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Abstract. Let A, X1 and X2 be topological spaces and let i1 : A → X1, i2 : A → X2

be continuous maps. For all self-maps fA : A → A, f1 : X1 → X1 and f2 : X2 → X2 such
that f1i1 = i1fA and f2i2 = i2fA there exists a pushout map f defined on the pushout space
X1 tA X2. In [F] we proved a formula relating the generalized Lefschetz numbers of f , fA,
f1 and f2. We had to assume all the spaces involved were connected because in the original
definition of the generalized Lefschetz number given by Husseini in [H] the space was assumed to
be connected. So, to extend the result of [F] to the not necessarily connected case, a definition
of generalized Lefschetz number for a map defined on a not necessarily connected space is given;
it reduces to the original one when the space is connected and it is still a trace-like quantity. It
allows us to prove the pushout formula in this more general case and therefore to get a tool for
computing Nielsen and generalized Lefschetz numbers in a wide class of spaces.

1. Introduction. As explained in the abstract, the aim of the paper is to give a
proof of the pushout formula in the more general case where spaces are allowed to be
non-connected. The main difference between the connected and the non-connected case
is that if X is connected then so is the universal cover X̃ of X and the q-dimensional
cellular chain group Cq(X̃) is a free finitely generated right Zπ1(X)-module; on the other
hand if X is disconnected then Zπ1(X;x) depends on the choice of the base point x and
for all x ∈ X the chain group Cq(X̃) is not a free Zπ1(X;x)-module. Moreover we want
to have a trace of the homomorphism Cq(f̃) where f̃ : X̃ → X̃ and so a generalized
Lefschetz number counting algebraically the number of fixed points of f . Hence we define
the ring Λ(X) which contains Zπ1(X;x0) for every x ∈ X and we prove that Cq(X̃) is a
finitely generated projective Λ(X)-module. It is a free Λ(X)-module if and only if X is
connected. In any case, it is possible to define traces following [S], [H] and the generalized
Lefschetz numbers for non-connected spaces.
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We first have to extend the notion of Reidemeister classes to the case of a ring which
could be not a group ring. This is done in section 2.1; in the same section we prove
other propositions which will be used later. In the following sections we prove standard
properties of traces and Lefschetz numbers in this algebraic setting. In section 3.1 we
define the generalized Lefschetz number of a map defined on a finite CW -complex even
when X is not connected and give the relation between this case and the connected one.

In section 3.2 we give standard definitions and examples of pushout construction
and some preliminary facts. Finally in section 4 we give the statement and proof of the
pushout formula.

I wish to express my sincere thanks to the Organizing Committee and in particular
to Prof. Brown and Prof. Kucharski. I wish to thank Prof. Piccinini for his help.

2. Algebraic preliminaries

2.1. The Reidemeister group of a ring homomorphism. In this section we will intro-
duce a generalization of the classical Reidemeister set defined for group homomorphisms
and will show some simple facts that will be needed later.

Let Λ be a ring (with unit element) and f : Λ→ Λ be an endomorphism of Λ. Let (Λ)f
denote the subgroup of Λ generated by all the elements λ1λ2 − λ2f(λ1) with λ1, λ2 ∈ Λ.
We define the Reidemeister group of f as the additive group of Λ modulo (Λ)f and we
will denote it with R(f). We will denote by [λ] the obvious projection of λ in R(f).

Example 1. If f = 1Λ then R(f) is the group defined in [S], page 130.

Example 2. If Λ = ZG is the group ring of a group G over the ring of integers Z
and f = Zϕ is the linear extension of a group endomorphism ϕ : G → G then R(f) is
the free abelian group generated by the set R(ϕ) of orbits in G of the action of G over G
defined by g · x := gxϕ(g−1) (∀g, x ∈ G). In other words it is the classical Reidemeister
set of a group homomorphism (see e.g. [B], [FH], [H], [J]).

Proof. Let R(ϕ) denote the orbit set and [g] denote the orbit of g ∈ G. The context
will make clear whether [g] is seen as an element ofR(f) or of R(ϕ). We want to prove that
R(f) ≡ ZR(ϕ). Let p0 : G→ ZR(ϕ) be defined by p0(g) = [g] for each g ∈ G and let p be
the linear extension of p0 to ZG. Because p is onto, it suffices to prove that Ker(p) = (Λ)f .
But g1g2 = g1g2f(g1)f(g−1

1 ) and hence p(g1g2 − g2f(g1)) = 0 (∀g1g2 ∈ G) therefore
Ker(p) ⊇ (Λ)f . Now let λ ∈ Ker(p); this means that λ = n1g1 + n2g2 + . . . + nkgk with
ni ∈ Z and gi ∈ G for all i = 1, . . . , k and that

∑k
i=1 ni[gi] = 0. Up to rearranging indices,

we can suppose that [g1] = [g2] = . . . = [gk1 ], [gk1+1] = . . . = [gk2 ], . . ., [gkl+1] = . . . = [gk]
with 1 ≤ k1 ≤ k2 ≤ . . . ≤ kl ≤ k suitable integers. In other words λ =

∑l
j=0 µj where

µj =
∑kj+1
i=kj+1 nkj+igkj+i and k0 = 0, kl+1 = k. As ZR(ϕ) is free, p(λ) = 0 implies

p(µj) = 0 for all j. Therefore it is enough to prove that λ ∈ (Λ)f in the simple case
k1 = k when [g1] = . . . = [gk]. In this case there exist elements ξ2, . . . , ξk ∈ G such that
gi = ξig1ϕ(ξ−1

i ) for i = 2, . . . , k and n1 +
∑k
i=2 ni = 0. Hence

λ = n1g1 + n2g2 + . . .+ nkgk = −
k∑
i2

nig1 +
k∑
i=2

niξig1ϕ(ξ−1
i )
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= −
k∑
i=2

ni((ξ−1
i )(ξig1)− (ξig1)(ϕ(ξ−1

i )))

which is an element of (Λ)f .

Consider the rings Λ1,Λ2 and the following commutative diagram of ring homomor-
phisms:

Λ1

ϕ1
> Λ2

f1

∨

f2

∨
Λ1

ϕ2
> Λ2

If Λ1 =
∑p
i=1 Λi1 (direct sum) with f1(Λi1) ⊂ Λi1 and (Λi1)f1|Λi

1
= (Λ1)f1 ∩ Λi1 for

each i = 1, . . . , p we will say that Λ1 is well-decomposed. This implies that R(f1) =∑p
i=1R(f1|Λi

1
).

Proposition 2.1. If Λ1 is well-decomposed into
∑p
i=1 Λi1 and for every i = 1, . . . , p

there exists θi ∈ Λ2 such that for all λi ∈ Λi1

θiϕ2(λi) = ϕ1(λi)θi

then there exists a well-defined group homomorphism θ∗ : R(f1) → R(f2) given by
θ∗([

∑p
i=1 λi]) =

∑p
i=1[θiϕ2(λi)] with λi ∈ Λi1 for each i = 1, . . . , p.

Proof. Let us prove that θ∗ is well defined. We must show that θ∗([η]) = 0 for all
η ∈ (Λ1)f1 . Because for i = 1, . . . , p we have by hypothesis that (Λi1)f1|Λi

1
= (Λ1)f1 ∩ Λi1,

then θ∗([η]) = 0 for all η ∈ (Λ1)f1 if and only if θ∗([η]) = 0 for all η ∈ (Λi1)f1|Λi
1

for
i = 1, . . . , p.

