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1. The main result. A closed curve in the n-dimensional real projective space RPn
is any C∞-mapping of a circle into this space. A curve is called smooth if it is embedded.

For every point of a curve in RPn, there is a hyperplane intersecting the curve at this
point at least n times. Such a hyperplane is called osculating hyperplane to the curve at
a given point. A point of a curve is said to be its flattening point if the multiplicity of the
intersection of the curve with an osculating hyperplane at this point is greater than n.

Definition 1. A curve in RPn is called convex if any hyperplane intersects it at no
more than n points, taking the multiplicities into account.

A convex curve has no flattening points. Such a curve in an even-dimensional pro-
jective space is contractible and affine, it is not contractible in an odd-dimensional
space ([An]). A smooth closed curve in RPn+1 which is projected into a convex curve in
RPn from a point lying outside of the curve has at least n + 2 geometrically different
flattening points ([Ar]).

Definition 2. A curve in RPn+1 is said to be convex by Barner if for any of its
n points (not necessarily geometrically different) there is a hyperplane which passes
through these points and does not intersect the curve anymore.

A closed convex by Barner curve in an odd-dimensional projective space is contractible
and affine. Such a curve in an even-dimensional space is not contractible. A smooth closed
convex by Barner curve in RPn+1 has at least n + 2 geometrically different flattening
points ([B]).
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Let us equip the space of all closed curves in a projective space by the C∞-topology.
Convex curves and convex by Barner curves form open subsets in this space.

A curve in RPn+1 projected into a convex curve in RPn from a point lying outside of
the curve is convex by Barner. We have the natural question (V. I. Arnold, 1996): what
is the relation between these two classes of curves? The answer is given by the following

Theorem 1. There is an open set of smooth closed curves in RPn+1 which are convex
by Barner and have no convex projections into any hyperplane.

The proof of this statement is given in Section 5. It is based on some general facts
on convex curves (Section 2) and properties of some special families of curves (Sections
3 and 4). The proof of these properties is given in the second part of the paper (Sections
6 and 7).

2. General facts on convex curves. A flattening point of a curve in RPn is called
k-multiple if the multiplicity of the intersection of the curve with its osculating hyper-
planes at this point does not exceed n+k and is equal to n+k with one of them. Flattening
points of the multiplicity k > 1 (k = 1) are called multiple (nonmultiple, respectively).

R e m a r k 1. If a curve belongs to the boundary of the set of convex curves in the
space of all closed curves in RPn, then it has no nonmultiple flattening points. Indeed,
if M is such a point, then there is a hyperplane which transversally intersects the curve
at n + 1 geometrically different points being close to M . This follows from properties
of the versal deformation F (x, λ) = xn+1 + λ1x

n + . . . + λnx + λn+1 of the function
xn+1 (the singularity An; see [AGV]). Namely, for any i = 1, . . . , n + 1 there is λ =
(λ1, . . . , λi−1, 0, λi+1, . . . , λn+1) arbitrarily close to 0 and such that the function F (x, λ)
has n+ 1 nonmultiple real zeros (the last is a simple exercise on symmetric functions).

An osculating hyperplane at every nonflattening point of a curve is unique. Flattening
points where an osculating hyperplane is not unique are called inflection points.

R e m a r k 2. Let a closed curve in RPn belong to the boundary of the set of convex
curves and have no inflection points. Then:

1) this curve has no flattening points of any odd multiplicity (otherwise, any close
curve would have flattening points);

2) any hyperplane which intersects the curve more than n times (taking the multi-
plicities into account) has only multiple intersection points with it (otherwise, any close
curve would intersect some hyperplane at least at n+ 1 points).

R e m a r k 3. If a closed curve γ in RPn belongs to the boundary of the set of convex
curves, has no inflection points and the multiplicity of its flattening points is not greater
than 2, then the osculating hyperplane at every of its points does not intersect the curve
at other points. Indeed, if the osculating hyperplane π to γ at a point M intersects γ
at some point M ′ 6= M , then there is a hyperplane close to π, passing through M ′ and
transversally intersecting γ at n geometrically different points being close to M (as above,
the existence of n such points follows from properties of the versal deformation of the
singularity Aµ where µ is equal to n− 1 and n+ 1).
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Definition 3. We say that a curve satisfies the generic condition (?) if an osculating
hyperplane at every of its points is unique and does not intersect the curve at other points.

A curve satisfying the generic condition (?) is smooth.

Theorem 2. Let a curve γ belong to the boundary of the set of convex curves in
the space of all closed curves in RPn. Suppose that γ satisfies the generic condition (?).
Then any hyperplane π which intersects γ more than n times (taking the multiplicities
into account) is the osculating hyperplane to γ at a multiple flattening point.

R e m a r k 4. The fact that the set γ ∩ π contains a multiple flattening point of
the curve γ is proved in [An] without any conditions of general position. The author
considers a central projection of γ and applies the induction on n. But the validity of the
inductive step is not proved. The point is that a central projection of the curve γ can be
nonsmooth (for example, γ can have pieces lying in a hyperplane). To prove the validity
of the inductive step, we use the additional generic condition (?).

P r o o f. For n = 1 the statement is obvious. Suppose that it is true for a space of the
dimension n− 1 and prove it in RPn.

Let M be an intersection point of the curve γ with the hyperplane π. It is a multiple
intersection point according to Remark 2. Consider projective lines intersecting γ at least
at two points (taking the multiplicities into account) one of which is M . By condition (?),
these lines define a smooth closed curve γM in RPn−1.

The curve γM belongs to the boundary of the set of convex curves in the space of
all closed curves in RPn−1 ([An]). Projective lines lying in the hyperplane π and passing
through M form the hyperplane π′ in RPn−1 which intersects γM more than n− 1 times
(taking the multiplicities into account). One of points of this intersection is the tangent
line M ′ to the curve γ at the point M .

It is easy to see that the curve γM satisfies the condition (?) (as in Remark 1, it
is needed to consider the versal deformation of the singularity An−2). Hence by the
induction hypothesis, π′ is the osculating hyperplane to γM at the point M ′ which is a
multiple flattening point of the curve. This means that π is the osculating hyperplane
to γ at the multiple flattening point M .

Corollary 1 (see [Ar]). A closed curve in a projective space belonging to the bound-
ary of the set of convex curves has flattening points. All of them are multiple.

P r o o f. A closed curve without flattening points cannot belong to the boundary of
the set of convex curves. Otherwise, it would satisfy the generic condition (?) (Remark 3)
and hence, would have multiple flattening points (Theorem 2). Thus, any closed curve
belonging to the boundary of the set of convex curves has flattening points. Their mul-
tiplicity is greater than 1 (Remark 1).

Theorem 3. Let Γt, t ∈ [0, 1], be a continuous family of smooth closed curves in
RPn+1 and M ∈ RPn+1 \

⋃
t Γt. Suppose that the projection γt ⊂ RPn of the curve Γt

from the point M is convex for any t ∈ [0, 1) and is not convex for t = 1. Let the curves
Γ1 and γ1 satisfy the following conditions:
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(A) an osculating hyperplane to Γ1 at every point is unique;
(B) connected components of the set of flattening points of the curve Γ1 containing

more than one point are convex by Barner ;
(C) every hyperplane in RPn intersecting the curve γ1 more than n times (taking the

multiplicities into account) intersects it by a connected subset on a circle consisting of
multiple flattening points.

Then the curve Γ1 is convex by Barner.

P r o o f. By condition (C), any hyperplane in RPn+1 passing through the point M
and n points of the curve Γ = Γ1 which are not necessarily mutually different but such
that all of them are not projected simultaneously into one of the connected components
of the set of flattening points of the curve γ = γ1 have no other common points with Γ.

Now, let us consider a hyperplane π in RPn+1 which passes through the point M and
is projected from this point into a hyperplane π′ in RPn intersecting the curve γ with the
multiplicity greater than n. The hyperplane π intersects the curve Γ by the connected
set K since this intersection is projected into the connected (in the standard topology
of a circle) set π′ ∩ γ (condition (C)). Moreover, since the intersection π′ ∩ γ consists of
multiple flattening points of the curve γ, then K is a connected component of the set of
flattening points of the curve Γ and π is an osculating hyperplane to this curve at any
point of K.

Let us show that for any set of points M1, . . . ,Ml from K and any set of natu-
ral numbers k1, . . . , kl such that k1 + . . . + kl = n, one can turn the hyperplane π

so that the new hyperplane will intersect the curve Γ only at points M1, . . . ,Ml and
with multiplicities k1, . . . , kl, respectively. Indeed, let us choose homogeneous coordinates
(x0 : x1 : . . . : xn+1) in RPn+1 so that:

1) the curve Γ is defined by the formulas xj = xj(s), j = 0, 1, . . . , n + 1, where
x0(s), . . . , xn+1(s) are C∞-functions on a circle and{

xn+1(s) = x′n+1(s) = . . . = x
(n+1)
n+1 (s) = 0, if s ∈ K,

xn+1(s) 6= 0, if s 6∈ K;

2) the hyperplane π is defined by the equation xn+1 = 0;
3) the hyperplane xn = 0 intersects Γ at points M1, . . . ,Ml with the multiplicities

not less than k1, . . . , kl, respectively.

