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1. Introduction. The Conley index theory was introduced by Charles C. Conley

(1933–1984) in [C1] and a major part of the foundations of the theory was developed in

Ph. D. theses of his students, see for example [Ch, Ku, Mon]. The Conley index associates

the homotopy type of some pointed space to an isolated invariant set of a flow, just as

the fixed point index associates an integer number to an isolated set of fixed points of a

continuous map. Examples of isolated invariant sets arise naturally in the critical point

theory — each isolated critical point of a functional is also an isolated invariant set of its

gradient flow. If the critical point is nondegenerate then its Conley index is equal to the

homotopy type of the pointed k-sphere, where k is the Morse index of that point. There

are other relations to Morse theory, for example a generalization of Morse inequalities

can be achieved.

The aim of this note is to describe briefly some basic facts of the Conley index theory

for (continuous-time) flows. We refer to [C2, Ry, S1, Smo] for a more detailed presentation.

We do not touch more advanced topics of the theory: the Conley index as a connected

simple system (see [C2, Ku, McM, S1]), connection and transition matrices (see [F1, F2,

FM, McM, Mi1, Moe, Re]), infinite dimensional Conley indices (see [Be, Ry], the Conley

index for multivalued flows (see [KM, Mr2]), Conley-type indices for discrete-time flows

(see [Mr3, RS, Sz]), equivariant Conley indices (see [Ba, Ge]), and relations to the Floer

homology (see [S2]). (The list of bibliography items is far from completeness.) Moreover,

we do not present any applications of the index. For some more recent results we refer to

[Mi2]. We also refer to the other articles in this Proceedings.

2. Topological background. In this section X denotes an arbitrary topological

space. Let A ⊂ X. Assume that A is nonempty. Then X/A is defined as the quotient
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space obtained by identifying all points of A. The point in X/A obtained by collapsing

of A is denoted by [A]. In order to define X/A in the case A = ∅ we fix a point ∗ — we

treat it as a point outside of any set considered, define X/∅ := X ∪{∗}, and put [∅] := ∗.
Let x0 ∈ X. A pair (X,x0) is called a pointed topological space (or a space with a base

point). In particular, the pair (X/A, [A]) is an example of a pointed space even if X or A

is empty. Let (Y, y0) be another pointed space. We write f : (X,x0) → (Y, y0) provided

f : X → Y is continuous and f(x0) = y0. If g : (X,x0)→ (Y, y0) then f ' g relx0 means

the existence of a continuous map F : X × [0, 1]→ Y such that F (·, 0) = f , F (·, 1) = g,

and F (x0, t) = y0 for every t ∈ [0, 1]. We define

(X,x0) ∨ (Y, y0) := (X × {y0} ∪ {x0} × Y, (x0, y0)),

(X,x0) ∧ (Y, y0) := (X × Y/X ∨ Y, [X ∨ Y ]).

We say that (X,x0) and (Y, y0) have the same pointed homotopy type provided there

exist maps f : (X,x0) → (Y, y0) and g : (Y, y0) → (X,x0) such that g ◦ f ' idX relx0
and f ◦ g ' idY rel y0. The pointed homotopy type of (X,x0) is denoted by [X,x0]. We

define the trivial pointed homotopy type as 0 := [{∗}, ∗]. One can check correctness of

the following definitions:

[X,x0] ∨ [Y, y0] := [(X,x0) ∨ (Y, y0)],

[X,x0] ∧ [Y, y0] := [(X,x0) ∧ (Y, y0)].

By Σk we denote [Sk, s0] and by Πk we denote [RP k, p0], where Sk and RP k denote the

k-dimensional sphere and real projective space, respectively, and s0 and p0 are arbitrary

points. Σ0 is sometimes denoted by 1 since it is the unit for the multiplication ∧.

By p(t,X,A) we denote the Poincaré polynomial of a pair (X,A), i.e. the formal

series
∑∞
k=0 βkt

k, where βk denotes the dimension of the k-th singular homology vec-

tor space with rational coefficients Hk(X,A;Q) (we allow βk to be equal to ∞). If the

Poincaré polynomial p(t,X,A) is a polynomial in the usual sense then the Euler-Poincaré

characteristic of (X,A) is defined as

χ(X,A) := p(−1, X,A).

