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Abstract. Recent results on the Conley index theory for discrete multi-valued dynamical
systems with their consequences for the computation of the index for representable maps are
recapitulated. The terminology is simplified with respect to previous presentations, some super-
fluous hypotheses are abandoned and some conclusions are proved in a simpler way.

1. Introduction. Recent applications of the Conley index theory to study the cha-

otic dynamics given by Mischaikow, Mrozek and co-authors [9, 10, 11] involve numerical

computations based on the concept of representable set-valued maps. Those computations

motivated the generalization of the Conley index theory to set-valued maps in [4].

A continuous single-valued map whose dynamics is to be studied usually is not given

by an explicit formula but it must be investigated numerically. Precise error estimates

provide sets where the exact values of f are located and so one obtains a multivalued

map F whose graph contains the graph of f . Such maps F can be constructed so that

they are finitely representable (e.g. their graphs are finite unions of cubes of a given grid

in Rn) and yet belong to the class of upper semicontinuous maps which share many nice

properties with continuous maps. The clue for applying the set-valued maps lies in the

fact that many of their properties are hereditary, i.e. they carry over from a set-valued

map F to any selection f of F . By computing e.g. the index pair or the Conley index for

F , we obtain an answer for f .

Applications of this technique became so popular that we are motivated to recapitulate

in this paper the most important concepts and results related to the Conley index for

set-valued maps. Most of the matter discussed in Sections 2 and 3 was presented in

[12] for continuous maps, in [4, 5] and in subsequent expositions for set-valued maps
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but, as time passed, many improvements came about. Several definitions were simplified

and some superfluous hypotheses abandoned. Only after having written [4], the authors

realized that their result implies, as an easy consequence, the existence of index pairs

which are stable under small perturbations of a map f . That, in turn, allowed to present

simpler proofs of results of [12, 14] and [4] and to obtain other useful conclusions. In [6]

an easier proof of the functoriality of the Conley index is presented. The existence of

polyhedral index pairs for a map in Rn is deduced from [4] by Szymczak and algorithms

for computing index pairs are given in [13, 16]. At the end of Section 3 we present a much

easier proof of the homotopy property of the Conley index than those given in [12, 14]. In

Section 4 we briefly discuss the application of the general theory to representable maps

studied among others in [1, 11, 13, 16] and we comment on the issue of computing their

homology which is investigated in [1, 7, 8, 11].

2. Isolating neighborhoods and index pairs. We first recall some terminology

concerning set-valued maps F : X → P(Y ), where X,Y are metric spaces and P(Y ) is

the set of all subsets of Y . The image F (A) of A ⊂ X by F , the graph G(F ) of F , the

inverse F−1 : Y → P(X) of F , and the effective domain D(F ) of F are respectively

defined by

F (A) :=
⋃
{F (x) : x ∈ A},

G(F ) := {(x, y) ∈ X × Y : y ∈ F (x)},
F−1(y) := {x ∈ X : y ∈ F (x)}, y ∈ Y ,

D(F ) := {x ∈ X : F (x) 6= ∅}.
Recall that F is upper semicontinuous (usc) if and only if the set {x ∈ X : F (x) ⊂ U}

is open for any open U ⊂ Y or, equivalently if F−1(A) = {x ∈ X : F (x) ∩ A 6= ∅} is

closed for any closed A ⊂ Y . It is known that a map F : X → P(Y ) with compact values

is usc if and only if the following two conditions hold

1. G(F ) is closed,

2. F (K) is compact for any compact K ⊂ X.

Hence the inverse F−1 of an usc map F is usc if and only if F−1(K) is compact for any

K ⊂ Y . It is easily seen that the effective domain D(F ) of an usc map F is closed.

Let now (X, d) be a given locally compact metric space and F : X → P(X) an usc

map with compact values (empty values are allowed). Given A ⊂ X, we denote by A its

closure, intA its interior, ∂A its boundary, and we put Br(A) = {x ∈ X : d(x,A) < r}.
Given x ∈ X, an orbit (respectively, positive orbit, negative orbit) of x for F is a

sequence {xn}n∈Z (respectively {xn}n≥0, {xn}n≤0) such that

x0 = x and xn+1 ∈ F (xn)

for all n ∈ Z (respectively, for all n ≥ 0, n < 0).