It is easy to see that the function xn+1(s) changes its sign when s passes through K,
if n is odd, and does not change the sign, if n is even (this follows from the fact that the
curve Γ as a continuous limit of smooth closed convex by Barner curves is not contractible
for odd n and contractible for even n). The function xn(s) has exactly n zeros M1, . . . ,Ml

with the multiplicities k1, . . . , kl, respectively, in some neighbourhood U of the set K
(this follows from condition (A), if K consists of one point, and from condition (B), if K
contains more than one point). Thus, we can define a smooth function

y(s) =
{

0, if s ∈ K,
xn+1(s)/xn(s), if s ∈ U \K,

in the neighbourhood U which does not change its sign when s passes through K.
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Let us fix an arbitrary ε 6= 0 such that y(s) + ε 6= 0 for every s ∈ U , and con-
sider the hyperplane πε given by the equation xn+1 + εxn = 0. The intersection points
of this hyperplane with the curve Γ in the neighbourhood U are defined by the equa-
tion xn(s)[y(s) + ε] = 0. Hence, the hyperplane πε intersects the curve Γ at the points
M1, . . . ,Ml, with the multiplicities k1, . . . , kl, respectively, and does not intersect it at
other points of the neighbourhood U . But for sufficiently small ε, this hyperplane does
not intersect Γ at all other points as well since the curve is closed.

R e m a r k 5. Generic finitely-parametric families of curves in a projective space sat-
isfy condition (B).

R e m a r k 6. Theorem 1 does not follow directly from Theorem 3. Indeed, it is easy
to construct a family of curves Γt with indicated properties whose projections from the
point M lose the convexity at t = 1. But the curve Γ1 can have convex projections from
other points of the ambient space.

Theorem 4. Let γ be a smooth closed curve in RPn+1. Then the set Ω of points in
RPn+1 \ γ such that γ is projected from them into a convex curve is either empty or
a connected component of the complement in RPn+1 to the union ∆ of the osculating
hyperplanes at flattening points of the curve γ.

P r o o f. The set Ω is open since the set of convex curves in RPn is open. In addition,
Ω ⊂ RPn+1\∆ because the projection of the curve γ from a point in RPn+1\γ belonging
to an osculating hyperplane to γ intersects the projection of this hyperplane more than
n times (taking the multiplicities into account).

Suppose that Ω 6= ∅ (in particular, the curve γ has unique osculating hyperplane at
every point). Let M be a boundary point of the set Ω which is not a flattening point of
the curve γ. Then M 6∈ γ. Indeed, if M ∈ γ, then through any point M ′ ∈ Ω sufficiently
close to M , one can pass a hyperplane intersecting the curve γ at n+ 1 points. But this
contradicts the fact that the projection of the curve γ from the point M ′ is convex.

Hence, the projection γM of the curve γ from the point M belongs to the boundary of
the set of convex curves in the space of all closed curves in RPn. According to Corollary 1
the curve γM has multiple flattening points. Thus, M ∈ ∆ and Ω is the union of connected
components of the set RPn+1 \∆.

Let us prove that the set Ω is connected. For this, consider the cases of even and
odd n separately.

1) n is even. In this case the space RPn+1 is oriented and the curve γ is affine since it
has convex projections from points lying outside of the curve. Let us orient RPn+1 and
fix a parametrization of the curve γ.

Let M ∈ RPn+1 \ γ. Then the cone with the vertex M and the directrix γ is divided
by the point M and the curve γ onto two parts. Hence, there exists a smooth family of
nonzero vectors v(s) ∈ TsRPn+1, s ∈ γ, which are tangent to projective lines passing
through the points M and s.

Consider the set E(s) of vectors in TsRPn+1, s ∈ γ, consisting of the leading n

derivatives of the curve γ at the point s and the vector v(s). If M ∈ Ω, then the set E(s)
is linearly independent for any s and all these sets are oriented identically.
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If the point M passes through the osculating hyperplane to the curve γ at a flattening
point s, then the orientation of the set E(s) is changed to the opposite one. Hence, for
the replacement of the point M into the set Ω when it moves along any projective line, it
is necessary that it crosses the osculating hyperplanes to γ at all flattening points. Then
obviously, it goes back to the same connected component of the set RPn+1 \∆.

2) n is odd. Let π be the osculating hyperplane to the curve γ at one of its flattening
points (such a point necessarily exists since γ has convex projections [Ar]). Let us orient
the hyperplane π ∼= RPn and fix a parametrization of γ.

The orientations of the moving n-hedrons for the projection γM of the curve γ into
the hyperplane π from any point M ∈ Ω are the same at all points of the curve γM .
If the point M passes through the osculating hyperplane to the curve γ at a flattening
point s, then the orientation of the moving n-hedron for the curve γM at the point being
the image of a point s under the projection from the point M is changed to the opposite
one. Hence, as above, for the replacement of the point M into the set Ω when it moves
along any projective line, it is necessary that it crosses the osculating hyperplanes to γ
at all flattening points and thus finds oneself into the same connected component of the
set RPn+1 \∆.

3. The family of curves in RPn+1, n = 2m. Let 0 ≤ t < 1 and r(ϕ) = 1 −
t sin2(m + 1)ϕ. Let us take homogeneous coordinates (x0 : . . . : x2m+1) in RP 2m+1 and
consider the family of smooth closed curves Γt : S1 → RP 2m+1,

x0 = 1, x1 = r(ϕ) cosϕ, x2 = r(ϕ) sinϕ,

(1) x3 = cos 2ϕ, x4 = sin 2ϕ, . . . , x2m−1 = cosmϕ, x2m = sinmϕ,

x2m+1 = f(ϕ) = sin
[
(m+ 1)ϕ+

(
1 + (−1)m

)π
4

]
, {ϕ mod 2π},

depending on the parameter t. The projection γt of the curve Γt from the point Θ =
(0 : . . . : 0 : 1) into the hyperplane Π given by the equation x2m+1 = 0 is a smooth closed
curve in RP 2m. For t = 0, the curve γt is convex ([Sch]).

Proposition 1. For any t ∈ [0, t0) where

1
t0

=
1
2

+
(3m+ 1)!(10m3 + 24m2 + 15m+ 2)

4m!((m+ 2)!)2
≥ 9,

the curve γt has no flattening points. For t = t0, the curve γt has exactly 2m+2 flattening
points (2-multiple) given by the equation

(2) cos 2(m+ 1)ϕ = (−1)m.

For any t > t0 sufficiently close to t0, the curve γt has exactly 4m+ 4 flattening points.

The proof is given in Subsection 6.2.

R e m a r k 7. The sequence of numbers t0 exponentially decreases (∼m/27m) when
m increases. The beginning of this sequence is:

1
9
,

1
228

,
1

5597
,

4
543545

,
2

6613465
,

4
323831081

, . . . .
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Proposition 2. For any t ∈ [0, T0) where

1
t0
>

1
T0

=
1
2

+
(3m+ 2)!(4m+ 5)

4m!((m+ 2)!)2
≥ 8,

the curve Γt has exactly 2m + 2 (nonmultiple) flattening points given by equation (2).
For t = T0, the curve Γt has exactly 4m + 4 flattening points given by the equation
sin 2(m+ 1)ϕ = 0.

The proof is given in Subsection 6.6.

R e m a r k 8. The sequence of numbers T0 exponentially decreases (∼m2/27m) when
m increases. The beginning of this sequence is:

1
8
,

4
457

,
1

1964
,

4
147149

,
2

1458601
,

4
60276647

, . . . .

4. The family of curves in RPn+1, n = 2m − 1. Let us take homogeneous co-
ordinates (x1 : . . . : x2m+1) in RP 2m and consider the family of smooth closed curves
Γt : S1 → RP 2m,

x1 = cosϕ− t cos(4m+ 3)ϕ, x2 = sinϕ− t sin(4m+ 3)ϕ,

(3) x3 = cos 3ϕ, x4 = sin 3ϕ, . . . , x2m−1 = cos(2m− 1)ϕ, x2m = sin(2m− 1)ϕ,

x2m+1 = f(ϕ) = sin
[
(2m+ 1)ϕ+ (1 + (−1)m)

π

4

]
, {ϕ mod π},

depending on the parameter t ∈ [0, 1). The projection γt of the curve Γt from the point
Θ = (0 : . . . : 0 : 1) into the hyperplane Π given by the equation x2m+1 = 0 is a smooth
closed curve in RP 2m−1. For t = 0, the curve γt is convex ([Ar]).

Proposition 3. For any t ∈ [0, t0) where

t0 =
2(2m+ 1)(m− 1)!((m+ 1)!)2

(4m+ 3)(3m+ 1)!
≤ 1

7
,

the curve γt has no flattening points. For t = t0, the curve γt has exactly 2m+1 flattening
points (2-multiple) given by the equation

(4) cos 2(2m+ 1)ϕ = (−1)m−1.

For every t > t0 sufficiently close to t0, the curve γt has exactly 4m+ 2 flattening points.

R e m a r k 9. The sequence of numbers t0 exponentially decreases (∼m/27m) when
m increases. The beginning of this sequence is:

1
7
,

1
154

,
1

3375
,

1
76076

,
1

1758120
,

1
41442192

, . . . .

The proof is given in Subsection 7.2.

Proposition 4. For any t ∈ [0, T0) where

t0 < T0 =
2(2m+ 1)(m+ 1)2(m!)3

(3m+ 2)!
≤ 1

5
,
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the curve Γt has exactly 2m + 1 (nonmultiple) flattening points given by equation (4).
For t = T0, the curve Γt has exactly 4m + 2 flattening points given by the equation
sin 2(2m+ 1)ϕ = 0.

The proof is given in Subsection 7.6.

R e m a r k 10. The sequence of numbers T0 exponentially decreases (∼m2/27m)
when m increases. The beginning of this sequence is:

1
5
,

1
56
,

1
825

,
1

14014
,

1
259896

,
1

5116320
, . . . .