By the homotopy invarance of homology we can define

p(t, [X,x0]) := p(t,X, {x0}).

In particular, p(t,Σk) = tk for every k and p(t,Πk) = 0 provided k is even, and p(t,Πk) =

tk provided k is odd. We also have

p(t, [X,x0] ∨ [Y, y0]) = p(t, [X,x0]) + p(t, [Y, y0]),

p(t, [X,x0] ∧ [Y, y0]) = p(t, [X,x0])p(t, [Y, y0])

(in the latter equation we assume that X and Y are CW-complexes).

Assume that X is an ENR (Euclidean neighborhood retract). Let f : X → X be a

continuous map and put

Fix f := {x ∈ X : f(x) = x}.
A set P is called an isolated set of fixed points of f if it is a compact and open subset

of Fix f . If Q is an isolated set of fixed points of g : X → X, we write (f, P ) ' (g,Q)
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provided there exists a continuous map F : X × [0, 1] → X × [0, 1], F (x, t) = (ft(x), t)

for some maps ft and an isolated set P ∗ of fixed points of F such that f0 = f , f1 = g,

P = {x : (x, 0) ∈ P ∗}, and Q = {x : (x, 1) ∈ P ∗}.
A number ind(f, P ) ∈ Z, called the fixed point index, is associated to an isolated set of

fixed points P of f (see [Do]; we slightly changed the notation from that book in order to

be consistent with the notation used in the Conley index theory). Below we recall some

of its properties:

(i) ind(f, ∅) = 0.

(ii) If P and Q are isolated sets of fixed points of f and P ∩Q = ∅ then ind(f, P ∪Q) =

ind(f, P ) + ind(f,Q).

(iii) If f : X → X and g : Y → Y , P and Q are isolated sets of fixed points of f and g,

respectively, then ind(f × g, P ×Q) = ind(f, P )ind(g,Q).

(iv) If (f, P ) ' (g,Q) then ind(f, P ) = ind(g,Q).

There are other important properties of the fixed point index, however we do not list

them here.

3. The Conley index. Let X be a metrizable locally compact space and let φ be a

flow in X, i.e. a contiuous map

φ : X × R 3 (x, t)→ φt(x) ∈ X

such that φ0 = idX and φs ◦ φt = φs+t. For an arbitrary set A ⊂ X put

InvA := {x ∈ A : ∀t ∈ R : φt(x) ∈ A},
A− := {x ∈ A : ∃{εn}, 0 < εn → 0 : φεn(x) 6∈ A}.

A compact set S ⊂ X is called an isolated invariant set provided there exists U , a

neighborhood of S, such that S = InvU . Such a U is called an isolating neighborhood. A

compact set B ⊂ X is called an isolating block if B− is also compact and InvB ⊂ intB.

The two basic results for the theory are:

Theorem 1. If U is an isolating neighborhood of S then there exists an isolating block

B such that S = InvB and B ⊂ U .

Theorem 2. If B1 and B2 are isolating blocks such that InvB1 = InvB2 then

[B1/B
−
1 , [B

−
1 ]] = [B2/B

−
2 , [B

−
2 ]].

It follows by Theorems 1 and 2 that if S is an isolated invariant set then the pointed

homotopy type

h(φ, S) := [B/B−, [B−]],

where B is any isolating block such that S = InvB, is correctly defined. We call it the

Conley index of S. (Frequently, in the definition of the index the notion of index pair

is used. Each pair (B,B−), where B is an isolating block is an example of index pair.)

