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Abstract. This article extends to three dimensions results on the curvature of the conflict
curve for pairs of convex sets of the plane, established by Siersma [3]. In the present case a
conflict surface arises, equidistant from the given convex sets. The Gaussian, mean curvatures
and the location of umbilic points on the conflict surface are determined here. Initial results on
the Darbouxian type of umbilic points on conflict surfaces are also established. The results are
expressed in terms of the principal directions and on the curvatures of the borders of the given
convex sets.

1. Introduction. Let A1 and A2 be closed non-empty sets in Euclidean space R3,
which is endowed with the standard orientation and the distance

d(p, q) = |p− q| = 〈p− q, p− q〉1/2,

where 〈 , 〉 is the standard Euclidean inner product in R3.
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The conflict set C(A1, A2) between A1 and A2 is defined by

C(A1, A2) = {p; d(p,A1) = d(p,A2)},

where d(p,A) = inf{d(p, q); q ∈ A}. The set C(A1, A2) is also viewed as the common
boundary between the territory of A1 relative to A2, defined by

Terr(A1, A2) = {p; d(p,A1) < d(p,A2)},

and Terr(A2, A1), which is the territory of A2 relative to A1.
The set C(A1, A2) is also called the bisector or the equidistant set between A1

and A2 [7].
In this paper we consider only the case where Ai are convex closed sets, with disjoint

interiors and smooth regular boundaries Bi = ∂Ai of class Ck, k ≥ 2. Assume that
the surfaces Bi are oriented by their unit normal vector fields Ni, pointing towards the
interior of Ai.

To each point p on the closed set Ei = R3\ Int(Ai), we associate its projection
Πi(p) = pi onto Bi, characterized by

d(p,Ai) = 〈Πi(p)− p,Ni(Πi(p))〉.

From the tubular neighborhood properties and the convexity hypothesis, it follows
that Πi is a retraction of class Cr−1 of a neighborhood of Ei onto Bi; see [6], Vol. 1.
Therefore C = C(A1, A2), is defined implicitly by the zero level set of the function

c(p) = d(p,A2)− d(p,A1),

which is regular of class Cr−1 and satisfies

∇c(p) = N1(Π1(p))−N2(Π2(p)).

It is clear that this regularity property fails if the convexity and disjointness hypothe-
ses are not imposed.

In this paper the conflict surface C will be oriented by the unit normal N , along ∇c,
i.e. pointing from A2 towards A1:

N = |N1(Π1(p))−N2(Π2(p))|−1[N1(Π1(p))−N2(Π2(p))].

To simplify the notation write ν(V ) = |V |−1V for the normalization of a nonvanishing
vector V . Therefore,

N = ν(N1(Π1(p))−N2(Π2(p))).

A positive moving frame attached to C is therefore given by {T1, T2, N}, where:

T1 = ν
(
N1(Π1(p)) +N2(Π2(p))

)
,

T2 = ν
(
N1(Π1(p)) ∧N2(Π2(p))

)
.

Notice that the vector fields Ti are singular at points p of the closed set M =
M(A1, A2), where N1(Π1(p)) + N2(Π2(p)) = 0, which occurs when the distance from
C to Ai,

r(p) = d(p,A1) = d(p,A2),

is minimal, assuming the value dm = 1
2d(A1, A2). Under the condition of strict convexity

of Bi at points of the sets Πi(M), M reduces to a unique point pm.
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Recall that strict convexity of Bi at pi means that DNi is an automorphism of the
tangent space TBi, with the usual identification of the tangent space TBi at pi with that
of the unit sphere TS2, at Ni(pi). In terms of the principal curvatures ki

1 ≤ ki
2, which are

the eigenvalues of −DNi, the condition of strict convexity (resp. convexity) means that
both are positive (resp. non-negative). In terms of the Gaussian curvature

Ki = ki
1.k

i
2 = det(−DNi),

this means that Ki > 0 (resp. Ki ≥ 0). Recall also that the mean curvature of Bi is given
by

Hi =
1
2

trace(−DNi) =
1
2

(ki
1 + ki

2).

The expression

U i =
1
2
(
ki
2 − ki

1

)
=
√

(Hi)2 −Ki,

also called skew curvature, whose zeros locate the umbilic points of the surface, will be
also of later of use here.

