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Abstract. We prove an existence and multiplicity result for solutions of a nonlinear Urysohn

type equation (2.14) by use of the Nielsen and degree theory in an annulus in the function space.

1. Main scheme. Consider a family of nonlinear equations

x = Gλ(x) (1.1)

depending continuously on the parameter λ ∈ [0, 1], where Gλ : X → X are continuous

selfmaps of a Banach space X . The homotopy Gλ is thought of as a deformation of

G1(x) = x to a simpler equation G0(x) = x. We look for some open path-connected

subset or ANR D ⊂ X , which is invariant with respect to the maps Gλ, i.e.

Gλ(D) ⊂ D, λ ∈ [0, 1], (1.2)
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and then we restrict our considerations to D under the following assumptions:

(A) The map Ĝ : X×[0, 1] → X×[0, 1], defined by Ĝ(x, λ) = (Gλ(x), λ), is completely

continuous.

(B) The set Fix(Ĝ, D × [0, 1]) of fixed points of Ĝ which belong to D × [0, 1] is a

compact subset of X × [0, 1].

(C) The equation x = G0(x) has precisely n solutions {x0
1, . . . , x

0
n} in D and there

exist open nieghborhoods U0
j (j = 1, . . . , n) of x0

j such that

U0
i ∩ U0

j = ∅,

deg(I − G0, U
0
j , 0) 6= 0,

i 6= j,

j = 1, . . . , n,
(1.3)

where I : X → X is the identity map.

The following result can be obtained using the Nielsen fixed point theory.

Theorem 1.1. Assume that the conditions (A)–(C) are satisfied. If the fixed points

x0
1, . . . , x

0
n of G0 are in different Nielsen classes, then for each λ ∈ [0, 1] the equation

x = Gλ(x) has at least n solutions, which belong to different Nielsen classes of Gλ.

Recall that two fixed points x0
i and x0

j belong to the same Nielsen class if there exists

a continuous path w joining x0
i and x0

j such that w and its image G0(w) are homotopic

in D rel end points. The Nielsen class {x} is called essential if there exists an open

neighbourhood U such that

Fix(G0, D) ∩ U = {x}, deg(I − G0, U, 0) 6= 0. (1.4)

The number N(G0, D) of essential classes is called the Nielsen number. It is a homotopy

invariant, i.e. if G1 is homotopic to G0 by a homotopy Gλ : D → D which satisfies

assumptions (A)–(B), then N(G0, D) = N(G1, D). Such a homotopy Gλ : D → D is

called admissible. In our situation, the fixed points x0
1, . . . , x

0
n by (C) belong to different

essential Nielsen classes and

N(Gλ, D) = n (1.5)

for each λ ∈ [0, 1]. For more details about Nielsen classes see [K], [J], [Br3].

Remark 1.1. If D is simply-connected, then all fixed points in D belong to the same

Nielsen class. Theorem 1.1 gives a multiplicity result only for a non-simply-connected

domain D.

There are very few papers employing the Nielsen theory to nonlinear problems ([Br2],

[Br3], [F], [BKM1]) .

2. Systems of equations. In this note we study a class of nonlinear systems of

integral equations of Urysohn type. Using the Nielsen number we show that the discussed

system has at least two non-zero solutions. The form of the integral kernel yields an a

priori estimate which guarantees that the linear deformation of the original map preserves

the annulus.
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We will work in the Banach space X = C[0, 1]×C[0, 1] of pairs of continuous functions

with the norm

x = (u, v), ‖x‖ = u + v, (2.1)

where u = max |u(t)| and v = max |v(t)|.

In C[0, 1] we consider two closed cones of positive and of negative continuous functions,

respectively:

C+[0, 1] = {u(t) : u(t) > 0}, C−[0, 1] = {u(t) : u(t) 6 0}. (2.2)

We will also use the set

C±[0, 1] = C+[0, 1] ∪ C−[0, 1]. (2.3)

Definition 2.1. By the annulus in the Banach space X = C[0, 1] × C[0, 1] we shall

understand the set

Ac = C±[0, 1]× C±[0, 1] − {(0, 0)}. (2.4)

Lemma 2.1. The set Ac is a path-connected ANR and the fundamental group of Ac is

isomorphic to the group of integer numbers, i.e.