5. Proof of Theorem 1. Let Γt be the family of curves in RPn+1 from Section 3
(or 4) and γt be the projection of the curve Γt from the point Θ into the hyperplane Π.

The curves γt have no flattening points for t ∈ [0, t0) by Proposition 1 (or 3). Hence,
they are convex by Corollary 1 and the convexity of the curve γ0. In particular, the
curve γt0 belongs to the boundary of the set of convex curves in the space of all closed
curves in RPn since it has flattening points.

Proposition 5. The curves Γt0 and γt0 have unique osculating hyperplane at every
point.

This is evident for points Γt0(ϕ) and γt0(ϕ) such that ϕ is not a flattening point of
the curve γt0 . The proof for other points is given in Subsections 6.4 and 7.4.

R e m a r k 11. The curve γt0 satisfies the generic condition (?) according to Propo-
sitions 1 (or 3), 5 and Remark 3. The curve Γt0 satisfies the conditions of Theorem 3:
(A) by Proposition 5; (B) by Proposition 2 (or 4); (C) by Theorem 2.

Let us consider the union ∆t of osculating hyperplanes to the curve Γt at its flattening
points. If t is sufficiently close to t0, then the set ∆t is the union of n + 2 osculating
hyperplanes to the curve Γt at points given by the equation (2) (or (4)). This follows
from Propositions 2 (or 4) and 5.

The following properties of the set ∆t are proved in Sections 6 and 7.

Proposition 6. The intersection of any n+ 1 hyperplanes from ∆t0 is equal to Θ.

Proposition 7. For any t 6= t0 sufficiently close to t0, the intersection of all hyper-
planes from ∆t is empty.

Proposition 8. For any solution ϕ of the equation (2) (or (4)), the family of oscu-
lating hyperplanes to the curves Γt at the point ϕ transversally intersects the point Θ (as
a hyperplane in the dual space) at t = t0.

According to Propositions 6 and 7, the set RPn+1 \ ∆t has exactly 2n+1 connected
components for every t 6= t0 sufficiently close to t0. All components except one are
intersected with the hyperplane Π. Therefore, they contain points such that the projection
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of the curve Γt from these points is not convex (the projection of the curve Γt from any
point of this hyperplane is not convex since it transversally intersects Γt at n+ 2 points).

The component at infinity (which does not intersect the hyperplane Π) contains such
point for t > t0 as well. Indeed, the projection γt of the curve Γt from the point Θ into
the hyperplane Π is not convex for such t by Proposition 1 (or 3). The component at
infinity contains this point for t < t0 by Theorem 4, and, hence, contains it for t > t0 by
Proposition 8.

Thus, for any t∗ > t0 sufficiently close to t0, the curve Γt∗ has no convex projections
from a point lying outside of the curve into any hyperplane (Theorem 4). On the other
hand, it is convex by Barner since the curve Γt0 , as all curves close to it, is convex by
Barner according to Theorem 3.

It remains to remark that any curve Γ sufficiently close to Γt∗ is convex by Barner
and has no convex projections since the union of osculating hyperplanes to the curve Γ
at its flattening points is homeomorphic to ∆t∗ (by Propositions 2 (or 4), 6 and 7).

6. Properties of curves from Section 3. Let Γt be the family of curves in RP 2m+1

= {(x0 : . . . : x2m+1)} from Section 3 and γt be the projection of the curve Γt from the
point Θ = (0 : . . . : 0 : 1) into the hyperplane Π = {x2m+1 = 0}. Consider the lift Γ∗t
of the curve Γt into the affine chart x0 = 1 defined by the functions (1), i.e. xi = xi(ϕ),
i = 1, . . . , 2m+ 1, where

x1(ϕ) = r(ϕ) cosϕ, x2(ϕ) = r(ϕ) sinϕ, r(ϕ) = 1− t sin2(m+ 1)ϕ,

x3(ϕ) = cos 2ϕ, x4(ϕ) = sin 2ϕ, . . . , x2m−1(ϕ) = cosmϕ, x2m(ϕ) = sinmϕ,

x2m+1(ϕ) = f(ϕ) = sin
[
(m+ 1)ϕ+ (1 + (−1)m)

π

4
]
, {ϕ mod 2π}.

6.1. Lemmas to the proof of Proposition 1. For every ~y = (y1, . . . , y2m+1) ∈ R2m+1,
define the smooth function

F~y,t(ϕ) = det

 x′1 . . . x
(2m)
1 y1

...
...

...
x′2m+1 . . . x

(2m)
2m+1 y2m+1


on the curve Γ∗t . For the convenience of its calculation, consider the numbers

α1(k) =
k−1∑
i=0

(
2k − 1

2i

)
(2m+ 2)2k−2i−1, α2(k) =

k−1∑
i=0

(
2k − 1
2i+ 1

)
(2m+ 2)2k−2i−2,

β1(k) =
k−1∑
i=0

(
2k

2i+ 1

)
(2m+ 2)2k−2i−1, β2(k) =

k∑
i=0

(
2k
2i

)
(2m+ 2)2k−2i,

and (if m > 1) the matrix

Wm =


1 −22 24 . . . (−1)m−122m−2

1 −32 34 . . . (−1)m−132m−2

...
...

...
...

1 −m2 m4 . . . (−1)m−1m2m−2

 .

Usually, we will omit the subscript m and write W .
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Lemma 1.

F~y,t(ϕ) =



det

 a1 b1 ỹ1

a2 b2 ỹ2

f ′(ϕ) f ′′(ϕ) y3

 , if m = 1,

(− 1)m−1(m!)3 det


A1 B1 ỹ1

A2 B2 ỹ2

W 0 Y+

0 W Y−
f ′(ϕ)C f ′′(ϕ)C y2m+1

 , if m > 1,

where

Y+ =


1
2 ỹ4

...
1
m ỹ2m

 , Y− =

 − 1
22 ỹ3

...
− 1
m2 ỹ2m−1

 ,

ỹ2i−1 = y2i−1 cos iϕ+ y2i sin iϕ, ỹ2i = −y2i−1 sin iϕ+ y2i cos iϕ,

A1 = ( a1 a3 . . . a2m−1 ) , B1 = ( b1 b3 . . . b2m−1 ) ,

A2 = ( a2 a4 . . . a2m ) , B2 = ( b2 b4 . . . b2m ) ,

a2k−1 = (−1)k
t

2
α1(k) sin 2(m+ 1)ϕ, a2k = (−1)k−1

[(
1− t

2

)
+
t

2
α2(k) cos 2(m+ 1)ϕ

]
,

b2k−1 = (−1)k
[(

1− t

2

)
+
t

2
β2(k) cos 2(m+ 1)ϕ

]
, b2k = (−1)k

t

2
β1(k) sin 2(m+ 1)ϕ,

C = ( 1 −(m+ 1)2 (m+ 1)4 . . . (− 1)m−1(m+ 1)2m−2 ) .

P r o o f. Let

uj2i−1 = x
(j)
2i−1 cos iϕ+ x

(j)
2i sin iϕ, uj2i = −x(j)

2i−1 sin iϕ+ x
(j)
2i cos iϕ,

i = 1, . . . ,m; j = 1, . . . , 2m. Then

F~y,t(ϕ) = det


u1

1 . . . u2m
1 ỹ1

...
...

...
u1

2m . . . u2m
2m ỹ2m

x′2m+1 . . . x
(2m)
2m+1 y2m+1

 .

Here,

(u1
2i−1, . . . , u

2m
2i−1) = (0,−i2, 0, i4, . . . , 0, (−1)mi2m),

(u1
2i, . . . , u

2m
2i ) = (i, 0,−i3, 0, . . . , (−1)m−1i2m−1, 0),

if i > 1, and

uj1 =
[j/2]∑
k=0

(−1)k
(
j

2k

)
r(j−2k), uj2 =

[(j−1)/2]∑
k=0

(−1)k
(

j

2k + 1

)
r(j−2k−1),

where [x] is the integral part of the number x. It remains only to remark that uj1 = aj ,
uj2 = aj+1, if j is odd, and uj1 = bj−1, uj2 = bj , if j is even.
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Let W k be the determinant of the matrix obtained from W by the deletion of the
k-th column, if m > 1, and be 1, if m = 1. Consider the smooth function

Φm(x) =



x, if m = 1,

xdet


1 −x2 x4 . . . (−1)m−1x2m−2

1 −22 24 . . . (−1)m−122m−2

1 −32 34 . . . (−1)m−132m−2

...
...

...
...

1 −m2 m4 . . . (−1)m−1m2m−2

 , if m > 1.

Usually, we will omit the subscript m and write Φ(x).

Lemma 2.
m∑
k=1

α1(k)W k =
1
2
[
Φ(2m+ 3) + Φ(2m+ 1)

]
,

m∑
k=1

α2(k)W k =
1
2
[
Φ(2m+ 3)− Φ(2m+ 1)

]
,

m∑
k=1

β1(k)W k =
1
2
[
(2m+ 3)Φ(2m+ 3)− (2m+ 1)Φ(2m+ 1)

]
,

m∑
k=1

β2(k)W k =
1
2
[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
,

m∑
k=1

W k = Φ(1).

This statement follows from the binomial formulas

α1(k)− α2(k) = (2m+ 1)2k−1, α1(k) + α2(k) = (2m+ 3)2k−1,

β2(k)− β1(k) = (2m+ 1)2k, β2(k) + β1(k) = (2m+ 3)2k.

and the determinant decomposition theorem.
Let

P = − t
2

4
Φ(2m+ 1)Φ(2m+ 3),

Q =
t

2

(
1− t

2

)[
(m+ 2)Φ(2m+ 3) +mΦ(2m+ 1)

]
Φ(1),

R =
(

1− t
2

)2
Φ2(1)+

t2

16
[
Φ(2m+3)+Φ(2m+1)

][
(2m+3)Φ(2m+3)−(2m+1)Φ(2m+1)

]
.