Therefore for all λ, µ ∈ Λi1 the following equalities hold:

R(f2) 3 [θiϕ2(λµ− µf1(λ))] = [θiϕ2(λ)ϕ2(µ)− θiϕ2(µ)f2(φ1(λ))]

= [θiϕ2(λ)ϕ2(µ)− ϕ1(λ)θiϕ2(µ)]

= [θiϕ2(λ)ϕ2(µ)− θiϕ2(λ)ϕ2(µ)] = [0]

and hence θ∗ is well-defined on R(f1). By trivial arguments it can be shown that θ∗ is a
group homomorphism.

We note that if ϕ1 = ϕ2 we can always define ϕ∗ := θ∗ by setting θ = 1 on the whole
Λ1. In this case ϕ∗([λ1]) = [ϕ2(λ1)] for all λ1 ∈ Λ1.

Here we prove some elementary properties of Reidemeister groups.
Commutativity: If g : Λ1 → Λ2 and f : Λ2 → Λ1 are ring homomorphisms, then

g∗ : R(fg) → R(gf) is an isomorphism. In fact f∗ : R(gf) → R(fg) is its inverse:
f∗g∗([λ]) = [fg(λ)] = [λ] ∀λ ∈ Λ1 and g∗f∗([µ]) = [µ] ∀µ ∈ Λ2.

Conjugacy: If θ is a unit element in the ring Λ and f : Λ→ Λ is a ring endomorphism
we can define θ−1fθ as the endomorphism defined by θ−1fθ(λ) := θ−1f(λ)θ for all λ ∈ Λ.
Moreover if we define ϕ1(λ) := λ and ϕ2(λ) := θ−1λθ we get that ϕ2f = θ−1fθϕ1 and
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θϕ2(λ) = ϕ1(λ)θ ∀λ ∈ Λ. Therefore ϕ∗ = θ∗ is a well-defined isomorphism ϕ∗ = θ∗ :
R(f)→ R(θ−1fθ).

2.2. The trace. In this section we introduce some basic facts about the trace of f -
homomorphisms defined on projective modules, following the lines of [B], [H], [S].

Let Λ be a ring and M1, M2 be finitely generated right projective Λ-modules. An
additive function F : M1 →M2 is an f -homomorphism of M if f is an endomorphism of
Λ and F (xλ) = F (x)f(λ) for all x ∈M1 and λ ∈ Λ. IfM1 = M2, F is an f -endomorphism.
We want to define a trace function on the (additive) group of all such f -endomorphisms.

LetMp,q(Λ) denote the group of all p× q matrices with entries in Λ. For any matrix
F let F f denote the matrix obtained by applying f to each of the entries of F .

Proposition 2.2. For every integer p there exists a unique group homomorphism

Trf :Mp,p → R(f)

such that

Trf (FG) = Trf (GF f )

for all F ∈ Mq,p and G ∈ Mp,q. It is given by Trf (F ) =
∑p
i=1[Fii] where Fij are the

entries of F .

Proof. If p = 1, then Trf : Λ → R(f) is just the projection λ → [λ]. Let Ip be the
p× p square matrix with the diagonal entries equal to 1 ∈ Λ and with the non-diagonal
equal to 0. Let 0 be any matrix of zeros.

If A ∈Mp,p, B ∈Mq,q, X ∈Mp,q and Y ∈Mq,p then

Trf

(
A X

Y B

)
= Trf

(
A 0
0 0

)
+ Trf

(
0 X

0 0

)
+ Trf

(
0 0
Y 0

)
+ Trf

(
0 0
0 B

)
by additivity. But

Trf

(
0 X

0 0

)
= Trf

(
X

0

)(
0 Ip

)
= Trf

(
0 Ip

)( Xf

0

)
= 0

and similarly Trf
(

0
Y

0
0

)
= 0. Moreover

Trf

(
A 0
0 0

)
= Trf

(
Ip
0

)(
A 0

)
= Trf

(
A 0

)( Ifp
0

)
= Trf (AIfp ) = Trf (IpA) = Trf (A)

and similarly Trf
(

0
0

0
B

)
= Trf (B). Thus Trf

(
A
Y

X
B

)
= Trf (A)+Trf (B) and inductively

Trf (F ) =
∑p
i=1[Fii] as required. It is clear that this function satisfies the hypotheses of

the proposition.

Now let us suppose that M is a free finitely generated Λ-module and F : M → M

is an f -endomorphism. For any choice of a free Λ-basis of M there is a p × p matrix
F̄ with entries in Λ representing F . Let us define Trf (F ) := Trf (F̄ ) =

∑p
i=1[F̄ii]. The

definition is consistent: let {e1, e2, . . . , ep} and {e′1, e′2, . . . , e′p} be two bases. Let F̄ij and
F̄ ′ij be the entries of the matrices F̄ and F̄ ′ representing F in these two bases. This means
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that F (ej) =
∑p
i=1 eiF̄ij and F (e′j) =

∑p
i=1 e

′
iF̄
′
ij . Moreover, e′i =

∑p
h=1 ehAhi for a suit-

able invertible matrix A with entries Aij ∈ Λ. Therefore F (e′j) =
∑p
i,h=1 ehAhiF̄

′
ij and

F (e′j) =
∑p
i=1 F (ei)f(Aij) =

∑p
i,h=1 ehF̄hif(Aij) or equivalently the identity AF̄ ′ =

F̄Af holds true. Let A−1 denote the inverse of A. Then F̄ ′ = A−1F̄Af and hence
Trf (F̄ ′) = Trf (A−1F̄Af ) = Trf (AA−1F̄ ) = Trf (F̄ ) for the defining property of trace
in proposition 2.2.

Let Λ be a ring and let M be a finitely generated projective right Λ-module. Let
F : M → M be an f -endomorphism. Then there exists a Λ-module Q such that M ⊕Q
is a free finitely generated Λ-module and an f -endomorphism F + 0 : M ⊕Q→ M ⊕Q
defined by (F + 0)(x + y) = F (x) for all x ∈ M and y ∈ Q. It is an f -endomorphism
of free finitely generated modules, hence there is a well-defined trace, and we define
Trf (F ) := Trf (F + 0).

It does not depend on the choice of Q: if M ⊕Q′ is also free finitely generated, let us
consider the free finitely generated Λ-module M ⊕Q⊕M ⊕Q′ with the f -endomorphism
F + 0Q + 0M + 0Q′ : x + y + z + w → F (x) for all x, z ∈ M , y ∈ Q and w ∈ Q′. Using
the same argument of the proof of proposition 2.2 it is easy to see that Trf (F + 0Q) =
Trf (F + 0Q + 0M + 0Q′) = Trf (F + 0Q′) thus it is well defined even in the case where
M is a finitely generated projective right Λ-module.

Proposition 2.3 (Commutativity). Let Λ be a ring and M1, M2 be two finitely gen-
erated projective right Λ-modules. Let F : M1 → M2 and G : M2 → M1 be respectively
an f -endomorphism and a g-endomorphism, with f and g endomorphisms of Λ. Then

f∗Trgf (GF ) = Trfg(FG)

where f∗ : R(gf)→ R(fg) is the homomorphism defined in section 2.1.