Before we list properties of the Conley index, we fix the following notation. Let S and T

be isolated invariant sets for the flows φ and ψ, respectively, on the phase space X. We

write (φ, S) ' (ψ, T ) provided there exists a flow Φ on X× [0, 1], an isolated invariant set

S∗ for Φ, and flows φσ on X, σ ∈ [0, 1] such that Φt(x, σ) = (φσt (x), σ), φ0 = φ, φ1 = ψ,
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S = {x : (x, 0) ∈ S∗}, and T = {x : (x, 1) ∈ S∗}. If ψ is a flow on a space Y , we define

the flow φ#ψ on X×Y by (φ#ψ)t(x, y) := (φt(x), ψt(y)). Properties of the Conley index

resemble the ones of the fixed point index:

(I) h(φ, ∅) = 0.

(II) If S and T are isolated invariant sets for φ and S ∩ T = ∅ then h(φ, S ∪ T ) =

h(φ, S) ∨ h(φ, T ).

(III) If S and T are isolated invariant sets for flows φ on X and ψ on Y , respectively,

then h(φ#ψ, S × T ) = h(φ, S) ∧ h(ψ, T ).

(IV) If (φ, S) ' (ψ, T ) then h(φ, S) = h(ψ, T ).

Actually, there is a formula linking both indices (see [Mr1, Sr]):

Proposition 3. Assume that S is an isolated invariant set of a flow φ on an ENR-

space X. Put St := {x ∈ S : φt(x) = x}. Then, for every t > 0, St is an isolated set of

fixed points of φt and
ind(φt, St) = χ(h(φ, S)).

In particular, if χ(h(φ, S)) 6= 0 then there is at least one stationary point in S. In

the case of a smoth flow the above formula is given in [Mc]. The Conley index provides

some information on the topology of the isolated invariant set. Such information can be

deduced from a long exact sequence from [Ch] and from results on Lusternik-Schnirelman

type categories in [Po].

In the remainder of this section we assume that X is a smooth manifold and φ is

generated by the equation
ẋ = f(x)

where f : X → TX is a C1-vector-field. Let x0 ∈ X be a stationary point of φ (which

means f(x0) = 0). We call it hyperbolic of index k if dx0f does not have eigenvalues on

the imaginary axis and there are exactly k eigenvalues (counted with multiplicities) with

positive real part.

Proposition 4. Assume that x0 is hyperbolic of index k. Then {x0} is an isolated

invariant set and
h(φ, {x0}) = Σk.

Let γ be a nontrivial periodic orbit of φ. It is called hyperbolic of index k if for some

(equaivalently: any) point x ∈ γ the diferential at x of the Poincaré map of a section of γ

through x does not have eigenvalues in the unit circle and there are exactly k eigenvalues

(counted with multiplicities) outside of the unit disc. Then the unstable manifold Wu(γ)

of γ is of dimension k+ 1 and we call γ untwisted (twisted) provided Wu(γ) is orientable

(nonorientable, respectively).

Proposition 5. Assume that γ is hyperbolic of index k. Then γ is an isolated in-

variant set and

(a) if k = 0 then h(φ, γ) = [S1 ∪ {∗}, ∗],
(b) if k ≥ 1 and γ is untwisted then h(φ, γ) = Σk ∨ Σk+1,

(c) if k ≥ 1 and γ is twisted then h(φ, γ) = Π2 ∧ Σk−1.

(One can check that [S1 ∪ {∗}, ∗] is not the same as Σ0 ∨ Σ1.)
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4. Morse decompositions. Some ideas in the Conley index theory are derived from

research on critical points of functionals. Let X be a Riemannian manifold of dimension

n and let f : X → R be a C1 map with locally Lipschitzean gradient ∇f . The equation

ẋ = −∇f(x)

induces a (local) flow φ on X. Critical points of f (i.e. points such that the derivative of

f is zero) coincide with stationary points of φ. Moreover, if x0 is an isolated critical point

of f (i.e. the unique critical point in some of its neighborhood) then {x0} is an isolated

invariant set for φ. Assume additionally that f is of C2 class. A critical point x0 is called

nondegenerate if the Hessian of f at x0 is a nondegenerate quadratic form. There exists

a canonical base in which the Hessian has a diagonal form with k negative and n − k
positive entries. The number k is an invariant of the nondegenerate critical point and is

called its Morse index. The Morse Lemma asserts that if x0 is a nondegenerate critical

point of index k then there exists a chart g : U → Rn with g(x0) = 0 such that

f(g−1(v)) = f(x0)−
k∑
i=1

(vi)2 +

n∑
i=k+1

(vi)2, (1)

where v = (v1, . . . , vn) ∈ g(U). Since each nondegenerate critical point is isolated, the

Conley index of {x0} is defined and, by (1),

h(φ, {x0}) = Σk.