Note that if f : X → X is a single-valued continuous map and F is defined by

F (x) := Bα(f(x)) then {xn}n∈Z is an orbit for F if and only if it is an α-pseudo orbit

for f (cf. [2]).

Given a compact N ⊂ X, we define its invariant parts invN (respectively, inv+N ,

inv−N) to be the set of those x ∈ N for which there exists an orbit (respectively, positive
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orbit, negative orbit) of x for F which is contained in N . It is easily seen that invN =

inv+N ∩ inv−N . Below, we give a slightly different description of these sets. Let FN :

N → P(N) be given by

FN (x) := F (x) ∩N, x ∈ N.

It is clear that FN is usc, moreover FN
−1 is usc, which does not need to be true about

F−1. The iterates of FN which are recursively defined by FN
n+1(x) := FN (FN

n(x)) are

usc and so are the iterates FN
−n of FN

−1. We have the following

Proposition 2.1. Let N ⊂ X be compact. Then

(a) inv+N =
⋂
n≥0D(FN

n) =
⋂
n≥0 FN

−n(N).

(b) inv−N =
⋂
n≥0D(FN

−n) =
⋂
n≥0 FN

n(N).

The first identity of (a) and (b) is proved in [4]. The second identity easily follows

from the first one.

As an immediate consequence of Proposition 2.1, the sets inv+N, inv−N and invN

are compact.

Let diamNF := sup{diamF (x) : x ∈ N} and dist(A,B) := min{d(x, y) : x ∈ A,

y ∈ B}, A, B ⊂ X. A compact subset N ⊂ X is called an isolating neighborhood for F if

BdiamNF (invN) ⊂ intN

or, equivalently, if dist(invN, ∂N) > diamNF . A set S ⊂ X is called an isolated invariant

set of F if there exists an isolating neighborhood N ⊂ X with S = invN . A pair

P = (P1, P2) of compact subsets P2 ⊂ P1 ⊂ N is called an index pair for F and N if the

following conditions are satisfied:

(a) F (Pi) ∩N ⊂ Pi, i = 1, 2,

(b) F (P1 \ P2) ⊂ N ,

(c) invN ⊂ int (P1 \ P2).

The following theorem is proved in [4]:

Theorem 2.1. Let N be an isolating neighborhood for F and W a neighborhood of

invN in N . Then there exists an index pair P for F and N with P1 \ P2 ⊂W .

We shall briefly outline the construction of P discussed in [4]. Given A ⊂ N we let

FN
+(A) :=

⋃
n≥0

FN
n(A).

It is proved that one can find a compact neighborhood A of inv−N in N and an open

neighborhood U of inv+N such that the pair P = (P1, P2) given by

P1 := FN
+(A), P2 := FN

+(P1 \ U)

is an index pair for F and N with P1 \P2 ⊂W . The difficulty of the proof lies in the fact

that FN
+ does not need to be usc. Nevertheless, FN

+ behaves well on compact subsets of

N which either contain inv−N or are disjoint with inv+N . When F is a representable map,

the construction is simplified and algorithms for computing P are provided in [13, 15].
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We shall now discuss isolating neighborhoods and index pairs for families of maps. In

order to distinguish between different maps, we use the notation inv (N,F ), inv− (N,F ),

inv+ (N,F ) for invariant parts of N with respect to F . First, we have the following

Proposition 2.2. Let F : X → P(X) and G : X → P(X) be two compact valued usc

maps with F ⊂ G, i.e. F (x) ⊂ G(x) for all x ∈ X. Let N be an isolating neighborhood

for G and P an index pair for G and N . Then

1) inv+(N,F ) ⊂ inv+(N,G) and inv−(N,F ) ⊂ inv−(N,G),

2) N is an isolating neighborhood for F ,

3) P is an index pair for F .

Although the proof is simple routine verification, Proposition 1.1 has very deep con-

sequences. It states that the property of being an isolating neighborhood or an index pair

is hereditary, so it carries over from a multivalued map to its selections.

Let now Λ be an interval in R and F : X × Λ → P(X) an usc map with compact

values. We set Fλ : X → P(X), Fλ(x) := F (x, λ). The following lemmas are proved in

[4, 5]:

Lemma 2.1. Let N⊂X be compact. Then the maps λ→ inv+(N,Fλ), λ→ inv−(N,Fλ)

and λ→ inv(N,Fλ) are usc.