Lemma 3. Flattening points of the curve γt are solutions (with the multiplicities taken
into account) of the equation

P cos2 2(m+ 1)ϕ+Q cos 2(m+ 1)ϕ+R = 0.

P r o o f. Flattening points of the curve γt are solutions of the equation F~y,t(ϕ) = 0,
where ~y = (0, . . . , 0, 1). By Lemma 1, it is equivalent to the equation

det
(
a1 b1
a2 b2

)
= 0,
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if m = 1, and

det


A1 B1

A2 B2

W 0
0 W

 = 0,

if m > 1. Both these equations are equivalent to the equation
m∑

i,j=1

(−1)i+j det
(
a2i−1 b2j−1

a2i b2j

)
W iW j = 0

whose left-hand side can be rewritten in the form
t2

4
sin2 2(m+ 1)ϕ

m∑
i=1

α1(i)W i
m∑
j=1

β1(j)W j

+
t2

4
cos2 2(m+ 1)ϕ

m∑
i=1

α2(i)W i
m∑
j=1

β2(j)W j

+
t

2

(
1− t

2

)
cos 2(m+ 1)ϕ

[ m∑
i=1

α2(i)W i +
m∑
j=1

β2(j)W j

] m∑
i=1

W i

+
(

1− t

2

)2( m∑
i=1

W i

)2

by Lemma 1. Now, Lemma 3 follows from Lemma 2.

Lemma 4. If m > 1, then

Φ(x) = (−1)(m−2)(m−1)/2 2x
∏m
i=2(2i− 1)!

(m− 1)!m!(m+ 1)!

m∏
i=2

(x2 − i2).

The proof is a direct calculation of the Vandermonde determinant which defines the
function Φ(x).

Let us consider the numbers

t0 =
4Φ(1)

2Φ(1)− (−1)m
[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

] ,
t1 =

4Φ(1)
2Φ(1)− (−1)m

[
Φ(2m+ 3)− Φ(2m+ 1)

] .
Lemma 5. 0 < t0 < t1 and

1
t0

=
1
2

+
(3m+ 1)!(10m3 + 24m2 + 15m+ 2)

4m!((m+ 2)!)2
≥ 9.

These formulas follow from Lemma 4 (the estimate for t0 follows from the fact that
t0 decreases when m increases).

Lemma 6. The equation
P + (−1)mQ+R = 0

is quadratic with respect to t and has two solutions t0 and t1.
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P r o o f. The coefficient at t2 in this equation is equal to
1
16
{2Φ(1)− (−1)m

[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
}

× {2Φ(1)− (−1)m
[
Φ(2m+ 3)− Φ(2m+ 1)

]
},

and hence, is not equal to 0 by Lemma 4. The discriminant of the equation is equal to
1
4

Φ2(1)(m+ 1)2
[
Φ(2m+ 3) + Φ(2m+ 1)

]2
,

i.e. is a perfect square.

6.2. Proof of Proposition 1. By Lemma 4, the equation from Lemma 3 is quadratic
with respect to cos 2(m+ 1)ϕ for all 0 < t < 1. Its coefficients have the following signs:

P < 0, (−1)mQ < 0, R > 0.

Since this equation has no solutions for t = 0 and P,Q,R smoothly depend on t, the
solutions which can appear when t increases must satisfy equation (2) at the moment
of the appearance. Hence, this moment is the smallest positive solution of the equation
P +(−1)mQ+R = 0, less than 1. By Lemmas 5 and 6, such a solution exists and is equal
to t0.

It remains to remark that the expression P + (−1)mQ + R changes its sign when
t passes through t0. If t = t0 and ϕ0 is a solution of the equation (2), then the first
derivative by ϕ of the left-hand side of the equation from Lemma 3 at ϕ0 vanishes, and
the second derivative is not zero (it is equal to −4(m + 1)2[2P + (−1)mQ]). Therefore,
this equation has 4m+ 4 solutions for any t > t0 sufficiently close to t0.

6.3. Lemmas to the proof of Proposition 5 (n = 2m). Let

A0
2 = ( a0

2 a0
4 . . . a0

2m ) , a0
2k = (−1)k−1

[(
1− t

2

)
+ (−1)m

t

2
α2(k)

]
,

B0
1 = ( b01 b03 . . . b02m−1 ) , b02k−1 = (−1)k

[(
1− t

2

)
+ (−1)m

t

2
β2(k)

]
.

Lemma 7. If m > 1, then

det
(
A0

2

W

)
= Φ(1)

(
1− t

t1

)
, det

(
B0

1

W

)
= −Φ(1)

(
1− t

t0

)
,

det
(
W

C

)
= (−1)m−1 Φ(m+ 1)

m+ 1
.

P r o o f. By Lemma 2,

det
(
A0

2

W

)
=
(

1− t

2

)
Φ(1) + (−1)m

t

4
[
Φ(2m+ 3)− Φ(2m+ 1)

]
= Φ(1)

(
1− t

t1

)
,

det
(
B0

1

W

)
= −

(
1− t

2

)
Φ(1)

− (−1)m
t

4
[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
= −Φ(1)

(
1− t

t0

)
.

The third equality is evident.
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Lemma 8. Let ϕ0 be a solution of equation (2). Then

F~y,t(ϕ0) = (1− t)
[
f ′′(ϕ0)(y1 cosϕ0 + y2 sinϕ0) + (1− 9t)y3

]
, if m = 1,

F~y,t(ϕ0) = Φ(1)(m!)3
(

1− t

t1

){
f ′′(ϕ0)

[
Φ(m+ 1)
m+ 1

(y1 cosϕ0 + y2 sinϕ0)

+
m∑
i=2

y2i−1 cos iϕ0 + y2i sin iϕ0

i2
det

B0
1 0

W ei
C 0

]+ Φ(1)
(

1− t

t0

)
y2m+1

}
, if m > 1,

where ei is the (m − 1)-element column whose (i − 1)-th element is equal to 1, and all
other are equal to 0.

P r o o f. By Lemma 1

F~y,t(ϕ0) =



det

 0 b01 ỹ1

a0
2 0 ỹ2

0 f ′′(ϕ0) y3

 , if m = 1,

(−1)m−1(m!)3 det


0 B0

1 ỹ1

A0
2 0 ỹ2

W 0 Y+

0 W Y−
0 f ′′(ϕ0)C y2m+1

 , if m > 1.

Therefore, F~y,t(ϕ0) = a0
2

[
ỹ1f
′′(ϕ0)− b01y3

]
, if m = 1, and

F~y,t(ϕ0) = (m!)3 det
(
A0

2

W

)[
(−1)m−1ỹ1f

′′(ϕ0) det
(
W

C

)
− det

 B0
1 0

W Y−
f ′′(ϕ0)C y2m+1

],
if m > 1. Now, Lemma 8 follows from Lemma 7.

6.4. Proof of Proposition 5 (n = 2m). Let ϕ0 be a flattening point of the curve γt0 .
Then the function F~y,t0(ϕ0) of the variable ~y is not equal to 0 identically by Proposition 1,
Lemmas 5 and 8. Hence, the vectors of the leading 2m derivatives of the curve Γ∗t0 at the
point ϕ0 are linearly independent.

Now, consider the vectors of the leading 2m − 1 derivatives of the curve γt at the
point ϕ0. By Lemma 1, the rank of the system of these vectors is equal to the rank of
the system of the leading 2m− 1 columns of the matrix

Λ =



(
0 b01
a0

2 0

)
, if m = 1,

0 B0
1

A0
2 0

W 0
0 W

 , if m > 1.

The determinant of the matrix obtained from Λ by the deletion of the first line and
the last column is equal to

χ =


a0

2, if m = 1,

det
(
A0

2

W

)
detWm, if m > 1,
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where a0
2 = 1− t (if m = 1) and detWm 6= 0 (the Vandermonde determinant). According

to Lemmas 5 and 7, χ 6= 0 for t = t0. Hence, the vectors of the leading 2m−1 derivatives
of the curve γt0 at the point ϕ0 are linearly independent.

6.5. Lemmas to the proof of Proposition 2. Let

Ψ(x1, x2) =



x1x2(x2
1 − x2

2), if m = 1,

x1x2 det



1 −x2
1 x4

1 . . . (−1)mx2m
1

1 −x2
2 x4

2 . . . (−1)mx2m
2

1 −22 24 . . . (−1)m22m

1 −32 34 . . . (−1)m32m

...
...

...
...

1 −m2 m4 . . . (−1)mm2m


, if m > 1,

P̃ = − t
2

8
[
(2m+ 3)Φm+1(2m+ 1)Φ(2m+ 3)

− (2m+ 1)Φm+1(2m+ 3)Φ(2m+ 1) + (−1)mΦ(m+ 1)Ψ(2m+ 1, 2m+ 3)
]
,

Q̃ =
t

4

(
1− t

2

)
{Φm+1(1)

[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
− (−1)mΦ(m+ 1)

[
Ψ(2m+ 3, 1) + Ψ(2m+ 1, 1)

]
+ Φ(1)

[
Φm+1(2m+ 3)

− Φm+1(2m+ 1)
]
} − t2

8
Φ(m+ 1)Ψ(2m+ 1, 2m+ 3),

R̃ =
(

1− t

2

)2

Φm+1(1)Φ(1) +
t2

16
[
Φm+1(2m+ 3)

+ Φm+1(2m+ 1)
][

(2m+ 3)Φ(2m+ 3)− (2m+ 1)Φ(2m+ 1)
]

− t

4

(
1− t

2

)
Φ(m+ 1)

[
Ψ(2m+ 1, 1) + Ψ(2m+ 3, 1)

]
.