Theorem 1 of this paper establishes expressions for the Gaussian and mean curvatures
of the surface C = C(A1, A2). These results can be regarded as the starting step for the
investigation of the principal configuration of C [4]. Recall that this configuration is
defined by the principal curvatures, the umbilic points, the fields of principal directions
(which are the eigenspaces of −DNi), and their integral curves (including the periodic
principal lines). The location of umbilic points and the slope of principal directions on
C\M is established in Corollary 3. Initial results on the Darbouxian type of the umbilic
points on M = M(A1, A2) are established in Section 3.

A complete study of the dependence on Bi of the principal configuration on conflict
surfaces will not be carried out in this work. However, the curvature formulas of this paper
are expressed in terms of some elements of the principal configurations of the surfaces Bi.

Global topological properties of conflict sets, such as their connectivity, have been
studied in [7]. The basic smoothness and curvature expressions of the conflict curve for
convex sets in the plane have been established in [3], where interesting connections with
Euclidean geometry of conics can also be found.

Acknowledgements. This work was prepared with the partial support from CNPq,
FINEP and FUNAPE.

2. Curvatures of conflict surfaces. Let p ∈ C\M be such that pi = Πi(p) are
non-umbilic points in Bi. Let {Ei

1, E
i
2, Ni} be positive principal frames on Bi around pi.

This means that

DNi.E
i
j = −ki

jE
i
j ,

where ki
1 < ki

2, i = 1, 2, are the principal curvatures of Bi. Denote by αi the angle
between the vectors Ei

1 and F i
1 = ν(DΠi(p)T1). Write

τ i
g = τ i

g(αi) = (ki
2 − ki

1) sinαi cosαi

for the geodesic torsion along the unit vector F i
1 on Bi.
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Write

ki
n = ki

n(αi) = ki
1 cos2(αi) + ki

2 sin2(αi),

which, by Euler’s formula, is the normal curvature of Bi in the direction of F i
1 =

ν(DΠi(p)T1).
Similarly, the normal curvature of Bi in the direction of F i

2 = ν(DΠi(p)T2) is given by

ki
n⊥ = ki

n⊥(αi) = ki
n

(
αi +

π

2

)
= ki

2 sin2(αi) + ki
1 cos2(αi).

Denote by Ar
i the convex set of points at distance r ≥ 0 from Ai; its border is

the surface Br
i obtained by moving each point pi on Bi to Σr(pi) = pi − rNi(pi). By

restriction, Πi defines the diffeomorphism (Σr)−1 of Br
i onto Bi and, by composition, it

defines the retraction Πr
i = Πi ◦ (Σr)−1 onto Br

i .
The principal frames {Ei

1, E
i
2, Ni} on Bi are parallel translated along the normals

to principal frames on Br
i . This follows from the fact that Σr preserves the principal

direction fields as well as the umbilic points. The principal curvatures however change

into ki
j(r) = ki

j

1+rki
j

, [6], Vol. 3.

The above expressions for τ i
g, ki

n and ki
n⊥ on Bi, being defined in terms of principal

curvatures, can be obviously modified to be valid on Br
i and denoted respectively by

τ i
g(r), ki

n(r) and ki
n⊥(r). For instance:

τ i
g(r) = τ i

g(r, αi) = (ki
2(r)− ki

1(r)) sinαi cosαi,

ki
n(r) = ki

1(r) cos2(αi) + ki
2(r) sin2(αi),

ki
n⊥(r) = ki

2(r) sin2(αi) + ki
1(r) cos2(αi).

Denote by φ the angle between Ni and T1. For future reference, notice that

sinφ =
1
2

∣∣N1(Π1(p))−N2(Π2(p))
∣∣ = 〈F 1

1 , T1〉 = 〈F 2
1 , T1〉.

Theorem 1. Let Ki = Ki(r) = ki
1(r)ki

2(r), Hi = Hi(r) = 1
2 (ki

1(r) + ki
2(r)) and

U i = U i(r) = 1
2 (ki

2(r)− ki
1(r)), where ki

j(r) = ki
j

1+rki
j

.

a) The Gaussian curvature of the conflict surface C is given by

K =
1
2

[1
2

(K1 +K2)−H1H2 + cos(2(α2 − α1))U1U2
]
.

b) The mean curvature of the conflict surface C is given by

H =
(1 + sin2 φ

4 sin2 φ

)[
(H1 −H2) +

( cos2 φ
1 + sin2 φ

)(
cos(2α1)U1 − cos(2α2)U2

)]
.