Lemma 2.2. Let λ0 ∈ Λ and let N be an isolating neighborhood for Fλ0 . Then N is

an isolating neighborhood for Fλ, for all λ sufficiently close to λ0.

The conclusion cf Lemma 2.1 would not be true for index pairs. In [14] a counter-

example is given. However, we derive below the existence of locally constant index pairs

as a simple consequence of Theorem 2.1 and Proposition 2.2.

Corollary 2.1. Let N be an isolating neighborhood for Fλ, for all λ ∈ Λ (that may

be assumed in view of Lemma 2.2). Then, for each λ0 ∈ Λ there exists an index pair P

for Fλ0
which also is an index pair for Fλ provided λ is sufficiently close to λ0.

Proof. Let Gr(x) := Br(Fλ0(x)), r ∈ [0, 1]. Then G : X × [0, 1]→ P(X) is usc with

compact values and by Lemma 2.2 applied for G there exists 0 < ε ≤ 1 such that N is

an isolating neighborhood for Gε. Since F is usc, there exists δ > 0 such that Fλ ⊂ Gε
provided |λ− λ0| ≤ δ. By Proposition 2.2, P is an index pair for all those Fλ.

Corollary 2.2. Let f : X → X be a continuous map and N an isolating neigh-

borhood for f . Then there exists an index pair P for f and N which is invariant under

all sufficiently small C0 perturbations of f , i.e. continuous maps fε : X → X such that

d(f(x), fε(x)) ≤ ε for all x ∈ N .

Proof. Put Fλ(x) := Bλ(f(x)) and apply Corollary 2.1. If ε > 0 is sufficiently small

then both f and fε are selections of Fλ so Proposition 2.2 may be used as before.

3. Cohomology of acyclic-valued maps and the Conley index. Let X,Y be

locally compact metric spaces. In what follows, H∗(.) stands either for the Čech coho-

mology or the Alexander-Spanier cohomology with field coefficients. In general, we need

here any cohomology functor satisfying the homotopy, exactness, excision, and dimension
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axioms in [15, Ch. 5, Sect. 4] and the continuity property [15, Ch. 6, Sect. 6]. In applica-

tions to representable maps discussed in [1, 13], the only spaces appearing in the study

are finite polyhedra and, in that case, all what is said below carries over to any homology

or cohomology theory with either field or integer coefficients.

Let Ac(X) stand for the family of all non-empty compact sets K of X which are

acyclic, i.e. H̃∗(K) = 0, where H̃∗(K) is the reduced cohomology. We recall from [15,

Ch. 6, Sect. 9] the Vietoris-Begle Theorem:

Theorem 3.1. Let f : X → Y be a continuous map satisfying the following conditions

1) f is proper, i.e. f−1(K) is compact for any compact K ⊂ Y ,

2) f is surjective,

3) f−1(y) is acyclic for all y ∈ Y .

Then f induces an isomorphism H∗(f) : H∗(Y )→ H∗(X).

For simplicity of notation, we put f∗ = H∗(f). Let now F : X → Ac(Y ) be an

usc map. Then F induces a map F ∗ : H∗(Y ) → H∗(X) in cohomology as follows. Let

p : G(F ) → X and q : G(F ) → Y be canonical projections from the graph of F . Then

p satisfies the hypotheses of the Vietoris-Begle Theorem, so p∗ : H∗(X)→ H∗(G(F )) is

an isomorphism. One defines

F ∗ := (p∗)
−1
q∗.

In case when f : X → Y is continuous and F = {f}, p is a homeomorphism, so the

above definition coincides with the usual one. When F is set-valued and f is a continuous

selection of F , then f∗ = F ∗. A very simple proof of that fact (for homology) is presented

in [1] and, by the same arguments, we get

Proposition 3.1. Let F,G : X → Ac(Y ) be usc maps such that F ⊂ G. Then

F ∗ = G∗.

All what is said above clearly extends to maps F : (X,A)→ (Ac(Y ),Ac(B)) on pairs

of spaces, i.e. maps F : X → Ac(Y ) with F (A) ⊂ B, where A is a closed subset of Y . We

obtain maps F ∗ : H∗(Y,B)→ H∗(X,A) induced in the relative cohomology.

