin2
√

2x.

This gives sin x = sin
√

2x = 0, and consequently x = 0.

Let us write down some properties of the critical points of f.

• f has infinitely many nondegenerate critical points, which form two
arithmetic sequences. We can say that the pattern of these points is a (1-
dimensional) quasicrystal.

• There is no critical point of type x3 except x = 0.

• Although the equality 2(
√

2 − 1)mπ = 2(
√

2 + 1)nπ cannot hold
for any integers m, n, its sides may differ by an arbitrarily small num-
ber. For example the difference between x1 = 70(

√
2 − 1)π and x2 =

12(
√

2 + 1)π is less than 1/13 (we have taken 35/6 as a rational approx-
imation of (

√
2 + 1)/(

√
2 − 1)). Note that x1 ≈ x2 ≈ 29π and

√
2 x1 ≈√

2x2 ≈ 41π, which means that f(x− x1) is approximately equal to −f(x).
Analogously f(x − 2x1) ≈ f(x).

This can be heuristically interpreted in the following way: there is no
degenerate critical point except x = 0, but in the whole domain there are
some pairs of close nondegenerate critical points—exactly in the same way
as the function x3 after deformation becomes equivalent to x3 + εx rather
than to x3.

We restrict ourselves to a narrower class of functions in order to explain
this kind of phenomena more systematically.

Definition (see [5]). A function U : R
k → R is called quasiperiodic if

it has a decomposition U = f ◦ ̺, where ̺ : R
k → T

n = R
n/Z

n, k < n, is
a linear function such that the image ̺(Rk) is dense in the torus T

n, and
f : T

n → R belongs to the category we want to consider, for instance is
analytic or smooth.

Example. Let n = 2 and take F (x, y) = a sin 2πx + b sin 2πy. This
function is periodic in both variables and therefore induces a well defined
function f on a two-dimensional torus. Further we assume that k = 1 and
define a linear mapping ̺ : R → T

2 by ̺(t) =
(

t
2π mod 1, α t

2π mod 1
)

where α is any irrational number. The irrationality of α guarantees that ̺
is one-to-one and its image is dense in the torus. The composition U = f ◦̺
is now equal to U(t) = sin t + sin αt.
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To find critical points of the quasiperiodic function U it is necessary to
investigate its differential. Since ̺ is linear we see easily that the critical
points of U are exactly those points at which the restriction of the differential
df to the image of R

k on the torus is the zero functional. This condition is
in fact a system of linear equations connecting the partial derivatives of f.

Definition. For every differentiable function f : T
n → R we denote by

M(f) the set of x ∈ T
n at which the restriction of df to ̺(Rk) ⊂ TxT

n is
zero.

Example. Let us return to the previous example where f(x, y) =
a sin 2πx + b sin 2πy and ̺(t) =

(

t
2π mod 1, α t

2π mod 1
)

, taking for instance

α =
√

2. The set M is clearly defined by the equation a cos 2πx+b
√

2 cos 2πy
= 0. In order to obtain U(x) =

√
2 sin x − sin

√
2 x we must put a =

√
2

and b = −1. The condition defining M now becomes cos 2πx = cos 2πy, i.e.
y = x or y = 1 − x. In fact for any a, b the set M is an analytic manifold
with possible exception of a finite number of points on the torus (in this
case (0, 0) and (1/2, 1/2)).

Proposition. The point x ∈ R
k is a critical point of U = f ◦ ̺ if and

only if ̺(x) ∈ M(f). It is nondegenerate if ̺(x) is a point where ̺(Rk) and

M(f) intersect transversally.

The reader can find similar results in [5] where the density of critical
points is also considered.

Returning to our example (where ̺(t) =
(

t
2π

mod 1,
√

2 t
2π

mod 1
)

) we see
that ̺(x) = (0, 0) ⇔ x = 0 and (1/2, 1/2) 6∈ ̺(R). This explains both the
fact that the function

√
2 sinx − sin

√
2x has only one degenerate critical

point at x = 0 and the occurrence of pairs of arbitrarily close nondegenerate
critical points when the straight line ̺(R) passes close to one of the singular
points (0, 0) and (1/2, 1/2), for instance ̺(70(

√
2 − 1)π) ≈ (0.4975, 0.5025)

and ̺(12(
√

2 + 1)π) ≈ (0.4853, 0.4853).

Remark. It seems important to point out that the validity of the above
result relies strongly on properties of f. The analyticity condition implies
namely that M(f) is an analytic manifold except for finitely many points.
This need not hold true for smooth functions since according to a well known
fact every closed subset of R

n is the zero set of an appropriate C∞ function.
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