The proof of this theorem will follow from the next proposition.

Proposition 2. With the above notation, at points of C\M

DN.T1 =
sinφ

2
[
k2

n(r)− k1
n(r)

]
T1 +

1
2
[
τ2
g (r)− τ1

g (r)
]
T2,

DN.T2 =
1
2

[τ2
g (r)− τ1

g (r)]T1 +
1

2 sinφ
[
k2

n⊥(r)− k1
n⊥(r)

]
T2.
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P r o o f. The conclusion follows from the calculation of the inner products in

DN(T1) = 〈DN(T1), T1〉T1 + 〈DN(T1), T2〉T2,

DN(T2) = 〈DN(T2), T1〉T1 + 〈DN(T2), T2〉T2.

Differentiation of N gives:

DN =
DN1.DΠr

1 −DN2.DΠr
2

2 sinφ
+ 2D

[
(sinφ)−1

]
.
[
N1(Πr

1(p))−N2(Πr
2(p))

]
.

This shows that for the present analysis the contribution of the second term is null.
The basis {T1, T2} on C projects along Πr

i onto the orthonormal bases {F i
1, F

i
2} on Br

i .
Calculation shows that

{F 1
1 = v(N2 − 〈N1, N2〉N1), F 1

2 = T2},
{F 2

1 = v(−N1 + 〈N1, N2〉N2), F 2
2 = T2}.

Therefore,
DΠr

i (T1) = sinφF i
1 and DΠr

i (T2) = F i
2.

The bases Ei and F i are related by

F i
1 = cos(αi)Ei

1 + sin(αi)Ei
2, F i

2 = − sin(αi)Ei
1 + cos(αi)Ei

2,

DNi.DΠr
i (T1) = sinφDNi

(
cos(αi)Ei

1 + sin(αi)Ei
2

)
= sinφ

[
cos(αi)DNi(Ei

1) + sin(αi)DNi(Ei
2)
]

= sinφ
[
−ki

1(r) cos(αi)Ei
1 − ki

2(r) sin(αi)Ei
2

]
= sinφ

{
−ki

1(r) cos(αi)[cos(αi)F i
1 − sin(αi)F i

2]

− ki
2(r) sin(αi)[cos(αi)F i

1 + sin(αi)F i
2]
}

= sinφ
{

[−ki
1(r) cos2(αi)− ki

2(r) sin2(αi)]F i
1

+ [(ki
1(r)− ki

2(r)) sin(αi) cos(αi)]F i
2

}
= sinφ

{
[−ki

n(r)]F i
1 + [−τ i

g(r)]F i
2

}
.

Analogously,

DNi.DΠr
i (T2) = DNi

(
cos
(
αi +

π

2

)
Ei

1 + sin
(
αi +

π

2

)
Ei

2

)
=
[
ki
1(r) sin(αi)Ei

1 − ki
2(r) cos(αi)Ei

2

]
=
{
ki
1(r) sin(αi)[cos(αi)F i

1 − sin(αi)F i
2]

− ki
2(r) cos(αi)[sin(αi)F i

1 + cos(αi)F i
2]
}

=
{
ki
1(r) sin(αi) cos(αi)F i

1 − ki
1(r) sin2(αi)F i

2

− ki
2(r) cos(αi) sin(αi)F i

1 − ki
2(r) cos2(αi)F i

2

}
=
{

[(ki
1(r)− ki

2(r)) sin(αi) cos(αi)]F i
1

− [ki
1(r) sin2(αi) + ki

2(r) cos2(αi)]F i
2

}
=
{

[−τ i
g(r)]F i

1 − [ki
n⊥(r)]F i

2

}
.