Proposition 3.2 (cf. [4]). If P is an index pair for F and N then

a) (P1, P2) ⊂ (P1 ∪ F (P2), P2 ∪ F (P2)) ⊂ (P1 ∪ (X \ intN), P2 ∪ (X \ intN)),

b) the above inclusions induce isomorphisms in relative cohomology.

We put T (P ) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN)), let iP : P → T (P ) be the

inclusion map and FP : P → Ac(T (P )) be the restriction of F . The endomorphism IP of

H∗(P1, P2) given by

IP := F ∗P ◦ (i∗P )
−1

is called an index map of F associated with P . In some expositions iP is defined as the

first inclusion in (a) only. The advantage of going further to T (P ) is that given different

maps sharing the same index pair P , T (P ) does not depend on the map.

There are now several ways [12, 14, 17] of defining the Conley index of an isolated

invariant set S = invN of which the definition given in [12] via the Leray reduction

described below is the most convenient for computation.
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Set E := H∗(P ) and T := IP . The generalized kernel of T is

gKerT :=
⋃
n≥1

KerTn

Since KerTn ⊂ KerTn+1 for all n ≥ 1, gKerT is a vector subspace of E and since

T (gKerT ) ⊂ gKerT , the quotient map T ′ := [T ] : E′ → E′, where E′ = E/gKerT , is

well defined. Note that T ′ is a monomorphism. In applications, E′ is finite dimensional

and then T ′ is an isomorphism. In general, we restrict T ′ to the subspace E′′ = gImT ′,

where gImT ′, the generalized image of T ′ is

E′′ = gImT ′ =
⋂
n≥0

Im (T ′)
n
.

Since T ′(E′′) = E′′, the restriction T ′′ = T ′|E′′ : E′′ → E′′ is a well defined auto-

morphism of E′′. The Leray reduction of the pair (E, T ) is the pair L(E, T ) := (E′′, T ′′)

consisting of a graded vector space and its automorphism. We now define the Conley

index of S by

Con∗(S) = (CH∗(S),X ∗(S)) := L(H∗(P ), IP ).

It is proved in [4] that this definition does not depend on the choice of an isolating

neighborhood N of S of an index pair P for F and N . If F is a single-valued continuous

map generated by a flow then IP is the identity, so L(H∗(P ), IP ) = (H∗(P ), I).

We shall now prove the homotopy property for the Conley index. We recall from [3]

the following

Theorem 3.2. Let F : X × [0, 1] → Ac(Y ) be an usc map. Then F ∗λ : H∗(Y ) →
H∗(X) does not depend on the choice of λ ∈ [0, 1].

Actually, the above homotopy theorem is discussed in [3] for homology but it naturally

extends to cohomology.

Corollary 3.1. Let F : X × [0, 1] → Ac(Y ) be an usc map and N an isolating

neighborhood for all Fλ, λ ∈ Λ (due to Lemma 2.2 this assumption is not too restrictive).

Put Sλ := inv(N,Fλ). Then Con∗(Sλ) does not depend on λ.

Proof. Take arbitrary λ0 ∈ [0, 1]. By Corollary 2.1 there exists δ > 0 and a pair

P = (P1, P2) which is an index pair for Fλ provided |λ− λ0| ≤ δ. By Theorem 3.2, (Fλ)
∗
p

is independent of those λ, so is iP and, consequently, the index map IP is the same for all

λ with |λ−λ0| ≤ δ. Hence λ→ Con∗(Sλ) is locally constant and, since [0, 1] is connected,

it is constant.

4. Application to representable maps. The general notions of grids, represent-

able sets, and representable maps are presented with all details in [13]. In this paper we

concentrate our attention on cubic grids in X = Rn discussed in [1].