Proof. Let Q1 and Q2 be Λ-modules such that M1⊕Q1 and M2⊕Q2 are free finitely
generated. With the same notation as above, it is easily seen that

Trf ((G+ 0Q2)(F + 0Q1)) = Trf (GF ),

T rf ((F + 0Q1)(G+ 0Q2)) = Trf (FG),

hence substituting M1 with M1⊕Q1 and M2 with M2⊕Q2 we can suppose M1 and M2

to be free. Let e1, . . . , ep be a free basis of M1 and e′1, . . . , e
′
q be a free basis of M2. Then

F (ej) =
∑q
i=1 e

′
iFij and G(e′j) =

∑p
i=1 eiGij . Hence

GF (ej) =
q∑
i=1

G(e′i)g(Fij) =
q∑
i=1

p∑
h=1

ehGhig(Fij)

and similarly

FG(e′j) =
p∑
i=1

q∑
h=1

e′hFhif(Fij)

Moreover

f∗(Trgf (GF )) =
q∑
i=1

p∑
h=1

[f(Ghi)fg(Fih)] =
q∑
i=1

p∑
h=1

[Fihf(Ghi)] = Trfg(FG)

hence the assertion.
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2.3. The Lefschetz number of an f -endomorphism of a Λ-complex. Let Λ be a ring
and let C = {Cn → . . . → C0} be a finite projective Λ-complex, i.e. a finite-dimensional
chain complex of finitely generated projective right Λ-modules. Let f : Λ→ Λ be a given
ring endomorphism; an f -endomorphism F : C → C of the Λ-complex C is any set of
f -endomorphisms Fn : Ci → Ci for i = 0, . . . , n which commute with the boundary ho-
momorphisms. The traces Trf (Fi) are well-defined. The Lefschetz number of F is defined
to be

L(F ) =
∑
q≥0

(−1)qTrf (Fq)

and it is an element of R(f).

Proposition 2.4 (Homotopy). If F,G : C → C are chain-homotopic f -endomor-
phisms then L(F ) = L(G).

Proof. Let di : Ci → Ci+1 and ∂i : Ci+1 → Ci for i = 1, . . . , n be the chain homotopy
between F and G and the boundary homomorphisms; let us recall that di simply is a
Λ-homomorphism of Λ-modules. By additivity L(F )− L(G) = L(F −G) and

L(F −G) =
∑
q≥0

(−1)q(Trf (∂i+1di) + Trf (di−1∂i))

=
∑
q≥0

(−1)q(Trf (∂i+1di)− Trf (di∂i+1)) = 0

by commutativity of Trf as in proposition 2.3. Hence L(F ) = L(g).

Proposition 2.5 (Commutativity). Let Λ be a ring and C, C ′ be two chain com-
plexes of finitely generated projective right Λ-modules. Let F : C → C ′ and G : C ′ → C

be respectively an f -endomorphism and a g-endomorphism, with f and g endomorphisms
of Λ. Then

f∗L(GF ) = L(FG)
where f∗ : R(gf)→ R(fg) is the homomorphism defined in section 2.1.

Proof. It is a trivial corollary of 2.3.

3. Topological preliminaries

3.1. The generalized Lefschetz number of a continuous self-map on a finite CW -
complex. Let X be a finite CW -complex. We are not requiring it to be connected. Let
X1, X2, . . . , Xp be its connected components and let xi ∈ Xi be a base point of Xi for
each i = 1, . . . , p. Let Λ(X) denote the free abelian group generated by the elements of
the fundamental groups of these components, i.e.

Λ(X) := Zπ1(X1, x1)⊕ Zπ1(X2, x2)⊕ . . .⊕ Zπ1(Xp, xp)

and let the product in Λ(X) be defined by the linear extension of

gh =
{
gh if g, h ∈ π1(Xi, xi) for some i,
0 if g ∈ π1(Xi, xi) and h ∈ π1(Xj , xj) with i 6= j.

If X is connected then Λ(X) = Zπ1(X) is simply the group ring of the fundamental
group of X.
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Let 1i denote the constant loop in π1(Xi, xi). Then 1 :=
∑p
i=1 1i is the unit element

of Λ.
Let f : X → X be a self-map. Let J := Zp × I be the cartesian product of the

set of the first p integers Zp = {1, 2, . . . , p} with discrete topology and the unit interval
I = [0, 1]. A continuous map w : J → X is called a base multipath if for all j = 1, . . . , p
there exist j′ such that

w(j, 0) = xj′ , w(j, 1) = f(xj).

Let us note that j′ is uniquely determined once we have the second identity; it is because
Xj′ is connected. We say that the self-map f is multipath-based if a base multipath w has
been chosen and we denote it by (f, w). Up to rearranging indices it is always possible to
assume that f(xi) ∈ Xi for i = 1, . . . , p0 and f(xi) ∈ Xi′ with i′ 6= i for i = p0 + 1, . . . , p.

For any multipath-based self-map (f, w) : X → X there is an induced endomorphism
fΛ : Λ(X)→ Λ(X) defined as the linear extension of

fΛ(gi) = 1ifπ(gi)

if gi ∈ π1(Xi, xi) and fπ : π1(Xi, xi)→ π(X
i′ , xi

′
) is defined by

fπ(α) = w(i,−)f(α)w(i,−)−1

where α : (I, ∂I)→ (Xi, xi) is a loop in Xi and w(i,−) : I → {i} × I w→ Xi′ is the path
in Xi′ from xi

′
to f(xi) we have previously chosen. In other words fΛ(gi) = fπ(gi) if

1 ≤ i ≤ p0 and fΛ(gi) = 0 if p0 + 1 ≤ i ≤ p.
Let X̃ be the universal covering space of X. It is the disjoint union of the universal cov-

ering spaces of X1, . . . , Xp. If the set of paths PX := {λ : (I, {0})→ (X, {x1, . . . , xp})}
is endowed with the compact-open topology, then X̃ is the quotient space of PX under
the relation of homotopy equivalence relative to endpoints. Therefore we can view a point
in X̃ as a homotopy class of paths [λ]. For any g ∈ π1(Xi, xi) let

[λ]g =
{

[g−1λ] if λ(0) = xi,
[λ] if λ(0) 6= xi,

be defined as above. The map [λ] → [λ]g is the cellular homeomorphism of X̃ induced
by g.

For every integer q ≥ 0 let Cq(X̃) denote the q-th cellular chain group Cq(X̃) =
Hq(X̃(q), X̃(q−1); Z) where X̃(q) is the q-dimensional skeleton of X̃ for all positive integers
q. We know that Cq(X̃) = Cq(X̃1)⊕ . . .⊕ Cq(X̃p).

Let Λ(X) act on Cq(X̃) on the right by extending linearly the function defined for
each x ∈ Cq(X̃i) and g ∈ π1(Xj , xj) by

xg =
{
Cq(g)(x) if i = j,
0 if i 6= j,

where Cq(g) : Cq(X̃i)→ Cq(X̃i) is the homomorphism induced by the map [λ] ∈ X̃1 →
[g−1λ] ∈ X̃1. Thus Cq(X̃) is a right Λ-module. If X is connected, it is free and finitely
generated. In our general setting a weaker proposition holds.