Therefore,

DN(T1) =
sinφ

2 sinφ
{

[−k1
n(r)F 1

1 − τ1
g (r)F 1

2 ]− [−k2
n(r)F 2

1 − τ2
g (r)F 2

2 ]
}
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=
1
2
{

[k2
n(r)F 2

1 − k1
n(r)F 1

1 ] + [τ2
g (r)]F 2

2 − [τ1
g (r)F 1

2 ]
}
,

DN(T2) =
1

2 sinφ
{

[−τ1
g (r)]F 1

1 − [k1
n⊥(r)]F 1

2 + [τ2
g (r)]F 2

1 + [k2
n⊥(r)]F 2

2

}
=

1
2 sinφ

{
[k2

n⊥(r)F 2
2 − k1

n⊥(r)F 1
2 ] + [τ2

g (r)]F 2
1 − [τ1

g (r)]F 1
1

}
.

Performing the inner products, taking into account that

sinφ = cos
(π

2
− φ

)
= 〈F 1

1 , T1〉 = 〈F 2
1 , T1〉,

finishes the proof.

R e m a r k 1. Notice that the proof of the last proposition uses only the principal
frames at points (and not on open sets) of Bi. Therefore the calculations for DN hold
also at points of C\M whose projections on either one (or both) of the surfaces Bi are
umbilic points, in that case the corresponding expressions τ i

g(r) vanish. Proposition 4 will
deal with a preliminary analysis of the case of points on M , where T1 and the angles αi

are not defined.

P r o o f o f T h e o r e m 1.
a) The Gaussian curvature of C is given by det(−DN). Therefore, taking into account

that

k2
n(r) = H2 − U2 cos 2α2, k1

n(r) = H1 − U1 cos 2α1, k2
n⊥(r) = H2 + U2 cos 2α2,

k1
n⊥(r) = H1 + U1 cos 2α1, τ2

g (r)− τ1
g (r) = U2 sin 2α2 − U1 sin 2α1

and (U i)2 = (Hi)2 −Ki,

we obtain

K =
1
4
{

[k2
n(r)− k1

n(r)][k2
n⊥(r)− k1

n⊥(r)]− [τ2
g (r)− τ1

g (r)]2
}

=
1
4
{

(H2 − U2 cos 2α2)− (H1 − U1 cos 2α1)][(H2 + U2 cos 2α2)

− (H1 + U1 cos 2α1)]− [U2 sin 2α2 − U1 sin 2α1]2
}

=
1
2

[1
2

(K1 +K2)−H1H2 + cos(2(α2 − α1))U1U2
]
.

b) The mean curvature is given by trace(− 1
2DN).

From the relations

k2
n(r)− k1

n(r) = H2 −H1 + U1 cos 2α1 − U2 cos 2α2,

and k2
n⊥(r)− k1

n⊥(r) = H2 −H1 + U2 cos 2α2 − U1 cos 2α1,

we deduce using also the expressions in part a) that

H = −1
4
{

sinφ[k2
n(r)− k1

n(r)] +
1

sinφ
[κ(r, k2

n⊥)− κ(r, k1
n⊥)]

}
=
(1 + sin2 φ

4 sin2 φ

)[
(H1 −H2) +

( cos2 φ
1 + sin2 φ

)
(cos(2α1)U1 − cos(2α2)U2)

]
.
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Corollary 3.
1) The point p ∈ C\M is umbilic if and only if Υ = Ψ = 0, where

Υ = [τ2
g (r)− τ1

g (r)] = U2 sin 2α2 − U1 sin 2α1,

Ψ = sin2 φ[k2
n(r)− k1

n(r)]− [k2
n⊥(r)− k1

n⊥(r)]

= (H2 −H1) cos2 φ+ (1 + sin2 φ)(U1 cos 2α1 − U2 cos 2α2)

=
(3− cos 2φ)

2

[
(H1 −H2)

(1 + cos 2φ)
(3− cos 2φ)

+ (U1 cos 2α1 − U2 cos 2α2)
]
.

2) The principal directions at a non-umbilic point p in C\M are characterized by the
condition of making an angle θ with T1, given by

tan 2θ =
2[τ2

g (r)− τ1
g (r)] sinφ

sin2 φ[k2
n(r)− k1

n(r)]− [k2
n⊥(r)− k1

n⊥(r)]
=

2Υ sinφ
Ψ

.

P r o o f. Immediate from Proposition 1.