Lemma 9. Flattening points of the curve Γt are solutions (with the multiplicities taken
into account) of the equation

f ′(ϕ)
[
P̃ cos2 2(m+ 1)ϕ+ Q̃ cos 2(m+ 1)ϕ+ R̃

]
= 0.

P r o o f. These points are solutions of the equation F~y,t(ϕ) = 0 where

~y =
(
x

(2m+1)
1 , . . . , x

(2m+1)
2m+1

)
.

By Lemma 1, it is equivalent to the equation

det

 a1 b1 a3

a2 b2 a4

f ′(ϕ) f ′′(ϕ) y3

 = 0,

if m = 1, and

det


A1 B1 a2m+1

A2 B2 a2m+2

W 0 Y+

0 W 0
f ′(ϕ)C f ′′(ϕ)C y2m+1

 = 0,
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if m > 1, where

Y+ = (−1)m

 22m

...
m2m

 , y2m+1 = (−1)m(m+ 1)2mf ′(ϕ).

The left-hand sides of the indicated equations are equal to

f ′(ϕ) det

 a1 b1 a3

a2 b2 a4

1 0 −4

+ f ′′(ϕ) det

 a1 b1 a3

a2 b2 a4

0 1 0


= −f ′(ϕ)

[
det
(
Ã2

W2

)
b1 − det

(
Ã1

W2

)
b2

]
− f ′′(ϕ) det

(
a1 a3

a2 a4

)
and

f ′(ϕ) det


A1 B1 a2m+1

A2 B2 a2m+2

W 0 Y+

0 W 0
C 0 (−1)m(m+ 1)2m

+ f ′′(ϕ) det


A1 B1 a2m+1

A2 B2 a2m+2

W 0 Y+

0 W 0
0 C 0


= (−1)mf ′(ϕ)

[
det
(

Ã2

Wm+1

)
det
(
B1

W

)
− det

(
Ã1

Wm+1

)
det
(
B2

W

)]

+ (−1)mf ′′(ϕ) det

A1 a2m+1

A2 a2m+2

W Y+

det
(
W

C

)
,

respectively, where

Ã1 = ( a1 a3 . . . a2m+1 ) , Ã2 = ( a2 a4 . . . a2m+2 ) .

By Lemma 2 and the definition of the function Ψ, we have:

det
(

Ã1

Wm+1

)
= − t

4
[
Φm+1(2m+ 3) + Φm+1(2m+ 1)

]
sin 2(m+ 1)ϕ,

det
(

Ã2

Wm+1

)
=
(

1− t

2

)
Φm+1(1) +

t

4
[
Φm+1(2m+ 3)− Φm+1(2m+ 1)

]
cos 2(m+ 1)ϕ,

det
(
B1

W

)
= −

(
1− t

2

)
Φ(1)− t

4
[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
cos 2(m+ 1)ϕ,

det
(
B2

W

)
= − t

4
[
(2m+ 3)Φ(2m+ 3)− (2m+ 1)Φ(2m+ 1)

]
sin 2(m+ 1)ϕ,

det

A1 a2m+1

A2 a2m+2

W Y+

 = − t
4

sin 2(m+ 1)ϕ

×
{

(1− t

2
)
[
Ψ(2m+ 1, 1) + Ψ(2m+ 3, 1)

]
+
t

2
Ψ(2m+ 1, 2m+ 3) cos 2(m+ 1)ϕ

}
,

These formulas and Lemma 7 imply the above equation for flattening points of the
curve Γt.
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Lemma 10. If m > 1, then

Ψ(x1, x2) = (−1)(m−2)(m−1)/2 2x1x2(x2
1 − x2

2)
∏m
i=2(2i− 1)!

(m− 1)!m!(m+ 1)!

m∏
i=2

(x2
1 − i2)

m∏
i=2

(x2
2 − i2).

The proof is a direct calculation of the Vandermonde determinant which defines the
function Ψ(x1, x2).

Lemma 11. (−1)mP̃ < 0 for any t 6= 0.

P r o o f. By Lemmas 4 and 10,

P̃ = (−1)m−1t2
( ∏m

i=2(2i− 1)!
(m− 1)!m!(m+ 1)!

)2 (2m+ 1)(2m+ 3)(2m+ 1)!
(m+ 1)

×
m∏
i=2

(
(2m+ 1)2 − i2

) m∏
i=2

(
(2m+ 3)2 − i2

)
,

if m > 1, and P̃ = 45
4 t

2, if m = 1.

Lemma 12. Q̃ > 0 for any 0 < t < 2.

P r o o f. Lemmas 4 and 10 imply:

(2m+ 1)Φm+1(1)Φ(2m+ 1)− (−1)mΦ(m+ 1)Ψ(2m+ 1, 1) > 0,

(2m+ 3)Φm+1(1)Φ(2m+ 3)− (−1)mΦ(m+ 1)Ψ(2m+ 3, 1) > 0,

Φ(1)
[
Φm+1(2m+ 3)− Φm+1(2m+ 1)

]
> 0, Φ(m+ 1)Ψ(2m+ 1, 2m+ 3) < 0.

Therefore Q̃ > 0 if t and 1− t/2 are positive.

The following statement is evident.

Lemma 13. (−1)mR̃ > 0 for any t sufficiently close to 0.

Let us consider the numbers

T0 =
4Φm+1(1)

2Φm+1(1) + (−1)m
[
Φm+1(2m+ 3)− Φm+1(2m+ 1)

]
and

T1 =
4Φ(1)

2Φ(1) + (−1)m
[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

] .
Lemma 14. T1 < 0, T0 > t0 and

1
T0

=
1
2

+
(3m+ 2)!(4m+ 5)

4m!((m+ 2)!)2
≥ 8.

These formulas follow from Lemmas 4 and 5.

Lemma 15. The equation

P̃ + (−1)m−1Q̃+ R̃ = 0

is quadratic with respect to t and has two solutions T0 and T1.
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P r o o f. The coefficient at t2 in this equation is equal to
1
16
{2Φ(1) + (−1)m

[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
}

× {2Φm+1(1) + (−1)m
[
Φm+1(2m+ 3)− Φm+1(2m+ 1)

]
},

and hence, is not equal to 0 by Lemma 4. The discriminant of the equation equals
1
16
{Φm+1(1)

[
(2m+ 3)Φ(2m+ 3) + (2m+ 1)Φ(2m+ 1)

]
− Φ(1)

[
Φm+1(2m+ 3)− Φm+1(2m+ 1)

]
}2,

i.e. is a perfect square.

6.6. Proof of Proposition 2. By Lemma 9, flattening points of the curve Γt are defined
by the equations f ′(ϕ) = 0 and

P̃ cos2 2(m+ 1)ϕ+ Q̃ cos 2(m+ 1)ϕ+ R̃ = 0.

The first one has 2m+2 solutions cos 2(m+1)ϕ = (−1)m. The second one has no solutions
if t = 0 and is quadratic with respect to cos 2(m+ 1)ϕ for every t 6= 0.

Since P̃ , Q̃, R̃ smoothly depend on t and satisfy the inequalities from Lemmas 11–13,
the solutions which can appear from the second equation when t increases from 0 to 1 must
satisfy the equation cos 2(m+ 1)ϕ = (−1)m−1 at the moment of the appearance. Hence,
this moment is the smallest positive solution of the equation P̃ +(−1)m−1Q̃+ R̃ = 0, less
than 1. By Lemmas 14 and 15, such a solution exists, is equal to T0 and greater than t0.

It remains to remark that for any t ∈ [0, T0) and any solution ϕ0 of equation (2), the
first derivative by ϕ of the left-hand side of the equation from Lemma 9 at ϕ0 is not equal
to 0.

6.7. Lemmas to the proofs of Propositions 6–8 (n = 2m). The osculating hyperplane
to the curve Γt at a point ϕ is defined by the equation

F~y,t(ϕ) = y0FΓ∗t (ϕ),t(ϕ),

where ~y = (y1, . . . , y2m+1) and (y0 : y1 : . . . : y2m+1) ∈ RP 2m+1.

Lemma 16. Let ϕ0 be a solution of equation (2). Then FΓ∗t0
(ϕ0),t0(ϕ0) 6= 0.

P r o o f. The equation F~y,t0(ϕ0) = 0 defines a hyperplane in Π ∼= RP 2m by Lemma 8.
This hyperplane intersects the curve γt0 at least at two geometrically different points by
Sturm-Hurwitz theorem [H]. Therefore, it cannot be the osculating hyperplane to the
curve γt0 at any of its multiple flattening point by Remark 11 and Theorem 2.

Lemma 17. If t is sufficiently close to t0, then the determinant

det

B0
1 0

W ei
C 0


from Lemma 8 is not equal to 0 for any i = 2, . . . ,m.
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P r o o f. Let us consider the more general determinant

det

B0
1 0

W δ∗i
C δm+1

i

 , i ∈ {2, . . . ,m+ 1},

where the i-th element of the last column equals to 1, and all other equal 0. By the
Vandermonde formula, this determinant is equal to

(−1)i
∏

2≤k<l≤m+1
k 6=i,l 6=i

(k2 − l2)
{
−
(

1− t

2

) 1
i2 − 1

m+1∏
j=2

(j2 − 1)

+
t

4

[
(2m+ 1)2

(2m+ 1)2 − i2
m+1∏
j=2

(
(2m+ 1)2 − j2

)
+

(2m+ 3)2

(2m+ 3)2 − i2
m+1∏
j=2

(
(2m+ 3)2 − j2

)]}
.