Proposition 3.1. The q-th cellular chain group Cq(X̃) is a finitely generated projec-
tive right Λ(X)-module.
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Proof. We have to prove that each Cq(X̃i) is a finitely generated projective Λ(X)-
module. We already know that for each i = 1, . . . , p, Cq(X̃i) is a free finitely generated
Λ(Xi)-module. Let {e1, . . . , ek} be a free basis. Just by taking the projection pri : Λ(X̃) =
Λ(X̃1) ⊕ . . . ⊕ Λ(X̃p) → Λ(X̃i) we can define a right action of Λ(X) on Cq(X̃i) by
x λ := x pri(λ) for each x ∈ Cq(X̃i) and each λ ∈ Λ(X). Hence Cq(X̃i) is a right finitely
generated Λ(X)-module. Let Λi :=

∑
j 6=i Λ(X̃j) be the complement of Λ(X̃i) in Λ(X).

Let Qi be the direct sum of k copies of Λi. Let Λ(X) act on Qi by the usual ring product
in Λ(X) and distributive law. Therefore

Cq(X̃i)⊕Qi ∼=
k⊕
u=1

(Λ(X̃u)⊕ Λu)

and hence it is a free finitely generated right Λ(X)-module.

If (f, w) is a multipath-based cellular self-map of X then there is a canonical cellular
lifting of (f, w), namely f̃ : X̃ → X̃, defined by f̃([λ]) = [w(i,−)f(λ)] for each path
λ : (I, 0)→ (Xi, xi). It induces an endomorphism Cq(f̃) : Cq(X̃)→ Cq(X̃) at the cellular
chain group level. Let P : Cq(X̃) =

⊕p
i=1 Cq(X̃

i)→ Cq(X̃) be the homomorphism defined
by

P (x) :=
{
x if x ∈ Cq(X̃i) with i ≤ p0,

0 if x ∈ Cq(X̃i) with i ≥ p0 + 1.

It will be called the projection homomorphism for Cq(X̃).
It is easy to see that the composition Cq(f̃)P is an fΛ-endomorphism, where fΛ :

Λ(X) → Λ(X) is defined as above. Therefore we can define the generalized Lefschetz
number of the multipath-based cellular self-map (f, w) as the Lefschetz number of Cq(f̃)P

L(f, w) =
∑
q≥0

(−1)qTrfΛ [Cq(f̃)P ]

which is an element of R(fΛ)(see [H], [FH]). Let us note that when p = 1 this is the
generalized Lefschetz number as defined in [H].

It is expected that L(f, w) is independent of the base multipath w and depends only
on the homotopy class of f . This is truly the case: for i = 1, . . . , p, let x′i ∈ Xi be another
base point and w′ : J → X another corresponding base multipath. The paths w(i,−)
and w′(i,−) will be denoted simply with wi and w′i. Let X̃ ′ denote the universal covering
space pointed at x′1, . . . , x′p and f̃ ′ : X̃ ′ → X̃ ′ the canonical lifting of f at X̃ ′. The rings

Λ(X) := Zπ1(X1, x1)⊕ Zπ1(X2, x2)⊕ . . .⊕ Zπ1(Xp, xp),

Λ′(X) := Zπ1(X1, x′1)⊕ Zπ1(X2, x′2)⊕ . . .⊕ Zπ1(Xp, x′p)

are given. For each i = 1, . . . , p, let γi : (I, 0, 1)→ (Xi, xi, x′i) be a continuous path from
xi to x′i. Let ϕ1, ϕ2 : Λ(X) → Λ′(X) be defined by extending linearly ϕ1(g) := γ−1

i gγi
and ϕ2(g) := w′if(γ−1

i )w−1
i gwif(γi)w′i

−1 if g ∈ π1(Xi, xi) ⊆ Λ(X) and f(xi) ∈ Xi.
Otherwise ϕ1(g) := ϕ2(g) := γ−1

i gγi. It is easy to see that ϕ2fΛ = fΛ′ϕ1.
Let us note that Λ(X) and Λ′(X) are well-decomposed (see section 2.2) into

p⊕
i=1

Λ(Xi) and
p⊕
i=1

Λ′(Xi)
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respectively, and that if we set

θi := γ−1
i wif(γi)w′i

−1

if f(xi) ∈ Xi and otherwise θi := 1, then the identity θiϕ2(λi) = ϕ1(λi)θi holds true for
all λi ∈ Λ(Xi). Therefore there exists a well-defined group homomorphism θ∗ : R(fΛ)→
R(fΛ′) defined as in section 2.1.

Let Φ1,Φ2 : X̃ → X̃ ′ be the homeomorphisms defined by Φ1([λ]) := [γ−1
i λ] if λ(0) =

xi and Φ2([λ]) := [w′if(γ−1
i )w−1

i λ] if λ(0) = xi and f(xi) ∈ Xi; otherwise Φ2([λ]) :=
Φ1([λ]). We can see that at the cellular complex level Cq(Φ2)Cq(f̃)P = Cq(f̃ ′)P ′Cq(Φ1)
where P : Cq(X̃) → Cq(X̃) and P ′ : Cq(X̃ ′) → Cq(X̃ ′) are defined as above. Moreover
Cq(Φ1) and Cq(Φ2) are a ϕ1 and ϕ2-homomorphism respectively which satisfy the identity

Cq(Φ2)(x) = Cq(Φ1)(x) · θi
for all x ∈ Cq(X̃i). We have

Cq(f̃ ′)P ′ = Cq(φ2)Cq(f̃)PCq(Φ−1
1 )

and hence by commutativity

L(f, w′) = L(Cq(f̃ ′)P ′) = ϕ1∗L(Cq(Φ−1
1 )Cq(Φ2)Cq(f̃)P ).

But Cq(Φ2)(x) = Cq(φ1)(x) · θi for each x ∈ Cq(X̃i); therefore

Cq(Φ−1
1 )Cq(φ2)(x) = x · ϕ−1

1 (θi)

for all x ∈ Cq(X̃i). Hence

ϕ1∗L(Cq(Φ−1
1 )Cq(Φ2)Cq(f̃)P ) = θ∗L(Cq(f̃)P ) = θ∗L(f, w)

where θ∗ is the isomorphism defined in section 2.1.
If H : f ∼ f ′ is a cellular homotopy then it can be shown that H induces an isomor-

phism H∗ : R(fΛ)→ R(f ′Λ) such that L(f ′, w′) = H∗L(f, w) for suitable base multipaths
w and w′. H∗ can be defined by considering the chain homotopy at the chain complex
level, in the same way as in [H]. We prefer to give a slightly different proof which follows
the lines of [F]. Let H̄ : X × I → X × I be a cellular approximation of the fat homotopy
(cf. [J], [B]) such that H̄(−, 0) = f and H̄(−, 1) = f ′. Let w,w′ be base multipaths
for f and f ′ respectively with the same base points x1, . . . , xp. It is easy to see that,
if i0, i1 : X → X × I are defined by i0(x) := (x, 0) and i1(x) := (x, 1) for all x ∈ X,
then i0∗(L(f, w)) = L(H̄, i0(w)) and i1∗(L(f ′, w′)) = L(H̄, i1(w′)). Let γi : (I, 0, 1) →(
X × I, (xi, 0), (xi, 1)