The cubic grid Ek of mesh 1
k , k = 0, 1, 2, . . . is the collection of all cubes e ∈ Rn of the

form e = 1
k (x+ I1 × I2 × . . .× In) where x ∈ Zn and Ij is either the open interval ]0, 1[

or singleton {0} or {1}.
The elements of Ek are called elementary cubes. Note that Rn decomposes as the

disjoint union of e ∈ Ek. There are many advantages of such decompositions over simpli-
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cial triangulations, for example, the product of two elementary cubes is an elementary

cube which is not true about simplexes. A grid El is a subgrid of Ek if k|l (k divides

l). A subset X of Rn is said to be representable over Ek or briefly, k-representable if

there exists a finite E ′ ⊂ Ek such that X =
⋃
E ′ and X = X. In particular, X is a

finite polyhedron. The set E ′ is uniquely defined and denoted by Ek(X). The family of

all k-representable polyhedra in Rn is denoted by Rk. The following notation is adopted

for any X ∈ Rk:

Eqk(X) := {e ∈ Ek : dim e = q} and Eqk(X) = Ek(X) ∩ Eq,
Ekmax(X) := {σ ∈ Ek : σ is not a proper face of any e ∈ Ek(X)},
ok(X) :=

⋃
{e ∈ Ek : e ∩X 6= ∅},

stk(X) := ok(X) =
⋃
{e : e ∈ Ek, e ∩X 6= ∅}.

Let X ∈ Rk. A set-valued map F : X → Rk is representable over Ek or, briefly,

k-representable if its graph G(F ) is closed and F is constant on elementary cubes, i.e.

F (x) = F (y) whenever x, y ∈ e, e ∈ Ek(X). It follows that F is usc and that G(F ) is a

k-representable set in the product space R2n.

A k-representable map F is called admissible if

i) F (σ) is convex for all σ ∈ Emaxk (X),

ii) F (e) =
⋃
{F (σ) : e is a face ofσ, σ ∈ Emaxk (X)}, for all e ∈ Ek(X),

iii) A(e) :=
⋂
{F (σ) : e is a face ofσ, σ ∈ Ek(X)} 6= ∅, for all e ∈ Ek(X).

The above conditions imply that F (e) is star-shaped and hence acyclic for all e ∈
Ek(X). If a representable map F admits a continuous selection f then (iii) automatically

is satisfied since f(e) ⊂ A(e). Conversely, any admissible map has a continuous piece-wise

linear selection.

Let X ∈ Rk and f : X → Rn be a continuous map. Any k-representable admissible

map F : X → Rk with f ∈ F is called a k-representable collar of f . There exists

one with the smallest values which is called the k-representation of f and denoted by

Ff,k : X → Rk.

It is verified that, for any continuous map f : Rn → Rn and an isolating neighborhood

M for f one can find k and an isolating neighborhood N ∈ Rk for f . Next, one can find

l such that k|l and if F = Fk,l : N → Rl then diamNF < dist(invN, ∂N), so that N is

an isolating neighborhood for F . Thus the study of the Conley index for f reduces to the

study of Conley index for F . The definition of the index pair for f and N simplifies a lot

in that case. First, FN
n(N) ∈ Rl for all n ∈ Z thus the intersections in Proposition 2.1

are over a finite family of representable sets and inv−N, inv+N ∈ Rl. It is proved in [16]

that one may define

P1 := stm(inv−N), P2 := P1 \ om(inv+N),

where m > l, l|m. As a consequence, P1, P2 ∈ Rm. Algorithms for verifying that a given

N ∈ Rl is an isolating neighborhood for F and for computing a representable index pair

are given in [13, 16]. The next goal is to compute Con∗(S) for an admissible map F and

a representable index pair P . But this reduces to computation of the map induced in

cohomology.
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Given X ∈ Rm, let C(X,m) = {Cq(X,m)}q∈Z be the finitely generated free chain

complex, where Cq(X,m) is generated by Eqm(X) for all q (Cq(X,m) = 0 if q < 0 or q > n).

We refer to [1] for the definition of the boundary map ∂q : Cq(X,m) → Cq−1(X,m).

C(X,m) is called a cubical chain complex and its homology is isomorphic to the simplicial

homology of X. We recall from [1] the following

Theorem 4.1. Let X,Y ∈ Rm and let F : X → P(Y ) ∩ Rm be an admissible m-

representable map. Then there exists a chain map ϕ : C(X,m) → C(Y,m) with the

property

|ϕq σ| ⊂ A(σ) for all σ ∈ Eqm(X),

where |ϕq σ| is the support of the chain ϕq σ. Moreover,

i) Any two chain maps with the above property are chain homotopic,

ii) ϕ∗ = F∗ (and so ϕ∗ = F ∗)

In [1], an explicit construction of the chain map ϕ is provided. An algorithm for

computing ϕ is in progress.
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