This expression vanishes for t = τi(m) where

1
τi(m)

=
1
2

+
1

4
∏m+1
j=2 (j2 − 1)

[
i2 − 1

(2m+ 1)2 − i2
(2m+ 1)2

m+1∏
j=2

(
(2m+ 1)2 − j2

)
+

i2 − 1
(2m+ 3)2 − i2

(2m+ 3)2
m+1∏
j=2

(
(2m+ 3)2 − j2

)]
.

It is evident that τ2(m) > . . . > τm(m) > τm+1(m) since the function x−1
λ−x increases on

the interval x ∈ (−∞, λ) for any λ > 1. It remains to remark that τm+1(m) = t0 by
Lemma 7.

R e m a r k 12. The moments τi(m), i = 2, . . . ,m, as well as the moments t0, T0,
define some bifurcations in the family Γt. In particular, the beginning of the sequence
τm(m) for m > 1 is:

4
297

,
1

2657
,

4
307925

,
1

2082152
,

4
218972327

, . . . .

It is easy to see that τm(m) < T0 = T0(m) already for m = 3.

6.8. Proof of Proposition 6 (n = 2m). Let ϕ1, . . . , ϕ2m+1 be mutually different solu-
tions of equation (2). Then Θ is a unique solution of the linear equations system

F~y,t0(ϕi) = y0FΓ∗t0
(ϕi),t0(ϕi), i = 1, . . . , 2m+ 1.

Indeed, the point Θ satisfies this system by Lemma 8. The rank of the system is equal
to the rank of the matrix formed by the coordinates of the vectors

(1, cosϕi, sinϕi, cos 2ϕi, sin 2ϕi, . . . , cosmϕi, sinmϕi), i = 1, . . . , 2m+ 1,

(this follows from Lemmas 4, 5, 8, 16 and 17). But the determinant of this matrix is not 0
(even for any mutually different points ϕ1, . . . , ϕ2m+1 on the circle {ϕ mod 2π}) since
the curve γ0 is convex.
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6.9. Proof of Proposition 7 (n = 2m). Let us consider the solutions

ϕi =
1− (−1)m

4(m+ 1)
π +

π

m+ 1
i, i = 0, 1, . . . , 2m+ 1,

of equation (2). The intersection of the osculating hyperplanes to the curve Γt at these
points is defined by the linear equations system

F~y,t(ϕi) = y0FΓ∗t (ϕi),t(ϕi), i = 0, 1, . . . , 2m+ 1.

If t is sufficiently close to t0 and t 6= t0, then by Lemmas 4, 5, 8, 16 and 17, the rank of
this system is equal to the rank of the matrix formed by the coordinates of the vectors

vi = (1, cosϕi, sinϕi, cos 2ϕi, sin 2ϕi, . . . , cosmϕi, sinmϕi, f(ϕi)),

i = 0, 1, . . . , 2m+ 1.

Let us suppose that these vectors lie in a hyperplane in R2m+2. Then this hyperplane
contains the vertical vector (0, . . . , 0, 1) since

1
m+ 1

m∑
k=0

v2k = (1, 0, . . . , 0, 1),
1

m+ 1

m∑
k=0

v2k+1 = (1, 0, . . . , 0,−1).

Hence, the vectors

ṽi = (1, cosϕi, sinϕi, cos 2ϕi, sin 2ϕi, . . . , cosmϕi, sinmϕi), i = 0, 1, . . . , 2m+ 1,

lie in a hyperplane in R2m+1. But this contradicts the convexity of the curve γ0.

6.10. Proof of Proposition 8 (n = 2m). Let ~y = (0, . . . , 0, 1) ∈ R2m+1 and ϕ be a
solution of equation (2). Then

F~y,t(ϕ) = Φ2(1)(m!)3
(

1− t

t1

)(
1− t

t0

)
by Lemma 8. Now, the statement follows from Lemmas 4 and 5.

7. Properties of curves from Section 4. Let Γt be the family of curves in RP 2m =
{(x1 : . . . : x2m+1)} from Section 4 and γt be the projection of the curve Γt from the point
Θ = (0 : . . . : 0 : 1) into the hyperplane Π = {x2m+1 = 0}. Consider the double covering
Γ∗t of the curve Γt in the space R2m+1 defined by the functions (3), i.e. xi = xi(ϕ),
i = 1, . . . , 2m+ 1, where

x1(ϕ) = cosϕ− t cos(4m+ 3)ϕ, x2(ϕ) = sinϕ− t sin(4m+ 3)ϕ,

x3(ϕ) = cos 3ϕ, x4(ϕ) = sin 3ϕ, . . . , x2m−1(ϕ) = cos(2m− 1)ϕ, x2m(ϕ) = sin(2m− 1)ϕ,

x2m+1(ϕ) = f(ϕ) = sin
[
(2m+ 1)ϕ+

(
1 + (−1)m

)π
4

]
, {ϕ mod 2π}.

7.1. Lemmas to the proof of Proposition 3. For every ~y = (y1, . . . , y2m+1) ∈ R2m+1,
let us define the smooth function

F~y,t(ϕ) = det

 x1 x′1 . . . x
(2m−1)
1 y1

...
...

...
...

x2m+1 x′2m+1 . . . x
(2m−1)
2m+1 y2m+1
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on the curve Γ∗t . For the convenience of its calculation in the case m > 1, consider the
matrix

Wm =


1 −32 34 . . . (−1)m−132m−2

1 −52 54 . . . (−1)m−152m−2

...
...

...
...

1 −(2m− 1)2 (2m− 1)4 . . . (−1)m−1(2m− 1)2m−2

 .

Usually, we will omit the subscript m and write W .

Lemma 18.

F~y,t(ϕ) =



det

 a0 a1 ỹ1

b0 b1 ỹ2

f(ϕ) f ′(ϕ) y3

 , if m = 1,

(− 1)m−1(2m− 1)!! det


A0 A1 ỹ1

B0 B1 ỹ2

W 0 Y+

0 W Y−
f(ϕ)C f ′(ϕ)C y2m+1

 , if m > 1,

where

Y+ =

 ỹ3
...

ỹ2m−1

 , Y− =


1
3 ỹ4

...
1

2m−1 ỹ2m

 ,

ỹ2i−1 = y2i−1 cos(2i− 1)ϕ+ y2i sin(2i− 1)ϕ,

ỹ2i = −y2i−1 sin(2i− 1)ϕ+ y2i cos(2i− 1)ϕ,

A0 = ( a0 a2 . . . a2m−2 ) , a2k = (−1)k
[
1− (4m+ 3)2kt cos(4m+ 2)ϕ

]
,

A1 = ( a1 a3 . . . a2m−1 ) , a2k+1 = (−1)k(4m+ 3)2k+1t sin(4m+ 2)ϕ,

B0 = ( b0 b2 . . . b2m−2 ) , b2k = (−1)k+1(4m+ 3)2kt sin(4m+ 2)ϕ,

B1 = ( b1 b3 . . . b2m−1 ) , b2k+1 = (−1)k
[
1− (4m+ 3)2k+1t cos(4m+ 2)ϕ

]
,

C = ( 1 −(2m+ 1)2 (2m+ 1)4 . . . (− 1)m−1(2m+ 1)2m−2 ) .

P r o o f. Let

uj2i−1 = x
(j)
2i−1 cos(2i− 1)ϕ+ x

(j)
2i sin(2i− 1)ϕ,

uj2i = −x(j)
2i−1 sin(2i− 1)ϕ+ x

(j)
2i cos(2i− 1)ϕ,

i = 1, . . . ,m; j = 0, . . . , 2m− 1. Then

F~y,t(ϕ) = det


u0

1 u1
1 . . . u2m−1

1 ỹ1

...
...

...
...

u0
2m u1

2m . . . u2m−1
2m ỹ2m

x2m+1 x′2m+1 . . . x
(2m−1)
2m+1 y2m+1

 ,
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where uj1 = aj , u
j
2 = bj and

(u0
2i−1, u

1
2i−1, . . . , u

2m−1
2i−1 ) = (1, 0,−(2i− 1)2, 0, . . . , (−1)m−1(2i− 1)2m−2, 0),

(u0
2i, u

1
2i, . . . , u

2m−1
2i ) = (0, (2i− 1), 0,−(2i− 1)3, . . . , 0, (−1)m−1(2i− 1)2m−1),

for i > 1.

Let W k be the determinant of the matrix obtained from W by the deletion of the
k-th column, if m > 1, and be 1, if m = 1. Consider the smooth function Φm(x) which is
equal to 1, if m = 1, and to

det


1 −x2 x4 . . . (−1)m−1x2m−2

1 −32 34 . . . (−1)m−132m−2

1 −52 54 . . . (−1)m−152m−2

...
...

...
...

1 −(2m− 1)2 (2m− 1)4 . . . (−1)m−1(2m− 1)2m−2

 ,

if m > 1. Usually, we will omit the subscript m and write Φ(x).
The next statement follows from the determinant decomposition theorem.

Lemma 19.
m−1∑
k=0

(4m+ 3)2kW k+1 = Φ(4m+ 3),
m−1∑
k=0

W k+1 = Φ(1).

Let

P = −4(m+ 1)tΦ(1)Φ(4m+ 3), Q = Φ2(1) + (4m+ 3)t2Φ2(4m+ 3).