)
be the vertical path from (xi, 0) to (xi, 1). Then for the previous

arguments there exists an isomorphism θ∗ such that θ∗(L(H̄, i0(w))) = L(H̄, i1(w′)). We
can therefore define

H∗ := i−1
1∗ θ∗i0∗ : R(fΛ)→ R(f ′Λ)

which coincides with the one defined in [F] if X is connected.
Let us remark that such an isomorphism exists even if f is not cellular; in this case

L(f, w) is not yet defined, but at the R(fΛ)-level everything works. So if (f, w) is not
cellular we can define L(f, w) := H∗L(f ′, w′) where f ′ : X → X is any cellular approxi-
mation of f and H is the homotopy between f and f ′ and w′ is a base multipath for f ′;
it turns out that L(f, w) does not depend on the choice of f ′.
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Proposition 3.2. Let X1, . . . , Xp be the connected components of X, with base points
xi ∈ Xi. Let us suppose that f(xi) ∈ Xi for i = 1, . . . , p0 and f(xi) ∈ Xj with j 6= i

for i = p0, . . . , p. Let w : J → X be a base multipath for f , and wi := w(i,−). Let
fi : Xi → Xi be the restriction of f to Xi for i = 1, . . . , p0. Then

R(fΛ) =
p0⊕
i=1

R(fiΛ(Xi)) and L(f, w) =
p0∑
i=1

L(fi, wi)

where L(fi, wi) is the generalized Lefschetz number of fi : Xi → Xi.

Proof. It is trivial to check that Λ(X) is well-decomposed into Λ(X1), . . . , Λ(Xp).
Therefore

R(fΛ) =
p⊕
i=1

R(f |Λ(Xi))

but for i = 1 · p0, R(f |Λ(Xi)) = R(fiΛ(Xi)) and for i = p0, . . . , p, R(f |Λ(Xi)) = 0. Hence
the first identity.

Now let e1, . . . , ek be a free Λ(X1)-basis for Cq(X̃1) which is a finitely generated free
right Λ(X1)-module, because X1 is connected; let us remark that Λ(X1) = Zπ1(X1, x1).
Then Cq(f̃1)(ej) =

∑k
h=1 ehF

1
hj for suitable F 1

hj ∈ Λ(X1). Now we can take a Λ(X)-
module Q1 such that Cq(X̃1)⊕Q1 is a free Λ(X)-module with e1, . . . , ek as a free Λ(X)-
basis, as done in proposition 3.1. This argument can be applied to each j = 1, . . . , p0.
Therefore, if ij : R(fjΛ(Xj))→ R(fΛ(X)) is the obvious inclusion, we have that

Tr(Cq(f̃)P ) =
p0∑
j=1

ijTr(Cq(f̃j))

and taking alternating sums,

L(Cq(f̃)P ) =
p0∑
j=1

L(Cq(f̃j))

and so the conclusion follows.

For each i = 1, . . . , p0 there exists a coordinate function cdi : Fix(fi) → R(fiΛ(Xi))
defined by cdi(y) := λfi(λ−1)w−1

i for all y ∈ Fix(fi) with a path λ : (I, 0, 1)→ (Xi, xi, y)
(see e.g. [B], [J]). The main theorem of [H] states that

L(fi, wi) =
∑

x∈Fix(fi)

Ind(fi, x)ċdi(x)

where Ind(fi, x) is the index of the fixed point x, and Fix(fi) := {y ∈ Xi | fi(y) = y} is
the fixed point set for fi. We can always assume Fix(f) to be a finite subset of X. The
same formula holds for f : X → X; if cd : Fix(f) → R(f) is defined by cd(y) := cdi(y)
for every y ∈ Xi ∩ Fix(f) then we have the identity

L(f, w) =
∑

x∈Fix(f)

Ind(f, x) · cd(x).

Let us recall that the number of nontrivial distinct free generators of R(fi, wi) which
have to be used in writing L(fi, wi) is the Nielsen numberN(fi) of the map fi as defined in



GENERALIZED LEFSCHETZ NUMBERS 127

[B], [J]. The same is true for f : X → X in the sense that we can define the Nielsen number
of f , N(f), to be the number of nontrivial distinct free generators of R(f) which have to
be used in writing L(f, w). It is the sum N(f) =

∑p0
i=1N(fi) of the Nielsen numbers of

the restrictions fi : Xi → Xi. In the same way the inequality N(f) ≤ #Fix(f) holds. The
Nielsen number naturally continues to be a lower bound of the number of fixed points of
the self-map f .

3.2. Pushout maps. Let A, X1 and X2 be finite, not necessarily connected CW -
complexes. Let i1 : A → X1 and i2 : A → X2 be cellular continuous maps. Then
the pushout space X := X1 tA X2 of X1 and X2 via i1 and i2, or the pushout space of
i1 and i2 for short, is the set of all equivalence classes of the topological sum X1 t X2

under the equivalence relation generated by x1 ∼ x2 ⇐⇒ (∃a ∈ A)x1 = i1(a), x2 = i2(a).
It can be shown that X is a finite CW -complex. Let q : X1 t X2 → X1 tA X2 be the
identification function and define j1 : X1 → X and j2 : X2 → X as the compositions of q
with the inclusions of X1 and X2 in X1tX2. For more details see [P]. The main property
of a pushout space is the universal property: given two maps with the same codomain
h1 : X1 → Z, h2 : X2 → Z such that h1i1 = h2i2, there exists a unique l : X → Z such
that lj1 = h1 and lj2 = h2.

Here is a list of very common pushout-type constructions.

Example 3. Union spaces. If X = X1 ∪ X2 is the union of two subcomplexes X1

and X2, then X = X1 tA X2 where A = X1 ∩ X2 and i1 : A → X1, i2 : A → X2 are
the inclusions. For any cellular self-maps f1 and f2 of X1 and X2 that coincide on the
common intersection A, there exists the extended map f : X → X which is the pushout
map of f1 and f2 via fA.

Example 4. Quotient spaces. Let (X,A) be a pair of finite CW -complexes. Then the
quotient space X/A is the pushout space of i1 : A→ X and i2 : A→ {∗} where i1 is the
inclusion and i2 the constant map.

Example 5. One-point unions. The one-point union of two spaces X1 and X2 is
simply the pushout space of i1 : {∗} → X1 and i2 : {∗} → X2.

Example 6. Connected sums. Let M1 and M2 be two compact triangulated n-mani-
folds. Let X1 := M1 −Dn and X2 := M2 −Dn be the manifolds minus an open ball Dn,
and A := ∂D̄n. Then the connected sum M1#M2 is the pushout space of i1 : A → X1

and i2 : A→ X2 if i1 and i2 are the natural inclusions of ∂D̄n in M1 and M2.

Example 7. Mapping cylinder. Let i2 : A → X2 be any cellular map. The pushout
space of i0 : A → A × I and i2, where i0(a) := (a, 0)(∀a ∈ A), is called the mapping
cylinder M(i2) of i2 and is useful in the proof of the pushout formula of this paper.