π1(Ac) ≃ Z. (2.5)

Proof. Consider the two-dimensional subspace of pairs of constant functions in X

E2 = {(c1, c2) : ci ∈ R}. (2.6)

We denote by E2
0 this plane with the point (0, 0) deleted. Notice that E2

0 ⊂ Ac. Moreover,

we have the deformation retraction ρ : Ac × [0, 1] → Ac defined by the formula

ρ(u, v, λ) = (λu + (1 − λ) sign u · u, λv + (1 − λ) sign v · v), (2.7)

such that

ρ(Ac, 1) = Ac, ρ(Ac, 0) = E2
0 . (2.8)

Therefore, we have

π1(Ac) = π1(E
2
0 ) = π1(S

1) = Z. (2.9)

Next, consider a function g : R2 → R2 defined by

g(c1, c2) = (δ1c
β
2 , δ2c

α
1 ), (2.10)

where α and β are positive rational numbers, m and n are relatively prime, c
n
m = (sign c ·

|c|
1
m )n by definition, and δ1, δ2 are nonzero. Note that g(R2

0) ⊂ R2
0, where R2

0 is R2 with

the point (0, 0) deleted.

Lemma 2.2. For given positive rational numbers α = n1

m1
, β = n2

m2
such that α ·β 6= 1,

and for δ1, δ2 ∈ {−1, +1} define the continuous map g : R2
0 → R2

0 by (2.10). Then the

fixed point set of g is compact, and the degree of g is given by the formula

deg(g) = −δ1δ2

(
1 − (−1)n1

2

)(
1 − (−1)n2

2

)
, (2.11)

and consequently the Nielsen number

N(g, R2
0) = |1 − deg(g)| ∈ {0, 1, 2}. (2.12)
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Proof. The first part follows from the fact that the degree is multiplicative. Since for

α = n
m

we have deg(xα) = 0 or 1 depending on whether n is even or odd, the second part

of the statement is a property of the Nielsen number of a selfmap of S1, or equivalently

of R2
0.

Remark 2.1. If δ1 = δ2 and both n1, n2 are odd numbers, then N(g, R2
0) = 2.

Remark 2.1 has a simple geometrical sense. The fixed points of g are given as solutions

of the system

(c1, c2) = (δ1c
β
2 , δ2c

α
1 ). (2.13)

Fig. 1

If δ1 = δ2 and n1, n2 are odd, then (2.13) has two solutions:

(−1,−1) and (+1, +1) if δ1 = δ2 = 1,

(−1, +1) and (+1,−1) if δ1 = δ2 = −1,

which are different essential Nielsen classes (see Fig. 1).

We are in a position to formulate our main theorem.

Consider the following system of two nonlinear real integral equations:




u(t) =

∫ 1

0

K1(t, s, u(s), v(s))vβ(s)ds,

v(t) =

∫ 1

0

K2(t, s, u(s), v(s))uα(s)ds,

(2.14)

where α and β are positive rational numbers, u
n
m = (signu · |u|

1
m )n by definition. System

(2.14) is equivalent to the operator equation x = G(x), where the operator G : X → X

is defined by the formula

G(u, v) =
( ∫ 1

0

K1(. . .)v
β(s)ds,

∫ 1

0

K2(. . .)u
α(s)ds

)
, (2.15)

and hence is a completely continuous.

Theorem 2.1. Suppose (2.14) satisfies the following assumptions:

1) Ki(t, s, u, v) ∈ C1([0, 1]2 × R2) for i = 1, 2;

2) K 6 |Ki(t, s, u, v)| 6 K for all (t, s, u, v) ∈ [0, 1]2 × R2, where 0 < K 6 1 6 K;

3) α = n1

m1
, β = n2

m2
∈ Q+ and αβ 6= 1.
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Then the operator G : Ac → Ac (see (2.15)) is well defined, the set Fix(G, Ac) is compact,

the Nielsen number N(G, Ac) is well defined and

N(G, Ac) = N(g, R2
0), (2.16)

where g : R2
0 → R2

0 is the map defined in (2.10) with δi = signKi. Consequently, the

system (2.1) has at least 2 non-zero solutions if δ1 = δ2 and n1, n2 are odd.