Lemma 20. Flattening points of the curve γt are solutions (with the multiplicities
taken into account) of the equation

P cos 2(2m+ 1)ϕ+Q = 0.

P r o o f. Flattening points of the curve γt are solutions of the equation F~y,t(ϕ) = 0,
where ~y = (0, . . . , 0, 1). By Lemma 18, it is equivalent to the equation

det
(
a0 a1

b0 b1

)
= 0,

if m = 1, and

det


A0 A1

B0 B1

W 0
0 W

 = 0,

if m > 1. Both these equations are equivalent to the equation
m−1∑
i,j=0

(−1)i+j det
(
a2i a2j+1

b2i b2j+1

)
W i+1W j+1 = 0,
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which can be rewritten in the form(m−1∑
i=0

W i+1

)2

+ (4m+ 3)t2
(m−1∑

i=0

(4m+ 3)2iW i+1

)2

− 4(m+ 1)t
m−1∑
i=0

W i+1
m−1∑
i=0

(4m+ 3)2iW i+1 cos 2(2m+ 1)ϕ = 0

by Lemma 18. Now, Lemma 20 follows from Lemma 19.

Lemma 21. If m > 1, then

Φ(x) = (−4)(m−2)(m−1)/2

∏m
i=2(2i− 2)!

(m− 1)!m!

m∏
i=2

(
x2 − (2i− 1)2

)
.

The proof is a direct calculation of the Vandermonde determinant which defines the
function Φ(x).

Let us consider the numbers

t0 = (−1)m−1 Φ(1)
(4m+ 3)Φ(4m+ 3)

, t1 = (−1)m−1 Φ(1)
Φ(4m+ 3)

.

Lemma 22. 0 < t0 < t1 and

t0 =
2(2m+ 1)(m− 1)!((m+ 1)!)2

(4m+ 3)(3m+ 1)!
≤ 1

7
.

These formulas follow from Lemma 21 (the estimate for t0 follows from the fact that
t0 decreases when m increases).

Lemma 23. The equation
(−1)m−1P +Q = 0.

is quadratic with respect to t and has two solutions t0 and t1.

P r o o f. The coefficient at t2 in this equation is equal to

(4m+ 3)Φ2(4m+ 3)

and hence, is not equal to 0 by Lemma 21. The discriminant of the equation equals

4(2m+ 1)2Φ2(1)Φ2(4m+ 3),

i.e. is a perfect square.

7.2. Proof of Proposition 3. By Lemma 21, the equation from Lemma 20 is linear
with respect to cos 2(2m+ 1)ϕ for all 0 < t < 1. Its coefficients have the following signs:

(−1)mP > 0, Q > 0.

Since this equation has no solutions for t = 0 and P,Q smoothly depend on t, the
solutions which can appear when t increases must satisfy equation (4) at the moment
of the appearance. Hence, this moment is the smallest positive solution of the equation
(−1)m−1P + Q = 0, less than 1. By Lemmas 22 and 23, such a solution exists and is
equal to t0.
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It remains to remark that the expression (−1)m−1P+Q changes its sign when t passes
through t0. If t = t0 and ϕ0 is a solution of equation (4), then the first derivative by ϕ

of the left-hand side of the equation from Lemma 20 at ϕ0 vanishes, and the second
derivative is not zero (it is equal to 4(m + 1)2(−1)m−1P ). Therefore, this equation has
4m+ 2 solutions for any t > t0 sufficiently close to t0.

7.3. Lemmas to the proof of Proposition 5 (n = 2m− 1). Let

A0
0 = ( a0

0 a0
2 . . . a0

2m−2 ) , a0
2k = (−1)k

[
1 + (−1)m(4m+ 3)2kt

]
,

B0
1 = ( b01 b03 . . . b02m−1 ) , b02k+1 = (−1)k

[
1 + (−1)m(4m+ 3)2k+1t

]
.

Lemma 24. If m > 1, then

det
(
A0

0

W

)
= Φ(1)

(
1− t

t1

)
, det

(
B0

1

W

)
= Φ(1)

(
1− t

t0

)
,

det
(
W

C

)
= (−1)m−1Φ(2m+ 1).

P r o o f. By Lemma 19,

det
(
A0

0

W

)
= Φ(1) + (−1)mΦ(4m+ 3)t = Φ(1)

(
1− t

t1

)
,

det
(
B0

1

W

)
= Φ(1) + (−1)m(4m+ 3)Φ(4m+ 3)t = Φ(1)

(
1− t

t0

)
.

The third equality is evident.

Lemma 25. Let ϕ0 be a solution of equation (4). Then F~y,t(ϕ0) is equal to

(1− t)
[
f ′(ϕ0)(y1 sinϕ0 − y2 cosϕ0) + (1− 7t)y3

]
,

if m = 1, and

Φ(1)(2m− 1)!!
(

1− t

t1

){
f ′(ϕ0)

[
Φ(2m+ 1)(y1 sinϕ0 − y2 cosϕ0)

−
m∑
i=2

y2i−1 sin(2i− 1)ϕ0 − y2i cos(2i− 1)ϕ0

2i− 1
det

B0
1 0

W ei
C 0

]+ Φ(1)
(

1− t

t0

)
y2m+1

}
,

if m > 1, where ei is the (m− 1)-element column whose (i− 1)-th element is equal to 1,
and all other are equal to 0.

P r o o f. By Lemma 18

F~y,t(ϕ0) =



det

 a0
0 0 ỹ1

0 b01 ỹ2

0 f ′(ϕ0) y3

 , if m = 1,

(−1)m−1(2m− 1)!! det


A0

0 0 ỹ1

0 B0
1 ỹ2

W 0 Y+

0 W Y−
0 f ′(ϕ0)C y2m+1

 , if m > 1.
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Therefore F~y,t(ϕ0) = a0
0

[
b01y3 − f ′(ϕ0)ỹ2

]
, if m = 1, and

F~y,t(ϕ0) = (2m− 1)!! det
(
A0

0

W

)[
(−1)mỹ2f

′(ϕ0) det
(
W

C

)
+ det

 B0
1 0

W Y−
f ′(ϕ0)C y2m+1

],
if m > 1. Now, Lemma 25 follows from Lemma 24.

7.4. Proof of Proposition 5 (n = 2m−1). Let ϕ0 be a flattening point of the curve γt0 .
Then the function F~y,t0(ϕ0) of the variable ~y is not equal to 0 identically by Proposition 3,
Lemmas 22 and 25. Hence, an osculating hyperplane to the curve Γ∗t0 at the point ϕ0 is
unique.

Now, consider the curve γt. An osculating hyperplane to γt at the point ϕ0 is unique
if and only if the leading 2m− 1 columns of the matrix x1 x′1 . . . x

(2m−1)
1

...
...

...
x2m x′2m . . . x

(2m−1)
2m


are linearly independent. By Lemma 18, the last holds if and only if the leading 2m− 1
columns of the matrix

Λ =



(
a0

0 0
0 b01

)
, if m = 1,

A0
0 0

0 B0
1

W 0
0 W

 , if m > 1,

are linearly independent. But the determinant of the matrix obtained from Λ by the
deletion of the second line and the last column is equal to

χ =


a0

0, if m = 1,

det
(
A0

0

W

)
detWm, if m > 1,

where a0
0 = 1− t (if m = 1) and detWm 6= 0 (the Vandermonde determinant). According

to Lemmas 22 and 24, χ 6= 0 for t = t0. Hence, an osculating hyperplane to the curve γt0
at the point ϕ0 is unique.

7.5. Lemmas to the proof of Proposition 4. Let

Ψ(x) = det


1 −x2 x4 . . . (−1)mx2m

1 −12 14 . . . (−1)m12m

1 −32 34 . . . (−1)m32m

...
...

...
...

1 −(2m− 1)2 (2m− 1)4 . . . (−1)m(2m− 1)2m

 ,

P̃ = −t
[
(4m+ 3)Φm+1(1)Φ(4m+ 3) + Φ(1)Φm+1(4m+ 3)

+ (−1)m−1(2m+ 1)Φ(2m+ 1)Ψ(4m+ 3)
]
,

Q̃ = Φm+1(1)Φ(1)− t(2m+ 1)Φ(2m+ 1)Ψ(4m+ 3)

+ t2(4m+ 3)Φm+1(4m+ 3)Φ(4m+ 3).
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Lemma 26. Flattening points of the curve Γt are solutions (with the multiplicities
taken into account) of the equation

f(ϕ)
[
P̃ cos 2(2m+ 1)ϕ+ Q̃

]
= 0.

P r o o f. These points are solutions of the equation F~y,t(ϕ) = 0 where

~y = (x(2m)
1 , . . . , x

(2m)
2m+1).

By Lemma 18, it is equivalent to the equation

det

 a0 a1 a2

b0 b1 b2
f(ϕ) f ′(ϕ) y3

 = 0,

if m = 1, and

det


A0 A1 a2m

B0 B1 b2m
W 0 Y+

0 W 0
f(ϕ)C f ′(ϕ)C y2m+1

 = 0,

if m > 1, where

Y+ = (−1)m

 32m

...
(2m− 1)2m

 , y2m+1 = (−1)m(2m+ 1)2mf(ϕ).