Example 8. Mapping torus. Let Y be a finite CW -complex and f : Y → Y be a
self-map. Let A := Y × ∂I, X1 := Y × I and X2 := Y . If i1 is the inclusion A→ X1 and
i2 is defined by i2(y, 0) = y and i2(y, 1) = f(y) for all y ∈ Y , then the pushout space is
the mapping torus Tf of f , as defined in [J], [J1].

Now let us consider cellular self-maps fA : A → A, f1 : X1 → X1 and f2 : X2 → X2

such that i1fA = f1i1 and i2fA = f2i2. There exists a unique cellular self-map f : X → X
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defined on the pushout space X such that the following diagram is commutative:

A
i2

> X2

I@
@
@ fA
@
@
@ �

�
�

f2 �
�
��

A
i2

> X2

i1

∨

i1

∨ ∨

j2

∨

j2

X1

j1
> X

	�
�
�

f1 �
�
� @

@
@ f

@
@
@R

X1

j1
> X

The map f is called the pushout map of f1 and f2 via fA and can be denoted by f1tfA
f2

in analogy with topological spaces.
Let wA, w1, w2 and w be base multipaths for fA, f1, f2 and f . We wish to show that

there exist well-defined homomorphisms i∗1 : R(fA, wA)→ R(f1, w1), i2∗ : R(fA, wA)→
R(f2, w2), j1∗ : R(f1, w1) → R(f, w) and j2∗ : R(f2, w2) → R(f, w) such that j2∗i2∗ =
j1∗i1∗. Let us consider one of the squares of the previous diagram, e.g.

A
i1

> X1

fA

∨

f1

∨
A

i1
> X1

where A1, . . . , Ap are the connected components of A and X1
1 , . . . , X

q
1 those of X1. Let

a1 ∈ A1, . . . ap ∈ Ap, x1
1 ∈ X1

1 , . . . , x
q
1 ∈ X

q
1 be the base points. For each i = 1, . . . , p, let

us choose a path γi : (I, 0, 1)→ (X1, i1(ai), xi1). The diagram

Λ(A)
ϕ1
> Λ(X1)

∨

fAΛ f1Λ

∨
Λ(A)

ϕ2

> Λ(X1)

commutes, if ϕ1 and ϕ2 are defined by extending linearly

ϕ1(g) := γ−1
i i1(g)γi, ϕ2(g) := w1f1(γ−1

i )i1(w−1
A gwA)f1(γi)w−1

1
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if g ∈ π1(Ai, ai) with fA(ai) ∈ Ai, otherwise ϕ1(g) = ϕ2(g) = 0 if fA(ai) ∈ Aj with j 6= i.
Let θi be defined by

θi := γ−1
i i1(wA)f1(γi)w−1

1

for each i such that fA(ai) ∈ Ai and otherwise θi := 1i. Because Λ(A) is well-decomposed
into

⊕p
i=1 Λ(Ai) and for every i we have

θiϕ2(λi) = ϕ1(λi)θi

for each λi ∈ Λ(Ai), according to proposition 2.1, there exists a well-defined group ho-
momorphism θ∗ : R(fA, wA)→ R(f1, w1). We will denote it by i1∗. It turns out that

i1∗([g]) = [γ−1
i i1(g)i1(wA)f1(γi)w−1

1 ]

if g ∈ π1(Ai, ai) with fA(ai) ∈ Ai. It is easy to see that it does not depend on the choice
of the paths γi in the sense that if other paths δi are chosen then the corresponding
induced homomorphism is the same. We could do the same thing for i2, j1 and j2, and
it can be easily shown that j2∗i2∗ = j1∗i1∗.

In other words the following diagram is commutative:

R(fA, wA)
i2∗
> R(f2, w2)

∨

i1∗ j2∗

∨
R(f1, w1)

j1∗
> R(f, w)

4. The pushout formula. We are now in a position to state the main theorem of
this paper. If all the spaces involved are connected then the statement is the same as that
of [F].

Theorem 4.1 (Pushout formula). Let i1 : A → X1, i2 : A → X2, fA : A → A,
f1 : X1 → X1 and f2 : X2 → X2 be cellular maps such that f1i1 = i1fA and f2i2 = i2fA.
Let f := f1 tfA

f2 be the pushout map of f1 and f2 via fA. If i1 is an inclusion, then

L(f, w) = j1∗L(f1, w1) + j2∗L(f2, w2)− j1∗i1∗L(fA, wA).

Proof. Let M(i2) be the mapping cylinder of i2 as defined in example 3.2. Let
ii2 : A → M(i2) be defined by ii2(a) := ı̄2(a, 1) where ı̄2 : A × I → M(i2) is the map
of the pushout construction, and let p : M(i2) → X2 be defined by p̄ı2(a, t) = i2(a) for
every (a, t) ∈ A × I and p̄ı0 = 1X2 . Well-known facts are that ii2 is a cellular inclusion
(hence a cofibration) and that p is a homotopy equivalence whose inverse is ı̄0. For more
details see e.g. [P].

Let fA×I : A× I → A× I be defined by fA×I(a, t) = (fA(a), t) for all (a, t) ∈ A× I.
Then fA×I i0 = i0fA and f2i2 = i2fA, hence the pushout map fA×I tfA

f2 : M(i2) →
M(i2) is defined. Denote it by f ′2. It is a cellular self-map of M(i2) and f ′2ii2 = ii2fA.
Therefore the pushout map f1 tfA

f ′2 can be defined on the pushout space X1 tAM(i2)
of i1 : A → X1 and ii2 : A → M(i2). Let p̄ : X1 tA M(i2) → X1 t AX2 be the cellular
map such that p̄īi2 = j1 and p̄̄ı1 = j2p.
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As we did in the previous section, induced homomorphisms are defined such that the
following diagram commutes:

R(fAΛ)
ii2∗

> R(f ′2Λ)
p∗
> R(f2Λ)

i1∗

∨

ı̄1∗

∨ ∨

j2∗

R(f1Λ)
ii2∗

> R(f1 tfA
f ′2Λ)

p̄∗
> R(fΛ)

Let us note that base multipaths are omitted for the sake of simplicity.

Lemma 4.2. We have the identities

p∗(L(f ′2)) = L(f2), p̄∗(L(f1 tfA
f ′2)) = L(f).

Proof. If all the spaces involved are connected this is exactly the statement of lemma
4.2 and lemma 4.3 of [F]. Otherwise X2 or X may be disconnected. But in this case, as p
and p̄ are homotopy equivalences (see e.g. [P]), they induce bijections at the 0-homotopy
set level π0(M(i2)) = π0(X2) and π0(X1 tA M(i2)) = π0(X). Moreover, according to
proposition 3.2,

R(f ′2Λ) =
p′

0⊕
i=1

R(f
′i
2 Λ(M(i2)i)), L(f ′2) =

p′
0∑

i=1

L(f
′i
2 ),

R(f2Λ) =
p0⊕
i=1

R(f i2Λ(Xi
2)), L(f2) =

p0∑
i=1

L(f i2),

where X1
2 , . . . , X

p0
2 are the connected components of X2 such that f2(Xi

2) ⊂ Xi
2 and the

same holds for M(i2). It can be seen that p0 = p′0 and that, as proved in [F],

p∗L(f
′i
2 ) = L(f i2)

because f i2 and f i
′

2 are self-maps of connected spaces. Therefore, because of the additivity
of p∗,

p∗(L(f ′2)) = L(f2)
and hence the first part of the lemma. The second one can be proved in the same way.