Thus the Conley index directly generalizes the Morse index — in particular, it applies to

arbitrary isolated critical points, not to nondegenerate ones only.

It is natural to look for further results on the Conley index which are motivated by

Morse theory. One of ideas comes from the observation that critical points are naturally

ordered by their f -values. This implies some restrictions on possible trajectories connect-

ing them — they must go from points greater to points less in that order, which leads to

a general rule of endowing an order relation in a collection of disjoint invariant subsets

of an isolated invariant set. More exactly, let φ be a flow on a metrizable and locally

compact space X and let S be an isolated invariant set for φ. Assume that M is a finite

set of disjoint compact invariant subsets of S. A (partial) order relation ≤ inM is called

admissible if for every x ∈ S \
⋃
M there are M < N in M such that α(x) ⊂ N and

ω(x) ⊂M . The setM endowed with an admissible order is called a Morse decomposition

and its elements are called Morse sets (see [C2, Smo]). In particular, each Morse set is

an isolated invariant set for φ. In the following result we present a formula on Poincaré

polynomials of Morse sets. Traditionally it is called “Morse inequalities”.

Theorem 6 (Morse inequalities). If S is an isolated invariant set for the flow φ and

M is its Morse decomposition then∑
M∈M

p(t, h(φ,M)) = p(t, h(φ, S)) + (1 + t)Q(t), (2)

where Q(t) is a formal series with coefficients being nonnegative integers or ∞.

The above formula generalizes the classical Morse inequalities due to Morse (for Morse

functions) and to Smale (for Morse-Smale flows, see [Sma]). Indeed, let X be a compact
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smooth n-dimensional manifold, φ be a smooth flow on X and assume that the chain

recurrent set consists of hyperbolic stationary points and hyperbolic periodic orbits only.

It follows that the stationary points and periodic orbits form the Morse decomposition of

X. Denote by βk the k-th Betti number of X, by ck the number of stationary points of

index k, and byAk the number of untwisted periodic orbits. Since the Poincaré polynomial

of Π2 ∧ Σk−1 is equal to 0, twisted periodic orbits do not appear in (2). Thus, there are

terms βkt
k, ckt

k, and Akt
k + Akt

k+1 in the formula (2). By the equation (1 + t)−1 =

1− t+ t2 − . . . and comparision of monomials one can deduce that

ck − ck−1 + . . .± c0 +Ak ≥ βk − βk−1 + . . .± β0,
where 0 ≤ k ≤ n. In particular,

n∑
i=0

(−1)ici = χ(X).

References

[Ba] T. Bartsch, Topological methods for variational problems with symmetries, Lecture
Notes 1560, Springer-Verlag, Berlin, 1993,

[Be] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann.
Math. Pura Appl. 4 (1991), 231–305.

[Do] A. Dold, Lectures on Algebraic Topology , Springer-Verlag, Berlin, Heidelberg and New
York, 1980.

[Ch] R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Differential
Equations 12 (1972), 330–352.

[C1] C. C. Conley, On a generalization of the Morse index , in: Ordinary Differential Equa-
tions, 1971 NRL–MRC Conference (L. Weiss, Ed.), Academic Press, New York and
London, 1972, 133–146.

[C2] C. C. Conley, Isolated Invariant Sets and the Morse Index , CBMS Regional Conf.
Ser. Math. 38, AMS, Providence, R.I., 1978.

[F1] R. Franzosa, The continuation theory for Morse decompositions and connection ma-
trices, Trans. Amer. Math. Soc. 310 (1988), 781–803.

[F2] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer.
Math. Soc. 311 (1989), 561–592.

[FM] R. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on
(not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988),
270–287.
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