Proof. Deform the system (2.14) to a simpler system





u(t) =

∫ 1

0

δ1v
β(s)ds,

v(t) =

∫ 1

0

δ2u
α(s)ds,

(2.17)

which is equivalent to the operator equation x = G0(x), where G0 : X → X is defined by

G0(u, v) =
( ∫ 1

0

δ1v
β(s)ds,

∫ 1

0

δ2u
α(s)ds

)
. (2.18)

Consider a linear homotopy x = Gλ(x), λ ∈ [0, 1], connecting G = G1 with G0, which

is defined by

Gλ = λG1 + (1 − λ)G0. (2.19)

Explicitly, we have the equations




u(t) =

∫ 1

0

(λK1(t, s, u(s), v(s)) + (1 − λ)δ1)v
β(s)ds,

v(t) =

∫ 1

0

(λK2(t, s, u(s), v(s)) + (1 − λ)δ2)u
α(s)ds,

(2.20)

thus the operator Gλ : X → X is of the form

Gλ(u, v) =
( ∫ 1

0

K̃1(t, s, u(s), v(s), λ)vβ(s)ds,

∫ 1

0

K̃2(t, s, u(s), v(s), λ)uα(s)ds
)
, (2.21)

where the kernels K̃1, K̃2 are given by the right side of (2.20).

Let us verify conditions (A)–(C) for the family (2.21).

The map Ĝ : X × [0, 1] → X × [0, 1], defined by Ĝ(x, λ) = (Gλ(x), λ), is completely

continuous. This follows from the smoothness of K̃1, K̃2 (see the first assumption of

Theorem 2.1), from Gλ : (C[0, 1])2 → (C1[0, 1])2 and from the existence of a completely

continuous embedding i : (C1[0, 1])2 → (C[0, 1])2.

The set Ac is an ANR in X and

Gλ(Ac) ⊂ Ac (2.22)

for each λ ∈ [0, 1]. This follows from assumption 2 of Theorem 2.1.

For the proof that the set Fix(Ĝ, Ac × [0, 1]) is a compact subset of X × [0, 1] we need

the following lemma.
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Lemma 2.3. Suppose that there exist two constants 0 < r < R such that for every pair

(x, λ) ∈ Ac × [0, 1] which satisfies x = Gλ(x) we have

r 6 ‖x‖ 6 R. (2.23)

Then the set Fix(Ĝ, Ac × [0, 1]) is a compact subset in X × [0, 1].

Obviously, the set Fix(Ĝ, X×[0, 1]) of all fixed points is closed The set (Ac∪{0})×[0, 1]

is closed by its definition (see (2.4)). From the lower a priori estimate 0 < r 6 ‖x‖ it

follows that the set Fix(Ĝ, Ac × [0, 1]) is closed, too. Its boundedness follows from the

upper a priori estimate (see (2.23)). The completely continuous map Ĝ sends bounded

sets to relatively compact sets. Consequently, Fix(Ĝ, Ac × [0, 1]) is compact.

Proof of the lower and upper a priori estimate. Let x = (u, v) ∈ Ac be a solution

of the system (2.20) for λ ∈ [0, 1]. Observe that the kernels K̂1 and K̂1 are bounded

independently of λ ∈ [0, 1]:

|K̃i(. . .)| = |λKi(. . .) + (1 − λ)δi| = λ|Ki(. . .)| + (1 − λ), (2.24)

K 6 |K̃i(. . .)| 6 K. (2.25)

We shall use the following notations:

u = max |u(t)|,

v = max |v(t)|,

u = min |u(t)|,

v = min |v(t)|,
(2.26)

for t ∈ [0, 1], and

A =

∫ 1

0

|u(s)|αds, B =

∫ 1

0

|v(s)|βds. (2.27)

From (2.27) and (2.26) we get

uα 6 A 6 uα, vβ 6 B 6 vβ . (2.28)

From (2.20), (2.24) and (2.27) we get

KB 6 u 6 u 6 KB, KA 6 v 6 v 6 KA. (2.29)

From (2.27) and (2.29) we get

(KB)α 6 A 6 (KB)α, (KA)β 6 B 6 (KA)β , (2.30)

K α(β+1) A αβ 6 A 6 K
α(β+1)

A αβ ,

K β(α+1) B αβ 6 B 6 K
β(α+1)

B αβ .