Because p̄∗īi2∗ = j1∗ and p∗ii2∗ = i2∗, we have

j1∗L(f1) + j2∗L(f2)− j1∗i1∗L(fA) = p̄∗īi2∗L(f1) + p̄∗ ı̄1∗L(f ′2)− p̄∗īi2∗i1∗L(fA)

and hence the pushout formula holds if and only if

L(f1 tfA
f ′2) = īi2∗L(f1) + ı̄1∗L(f ′2)− īi2∗i1∗L(fA).

Let us remark that both i1 and ii2 are supposed to be inclusions. This means that it
suffices to prove the theorem in case both i1 and i2 are cellular inclusions.

Hence let us suppose that A is a subcomplex of X1 and X2 and that X = X1 ∪X2,
A = X1 ∩ X2. Clearly i1 : A → X1, i2 : A → X2, j1 : X1 → X and j2 : X2 →
X are all inclusions. The maps fA, f1 and f2 are simply the restrictions of f to the
subcomplexes A, X1 and X2. Let wA = w1

A, w
2
A, . . ., w

1
1, w

2
1, . . ., w

1
2, w

2
2, . . . and w1, w2, . . .

be the base multipaths. Let A1, A2, . . . , ApA be the connected components of A with base
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points a1, a2, . . . , apA ; let X1
1 , X

2
1 , . . . , X

p1
1 be those of X1 with base points x1

1, x
2
1, . . . , x

p1
1 ;

X1
2 , X

2
2 , . . . , X

p2
2 , those of X2 with base points x1

2, x
2
2, . . . , x

p2
2 and X1, X2, . . . , Xp those of

X with base points x1, x2, . . . , xp. Let Ã, X̃1, X̃2 and X̃ be the universal covering spaces
of A, X1, X2 and X, and Cq(Ã), Cq(X̃1), Cq(X̃2) and Cq(X̃) their q-dimensional cellular
chain groups. Fix an integer q ≥ 0. Let PA : Cq(Ã) → Cq(Ã), P1 : Cq(X̃1) → Cq(X̃1),
P2 : Cq(X̃2) → Cq(X̃2) and P : Cq(X̃) → Cq(X̃) be the projection homomorphisms as
defined in section 3.1. Now let us consider the canonical liftings of (fA, wA), (f1, w1),
(f2, w2) and (f, w) and the corresponding chain homomorphisms

Cq(f̃A), Cq(f̃1), Cq(f̃2), Cq(f̃)

at the q-dimensional chain group level. Then the theorem follows easily from the following
lemma.

Lemma 4.3. For any q ≥ 0 we have the identity

j1∗(Trf1Λ(Cq(f̃1)P1)) + j2∗(Trf2Λ(Cq(f̃2)P2))

−j1∗i1∗(TrfAΛ(Cq(f̃A)PA)) = TrfΛ(Cq(f̃)P ).

Proof. Let us start by considering the square diagram

Cq(Ã) <
Cq(f̃A)PA

Cq(Ã)

∨
Cq (̃i′1)PA Cq (̃i1)PA

∨
Cq(X̃1) <

Cq(f̃1)P1
Cq(X̃1)

where Cq(f̃A), Cq(f̃1) and PA are defined as above, and ĩ1 and ĩ′1 are defined as follows:
for each j = 1, . . . , pA let γj be a continuous path γj : (I, 0, 1) → (X1, a

j , xj
′

1 ) where
aj is the base point of Aj and xj

′

1 is the base point of the component Xj′

1 of X1 which
contains Aj ; let us remark that points of Ã are homotopy classes rel. endpoints of paths
λ : (I, 0) → (A, {a1, a2, . . . , apA}) and points of X̃1 are homotopy classes of paths λ :
(I, 0)→ (X1, {x1

1, x
2
1, . . . , x

p1
1 }); we set

ĩ1([λ]) := [γ−1
j λ]

for each λ : (I, 0)→ (Aj , aj) and

ĩ′1([λ]) :=

{
[wj1f1(γ−1

j )(wjA)
−1
λ] if fA(aj) ∈ Aj ,[

γj
−1λ

]
otherwise,

for each λ : (I, 0)→ (Aj , aj).
It is not difficult to see that the diagram is commutative. Moreover, if we recall the

definition of i1∗ of section 3.2 by taking ϕ1, ϕ
′
1 : Λ(A) → Λ(X1) as the unique ring

homomorphisms such that

ϕ1(g) :=
{
γ−1
j gγj (∀g ∈ π1(Aj , aj) s.t. f(aj) ∈ Aj),

0 otherwise,



132 D. L. FERRARIO

ϕ′1(g) :=


wj1f1(γ−1

j )(wjA)
−1
gwjAf1(γj)w

j
1

−1
(∀g ∈ π1(Aj , aj),
s.t. f(aj) ∈ Aj),

0 otherwise,
we get the commutative diagram

Λ(A) <
fAΛ

Λ(A)

ϕ′1

∨ ∨

ϕ1

Λ(X1) <
f1Λ

Λ(X1)

of ring homomorphisms. The main point is that Cq (̃i1)PA is a ϕ1-homomorphism and
Cq (̃i′1)PA is a ϕ′1-homomorphism. Moreover, as shown in section 3.2, i1∗ : R(fA, wA) →
R(f1, w1) is defined by

i1∗([λ]) := [θjϕ′1(λ)]
(
∀λ ∈ Λ(Aj) s.t.f(aj ∈ Aj)

)
and is zero otherwise, where θj is a suitable element of Λ(X1) such that θjϕ′1(λ) = ϕ1(λ)θj
for each λ ∈ Λ(Aj).

The same arguments apply to i2, j1 and j2; therefore we get the following commutative
diagram of ring homomorphisms:

Λ(A)
ϕ′2

> Λ(X2)
I@
@
@ fAΛ

@
@
@ �

�
�

f2Λ �
�
��

Λ(A)
ϕ2
> Λ(X2)

ϕ′1

∨

ϕ1

∨ ∨

ψ2

∨

ψ′2

Λ(X1)
ψ1

> Λ(X)

	�
�
�

f1Λ �
�
� @

@
@ fΛ

@
@
@R

Λ(X1)
ψ′1

> Λ(X)
which induces, at the Reidemeister group level, the diagram of section 3.2.

Now, let QA be a Λ(A)-module such that Cq(Ã) ⊕ QA is a free finitely generated
Λ(A)-module. As shown in the proof of proposition 3.1 and in [H], [FH] we can suppose
that a free basis of Cq(Ã)⊕QA can be given by taking liftings of the q-dimensional cells
of A {e1, e2, . . . , ek} to Ã (and hence they can be thought of as elements of Cq(Ã)). If
we consider the fAΛ-endomorphism Cq(fA)P + 0QA

of Cq(Ã) ⊕ QA we get exactly the
fAΛ-endomorphism whose trace is the trace of Cq(f̃A)PA. The same argument applies to
X1, X2 and X, and therefore we have the f1Λ-endomorphism Cq(f̃1)P1 + 0Q1 of the free
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finitely generated Λ(X1)-module Cq(X̃1) ⊕ Q1, the f2Λ-endomorphism Cq(f̃2)P2 + 0Q2

of the free finitely generated Λ(X2)-module Cq(X̃2) ⊕ Q2 and the fΛ-endomorphism
Cq(f̃)P + 0Q of the free finitely generated Λ(X)-module Cq(X̃) ⊕ Q. Their traces are
by definition exactly the traces of the corresponding endomorphisms at the chain group
level. Let us call them FA, F1, F2 and F .