The left-hand sides of the indicated equations are equal to

f(ϕ) det

 a0 a1 a2

b0 b1 b2
1 0 −9

+ f ′(ϕ) det

 a0 a1 a2

b0 b1 b2
0 1 0


= f(ϕ)

[
det
(
Ã0

W2

)
b1 − det

(
B̃0

W2

)
a1

]
− f ′(ϕ) det

(
a0 a2

b0 b2

)
and

f(ϕ) det


A0 A1 a2m

B0 B1 b2m
W 0 Y+

0 W 0
C 0 (−1)m(2m+ 1)2m

+ f ′(ϕ) det


A0 A1 a2m

B0 B1 b2m
W 0 Y+

0 W 0
0 C 0


= (−1)m−1f(ϕ)

[
det
(

Ã0

Wm+1

)
det
(
B1

W

)
− det

(
B̃0

Wm+1

)
det
(
A1

W

)]

+ (−1)mf ′(ϕ) det

A0 a2m

B0 b2m
W Y+

 det
(
W

C

)
,

respectively, where

Ã0 = ( a0 a2 . . . a2m ) , B̃0 = ( b0 b2 . . . b2m ) .
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By Lemma 19 and the definition of the function Ψ, we have:

det
(

Ã0

Wm+1

)
= Φm+1(1)− tΦm+1(4m+ 3) cos 2(2m+ 1)ϕ,

det
(

B̃0

Wm+1

)
= −tΦm+1(4m+ 3) sin 2(2m+ 1)ϕ,

det
(
A1

W

)
= t(4m+ 3)Φ(4m+ 3) sin 2(2m+ 1)ϕ,

det
(
B1

W

)
= Φ(1)− t(4m+ 3)Φ(4m+ 3) cos 2(2m+ 1)ϕ,

det

A0 a2m

B0 b2m
W Y+

 = tΨ(4m+ 3) sin 2(2m+ 1)ϕ.

These formulas and Lemma 24 imply the above equation for flattening points of the
curve Γt.

Lemma 27.

Ψ(x) = (−4)m(m−1)/2
m∏
i=1

(2i− 2)!
m∏
i=1

(
x2 − (2i− 1)2

)
.

The proof is a direct calculation of the Vandermonde determinant which defines the
function Ψ(x).

Lemma 28. P̃ < 0 for any t > 0.

P r o o f. By Lemmas 21 and 27,

(4m+ 3)Φm+1(1)Φ(4m+ 3) + (−1)m−1(2m+ 1)Φ(2m+ 1)Ψ(4m+ 3)

=
4m

2
(2m)!(3m+ 1)!

2m!((m+ 1)!)2(2m+ 1)

( m∏
i=1

(2i− 2)!
)2

(4m2 + 5m+ 2) > 0,

Φ(1)Φm+1(4m+ 3) > 0.

Therefore, P̃ < 0, if t is positive.

The following statement is evident.

Lemma 29. (−1)mQ̃ > 0 for any t sufficiently close to 0.

Let us consider the numbers

T0 = (−1)m
Φm+1(1)

Φm+1(4m+ 3)
, T1 = (−1)m

Φ(1)
(4m+ 3)Φ(4m+ 3)

.

Lemma 30. T1 < 0, T0 > t0 and

T0 =
2(2m+ 1)(m+ 1)2(m!)3

(3m+ 2)!
≤ 1

5
.

These formulas follow from Lemmas 21 and 22.
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Lemma 31. The equation

(−1)mP̃ + Q̃ = 0

is quadratic with respect to t and has two solutions T0 and T1.

P r o o f. The coefficient at t2 in this equation is equal to

(4m+ 3)Φm+1(4m+ 3)Φ(4m+ 3)

and hence, is not equal to 0 by Lemma 21. The discriminant of the equation is[
(4m+ 3)Φm+1(1)Φ(4m+ 3)− Φ(1)Φm+1(4m+ 3)

]2
,

i.e. is a perfect square.

7.6. Proof of Proposition 4. By Lemma 26, flattening points of the curve Γt are
defined by the equations f(ϕ) = 0 and

P̃ cos 2(2m+ 1)ϕ+ Q̃ = 0.

The first one has 2m + 1 solutions cos 2(2m + 1)ϕ = (−1)m−1. The second one has no
solutions if t = 0 and is quadratic with respect to cos 2(2m+ 1)ϕ for every t 6= 0.

Since P̃ , Q̃ smoothly depend on t and satisfy the inequalities from Lemmas 28, 29,
the solutions which can appear from the second equation when t increases from 0 to 1
must satisfy the equation cos 2(2m + 1)ϕ = (−1)m at the moment of the appearance.
Hence, this moment is the smallest positive solution of the equation (−1)mP̃ + Q̃ = 0,
less than 1. By Lemmas 30 and 31, such a solution exists and is equal to T0 and greater
than t0.

It remains to remark that for any t ∈ [0, T0) and any solution ϕ0 of equation (4), the
first derivative by ϕ of the left-hand side of the equation from Lemma 26 at ϕ0 is not
equal to 0.

7.7. Lemmas to the proofs of Propositions 6–8 (n = 2m − 1). The osculating hyper-
plane to the curve Γt at a point ϕ is defined by the equation

F~y,t(ϕ) = 0,

where ~y = (y1, . . . , y2m+1) and (y1 : . . . : y2m+1) ∈ RP 2m.

Lemma 32. If t is sufficiently close to t0, then the determinant

det

B0
1 0

W ei
C 0


from Lemma 25 is not equal to 0 for any i = 2, . . . ,m.

P r o o f. Let us consider the more general determinant

det

B0
1 0

W δ∗i
C δm+1

i

 , i ∈ {2, . . . ,m+ 1},
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where the i-th element of the last column equals 1, and all other equal 0. By Vandermonde
formula, this determinant is equal to

(−1)i
∏

2≤k<l≤m+1
k 6=i,l 6=i

(
(2k − 1)2 − (2l − 1)2

)[ 1
(2i− 1)2 − 1

m+1∏
j=2

(
(2j − 1)2 − 1

)

− t(4m+ 3)
(4m+ 3)2 − (2i− 1)2

m+1∏
j=2

(
(4m+ 3)2 − (2j − 1)2

)]
.

This expression vanishes for t = τi(m) where

τi(m) =
(4m+ 3)2 − (2i− 1)2

(2i− 1)2 − 1
·

∏m+1
j=2

(
(2j − 1)2 − 1

)
(4m+ 3)

∏m+1
j=2

(
(4m+ 3)2 − (2j − 1)2

) .
It is evident that τ2(m) > . . . > τm(m) > τm+1(m) since the function λ−x

x−1 increases on
the interval x ∈ (1,+∞) for any λ > 1. It remains to remark that τm+1(m) = t0 by
Lemma 24.

R e m a r k 13. The moments τi(m), i = 2, . . . ,m, as well as the moments t0, T0,
define some bifurcations in the family Γt. In particular, the beginning of the sequence
τm(m) for m > 1 is:

1
44
,

1
1485

,
1

40964
,

1
1067430

,
1

27264600
, . . . .

It is easy to see that τm(m) < T0 = T0(m) already for m = 3.

7.8. Proof of Proposition 6 (n = 2m − 1). Let ϕ1, . . . , ϕ2m be mutually different
solutions of equation (4). Then Θ is the unique solution of the linear equations system

F~y,t0(ϕi) = 0, i = 1, . . . , 2m.

Indeed, the point Θ satisfies this system by Lemma 25. The rank of the system is
equal to the rank of the matrix formed by the coordinates of the vectors

(cosϕi, sinϕi, cos 3ϕi, sin 3ϕi, . . . , cos(2m− 1)ϕi, sin(2m− 1)ϕi), i = 1, . . . , 2m,

(this follows from Lemmas 21, 22 and 32). But the determinant of this matrix is not 0
(even for any mutually different points ϕ1, . . . , ϕ2m on the circle {ϕ mod π}) since the
curve γ0 is convex.

7.9. Proof of Proposition 7 (n = 2m− 1). Let us consider the solutions

ϕi =
1 + (−1)m

4(2m+ 1)
π +

π

2m+ 1
i, i = 0, 1, . . . , 2m,

of equation (4). The intersection of the osculating hyperplanes to the curve Γt at these
points is defined by the linear equations system

F~y,t(ϕi) = 0, i = 0, 1, . . . , 2m.

If t is sufficiently close to t0 and t 6= t0, then by Lemmas 21, 22, 25 and 32, the rank of
this system is equal to the rank of the matrix formed by the coordinates of the vectors

vi =
(
cosϕi, sinϕi, cos 3ϕi, sin 3ϕi, . . . , cos(2m− 1)ϕi, sin(2m− 1)ϕi, f ′(ϕi)

)
,
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i = 0, 1, . . . , 2m.
Let us suppose that these vectors lie in a hyperplane in R2m+1. Then this hyperplane

contains the vector (1, 0, . . . , 0) since

(−1)m−1

2m+ 1

2m∑
i=0

(−1)ivi = (0, . . . , 0, 1).

Hence, the vectors

ṽi = (cosϕi, sinϕi, cos 3ϕi, sin 3ϕi, . . . , cos(2m− 1)ϕi, sin(2m− 1)ϕi),

i = 0, 1, . . . , 2m, lie in a hyperplane in R2m. But this contradicts the convexity of the
curve γ0.

7.10. Proof of Proposition 8 (n = 2m− 1). Let ~y = (0, . . . , 0, 1) ∈ R2m+1 and ϕ be a
solution of equation (4). Then

F~y,t(ϕ) = Φ2(1)(2m− 1)!!
(

1− t

t1

)(
1− t

t0

)
by Lemma 25. Now, the statement follows from Lemmas 21 and 22.
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(eds.), Birkhäuser, Boston, 1997, 93–99.

[AGV] V. I. Arnol′d, S. M. Guse ı̆n-Zade, A. N. Varchenko, Singularities of Differentiable
Maps I , Monogr. Math. 82, Birkhäuser, Boston, 1985.
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