(2.31)

Case I) 0 < αβ < 1. Then

K
α(β+1)
1−αβ 6 A 6 K

α(β+1)
1−αβ , K

β(α+1)
1−αβ 6 B 6 K

β(α+1)
1−αβ , (2.32)

K
β+1

1−αβ 6 u 6 K
β+1

1−αβ , K
α+1
1−αβ 6 v 6 K

α+1
1−αβ . (2.33)

Case II) 1 < αβ. Then

K
α(β+1)
1−αβ 6 A 6 K

α(β+1)
1−αβ , K

β(α+1)
1−αβ 6 B 6 K

β(α+1)
1−αβ , (2.34)

K K
β(α+1)
1−αβ 6 u 6 K K

β(α+1)
1−αβ , K K

α(β+1)
1−αβ 6 v 6 K K

α(β+1)
1−αβ . (2.35)
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The last two inequalities give lower and upper a priori estimates for ‖x‖, where ‖x‖=

u + v. Therefore, the compactness of Fix(Ĝ, Ac × [0, 1]) follows from Lemma 2.3.

We verified conditions (A)–(C) for the homotopy x = Gλ(x) and so we have proved

that this homotopy is admissible. Finally, we have to calculate the Nielsen number for

the correspondence G0.

Note that the image of G0 : X → X is the two-dimensional space of constant functions

E2 = {(c1, c2) : ci ∈ R} (2.36)

and thus all its fixed points belong to this plane. Moreover, G0(Ac) ⊂ E2
0 , where E2

0 is

the punctured plane. The map g defined by (2.10) is the restriction of G0 to the plane

E2. Finally, we have

N(Gλ, Ac) = N(G0, Ac) = N(g, R2
0) (2.37)

and by Lemma 2.2 we know when this Nielsen number is non-zero.

3. Multidimensional system of integral equations. Consider a system of 2n

nonlinear integral equations of Urysohn type:




u1(t) =

∫ 1

0

K11(t, s, x(s))vβ1

1 (s)ds,

v1(t) =

∫ 1

0

K12(t, s, x(s))uα1
1 (s)ds,

. . .

un(t) =

∫ 1

0

Kn1(t, s, x(s))vβn

n (s)ds,

vn(t) =

∫ 1

0

Kn2(t, s, x(s))uαn

n (s)ds,

(3.1)

where x = (u1, v1, . . . , un, vn) ∈ R2n.

We assume that the following conditions are satisfied for all i = 1, . . . , n and j = 1, 2:

1) Kij(t, s, x) ∈ C1([0, 1]2 × R2n);

2) Kij
6 |Kij(t, s, x)| 6 Kij for all (t, s, x) ∈ [0, 1]2 × R2n,

where 0 < Kij
6 1 6 Kij ;

3) αi = ni1/mi1, βi = ni2/mi2 ∈ Q+ and αiβi 6= 1.

(3.2)

We shall use the following notation:

X = (C[0, 1])2n, An
c = Ac × . . . × Ac, (R2

0)
n = R2

0 × . . . × R2
0. (3.3)

The system (3.1) is equivalent to the operator equation x = G(x), where the operator

G : X → X is defined similarly as in (2.15). The map G is completely continuous and

G(An
c ) ⊂ An

c . Note that the system (3.1) has a trivial solution x0 = (0, . . . , 0).

Theorem 3.1. Suppose that system (3.1) satisfies conditions 1–3 of (3.2). Then the

set Fix(G, An
c ) is compact. The Nielsen number N(G, An

c ) is well defined and

N(G, An
c ) = N(g, (R2

0)
n), (3.4)
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where

g : R2
0 × . . . × R2

0 → R2
0 × . . . × R2

0 (3.5)

is the map given by

g(u1, v1, . . . , un, vn) = (δ11v
β1

1 , δ12u
α1
1 , . . . , δn1v

βn
n , δn2u

αn
n ) (3.6)

with δij = sign Kij independent of (t, s, x).