Finally we define the homomorphisms corresponding to i1, i2, j1 and j2. As an exam-
ple, let Φ1 := Cq(ĩ1)PA+0QA

: Cq(Ã)⊕QA → Cq(Ã)⊕QA be defined in the obvious way.
The others are defined in the same way. We arrange them as in the following diagram.

Cq(Ã)⊕QA
Φ′2

> Cq(X̃2)⊕Q2

I@
@
@ FA
@
@
@ �

�
�

F2 �
�
��

Cq(Ã)⊕QA
Φ2
> Cq(X̃2)⊕Q2

Φ′1

∨

Φ1

∨ ∨
Ψ2

∨

Ψ′2

Cq(X̃1)⊕ 0Q1

Ψ1
> Cq(X̃)⊕Q

	�
�
�

F1 �
�
� @

@
@ F

@
@
@R

Cq(X̃1)⊕Q1

Ψ′1
> Cq(X̃)⊕Q

Let us note that

(∀λ ∈ Λ(Aj)) Φ′1(λ) = Φ1(λ) · θj .
Similarly (∀j = 1, . . . , pA) there exist elements ηj ∈ Λ(X2) such that

(∀λ ∈ Λ(Aj)) Φ′2(λ) = Φ2(λ) · ηj
and (∀j = 1, . . . , p1,∀i = 1, . . . , p2) there exist ζj , εi ∈ Λ(X) such that

(∀λ ∈ Λ(Xj
1)) Φ′1(λ) = Φ1(λ) · ζj

and

(∀λ ∈ Λ(Xi
2)) Φ′2(λ) = Φ2(λ) · εi

for each j = 1, . . . , p1 and i = 1, . . . , p2. Moreover as before i1∗ = θ∗, i2∗ = η∗, j1∗ = ε∗
and j2∗ = ζ∗. Let us recall that these homomorphisms do not depend on the choice of
the paths that occur in the definition of θj , ηj , ζj and εj .

As shown in [H], [F] we can take a free Λ(X1)-basis b1, b2, . . . , bk+s of Cq(X̃1) ⊕Q1

such that bj = Φ1(ej) for each j = 1, . . . , k such that ej and fA(ej) belong to the same
connected component of A. In the same way let c1, c2, . . . , ck+t be a free Λ(X2)-basis
of Cq(X̃2) ⊕ Q2 such that cj = Φ2(ej) for each j = 1, . . . , k such that ej and fA(ej)
belong to the same connected component of A. Therefore we can take a free Λ(X)-basis
d1, d2, . . . , dk+s+t of Cq(X̃) ⊕Q such that dj = Ψ1(bj) for all j = 1, . . . , k + s such that
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f1(bj) and bj are in the same connected component of X1, and dj = Ψ2(cj−s) for all j =
k+s+1, . . . , k+s+t such that f2(cj) and cj are in the same connected component of X2.

Let Evu, Bvu, Cvu and Dvu be the entries of the matrices representing FA, F1, F2

and F respectively. In other words {Evu} ∈ Mk,k(Λ(A)) and

FA(eu) =
k∑
v=1

evEvu

for all u = 1, . . . , k; {Bvu} ∈ Mk+s,k+s(Λ(X1)) and

F1(bu) =
k+s∑
v=1

bvBvu

for all u = 1, . . . , k + s; {Cvu} ∈ Mk+t,k+t(Λ(X2)) and

F2(cu) =
k+t∑
v=1

cvCvu

for all u = 1, . . . , k + t; finally {Dvu} ∈ Mk+s+t,k+s+t(Λ(X)) and

F (du) =
k+s+t∑
v=1

dvDvu

for all u = 1, . . . , k + s+ t.
We know that

TrfΛ(Cq(f̃)P ) = TrfΛ(F ) =
k+s+t∑
u=1

[Duu]

and that similar formulae hold for Cq(f̃A)PA, Cq(f̃1)P1 and Cq(f̃2)P2. But for u =
1, . . . , k + s

F (du) = F (Ψ1(bu)) = Ψ′1F1(bu)

and hence

F (du) =
k+s∑
u=1

Ψ′1(bvBvu)

for each u = 1, . . . , k+s. Because Ψ′1 is a ψ′1-homomorphism, Ψ′1(bvBvu) = Ψ′1(bv)ψ′1(Bvu)
for all u, v = 1, . . . , k + s. But for a suitable j depending on v, Ψ′1(bv) = Ψ1(bv)ζj(v) and
hence Ψ′1(bv) = dvζj(v). This implies that

F (du) =
k+s∑
u=1

dv
(
ζj(v)ψ

′
1(Bvu)

)
for all u = 1, . . . , k + s and hence that

Du
u = ζj(u)ψ

′
1(Buu)

for u = 1, . . . , k + s. In a similar way we can show that

Duu = εj′(u−s)ψ
′
2(Cu−s,u−s)

for all u = k + s + 1, . . . , k + s + t and suitable indices j′ depending on u; moreover for
other i’s depending on u

Buu = θi(u)φ
′
1(Euu), Cuu = ηi(u)φ

′
2(Euu)

for all u = 1, . . . , k.
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Now by definition of i1∗, i2∗, j1∗ and j2∗

j1∗(Trf1Λ(Cq(f̃1)P1)) =
k+s∑
u=1

[ζj(u)ψ
′
1(Buu)]

j2∗(Trf2Λ(Cq(f̃2)P2)) =
k+t∑
u=1

[εj′(u)ψ
′
2(Cuu)]

j1∗i1∗(TrfAΛ(Cq(f̃A)PA)) =
k∑
u=1

[εj′(u)ψ
′
2(ηi(u)φ

′
2(Euu))]

and hence

j1∗(Trf1Λ(Cq(f̃1)P1)) + j2∗(Trf2Λ(Cq(f̃2)P2))

= TrfΛ(Cq(f̃)P ) +
k∑
u=1

[εj′(u)ψ
′
2(Cuu)]

= TrfΛ(Cq(f̃)P ) + j1∗i1∗(TrfAΛ(Cq(f̃A)PA))

concluding the proof.

With this lemma the proof of the theorem is complete. Let us note that the hypothesis
that at least i1 is an inclusion cannot be omitted. Let A = S1 be a circle and let X1 =
X2 = {∗} be a single point. Then i1 : A→ X1 and i2 : A→ X2 are constant maps, and
the pushout space X = X1 tA X2 is a single point {∗} too. Therefore if fA : S1 → S1

is a map of degree d and f1 and f2 are constant maps, then the pushout map f is the
obvious constant map, and L(f) = [1] 6= L(f1) + L(f2) − L(fA) because the right hand
side of this equation is equal to [1] + [1]− (1− d)[1] = (d+ 1)[1] 6= [1].
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