As in Theorem 2.1, the proof is based on the linear homotopy

x = Gλ(x), Gλ = λG0 + (1 − λ)G1, λ ∈ [0, 1], (3.7)

to a simpler system 




u1(t) =

∫ 1

0

δ11v
β1

1 (s)ds,

v1(t) =

∫ 1

0

δ12u
α1
1 (s)ds,

. . .

un(t) =

∫ 1

0

δn1v
βn

n (s)ds,

vn(t) =

∫ 1

0

δn2u
αn

n (s)ds,

(3.8)

which is equivalent to the operator equation x = G0(x). Note that the corresponding

operator G0 : X → X has a finite-dimensional image in the subspace of constant functions

and its restriction is the map g (see (3.5) and (3.6)). The technique of the proof of Theorem

3.1 is analogous to the proof of Theorem 2.1.

Now we give an application of Theorem 3.1.

Example 3.1. Consider a system of three pairs of nonlinear integral equations




u1(t) =

∫ 1

0

(1 + sin2[tv3
1(s) + u2

3(s)])v
7
1(s)ds,

v1(t) =

∫ 1

0

(3 + cos[tu2(s)])u
5
1(s)ds,

u2(t) =

∫ 1

0

(1 + t2 + s4)v3
2(s)ds,

v2(t) =

∫ 1

0

(3 + t sin[u4
2(s)])u

5
2(s)ds,

u3(t) =

∫ 1

0

ln(0.1 + ts/2)v9
3(s)ds,

v3(t) =

∫ 1

0

arctan(2 + u2
1(s) + t3 + v4

3(s))u
4
3(s)ds,

(3.9)

where x = (u1, v1, u2, v2, u3, v3) ∈ R6 and

X = (C[0, 1])6, A3
c = Ac × Ac × Ac, (R2

0)
3 = R2

0 × R2
0 × R2

0. (3.10)
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We reduce the system (3.9) to a finite-dimensional equation x = g(x), where

g : R6 → R6, g((R2
0)

3) ⊂ (R2
0)

3, (3.11)

and g is defined by the formula

g(u1, v1, u2, v2, u3, v3) = (v7
1 , u5

1, v
3
2 , u

5
2,−v9

3 , u
4
3). (3.12)

The equation x = g(x) has 4 solutions in (R2
0)

3:

x1 = (+1, +1, +1, +1,−1, +1),

x2 = (−1,−1, +1, +1,−1, +1),

x3 = (−1,−1,−1,−1,−1, +1),

x4 = (+1, +1,−1,−1,−1, +1),

(3.13)

which belong to different Nielsen classes.

Finally, we have a multiplicity result:

N(G, An
c ) = N(g, (R2

0)
3) = 4 (3.14)

yields that the system (3.9) has at least 4 non-zero solutions.

There is a direct approach to equations (2.1) and (3.1), based on the following theorem.

Theorem 3.2. Let the conditions (A)–(C) be satisfied. Assume that there exist sub-

domains Dj (j = 1, . . . , n) in D such that

Di ∩ Dj = ∅, i 6= j, x0
j ∈ Dj,

Gλ(Dj) ⊂ Dj , Fix(Gλ, D) ∩ ∂Dj = ∅,
(3.15)

for all j = 1, . . . , n and λ ∈ [0, 1]. Then, the equation x = Gλ(x) has at least one solution

in each subdomain Dj (j = 1, . . . , n) for each λ ∈ [0, 1].

The proof of Theorem 1.1 is based on the following property of degree:

deg(I − Gλ, Dj , 0) = deg(I − G0, U
0
j , 0) 6= 0. (3.16)

Remark 3.1. In the case of the system (2.1) the interior of the annulus Ac may be

written as a union of 4 open isolated cones, two of them invariant with respect to the

operator G. In the case of the system (3.1) the interior of the annulus An
c may be written

as a union of 4n open isolated cones, some of them invariant with respect to the operator

G. The technique of a priori estimates and degree property (3.16) may be applied in every

invariant cone independently.
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