Proposition 4. Assume that p = pm ∈ M and that pi = Πi(p) are non-umbilic
points in Bi. The normal curvature kn = kn(θ) of C in the direction of an angle θi with
the first vector of the parallel basis {Ei

1, E
i
2, Ni} is given by

kn(θ) = −1
2

[ k2
n(θ2)

1 + rk2
n(θ2)

− k1
n(θ1)

1 + rk1
n(θ1)

]
.

P r o o f. Similar to that of Proposition 1, replacing the frame {T1, T2, N} by any
tangent frame to C at p.

R e m a r k 2. Taking into account that the two tangent frames differ by an angle α,
and therefore θ2 = θ1 + α the above equation can be simplified to:

kn(θ) = −1
2

[ k2
n(θ1 + α)

1 + rk2
n(θ1 + α)

− k1
n(θ1)

1 + rk1
n(θ1)

]
.

R e m a r k 3. If both pi are umbilic then the point p = pm is umbilic, the other case
leading to umbilic points on M is when the principal frames at pi are parallel and the
principal curvatures verify k2

2 − k1
2 = k2

1 − k1
1 = −k. The case k = 0 is studied in partial

detail in next section. Pertinent changes for k 6= 0 are made in Remark 4.

3. An introduction to umbilics on conflict surfaces. In this section it will be
shown how to determine the Darbouxian type of an umbilic point pm ∈ M . Recall from
[1], [4], that this type, (D1, D2, D3), depends on the 3-jet of the surface at the point and
it determines the behavior of lines of curvature near the umbilic point. To this end in
what follows, the 3-jet of the conflict surface at p, in Monge form will be calculated in
terms of the corresponding 3-jets of the surfaces B1 and B2 at p1 and p2.

Let the convex surfaces B1 and B2 be locally given in Monge charts (x, y) and (u, v)
by the graphs of

f1(x, y) = r +
a

2
x2 +

b

2
y2 +

1
6

(a30x
3 + 3a21x

2y + 3a12xy
2 + a30y

3 + . . .),

f2(u, v) = −r − a

2
u2 − b

2
v2 − 1

6
(b30u3 + 3b21u2v + 3b12uv2 + b30v

3 + . . .).
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Let P = (X,Y, Z) be a point of R3. By the considerations above it follows that
p = (0, 0, 0) ∈ C.

The coordinate expressions of the second order jets at p of the projections Π1(P )
and Π2(P ), with targets expressed in the Monge coordinates (x, y) and (u, v) will be
computed now.

The projection Π1(X,Y, Z) = (x, y), in coordinate expression, is defined implicitly by
the equations

∂F

∂x
=
∂F

∂y
= 0,

where F (x, y,X, Y, Z) = d(P,B1)2 = (X − x)2 + (Y − y)2 + (Z − f1(x, y))2.
By using the Implicit Function Theorem, after extensive calculation, it is obtained

that the solution of the system of equations above is given by

x =
1

1 + ra
X − ra30

2(1 + ra)3
X2 − ra21

(1 + rb)(1 + ra)2
XY

− ra12

2(1 + ra)(1 + rb)2
Y 2 +

a

(1 + ra)2
XZ + . . . ,

y =
1

1 + rb
Y − ra21

2(1 + rb)(1 + ra)2
X2 − ra12

(1 + ra)(1 + rb)2
XY

− ra03

2(1 + rb)3
Y 2 +

b

(1 + rb)2
Y Z + . . . .

Similarly, considering the function

G(x, y,X, Y, Z) = d(p,B2)2 = (X − u)2 + (Y − v)2 + (Z − f2)2,

we obtain that the projection Π2(X,Y, Z) = (u, v), in coordinate expression, is given by

u =
1

1 + ra
X +

rb30
2(1 + ra)3

X2 +
rb21

(1 + rb)(1 + ra)2
XY

+
rb12

2(1 + ra)(1 + rb)2
Y 2 − a

(1 + ra)2
XZ + . . . ,

v =
1

1 + rb
Y +

rb21
2(1 + rb)(1 + ra)2

X2 +
rb12

(1 + ra)(1 + rb)2
XY

+
rb03

2(1 + rb)3
Y 2 − b

(1 + rb)2
Y Z + . . . .

Recall from the Introduction that the conflict surface C is defined by the equation

c(X,Y, Z) = d
(
(X,Y, Z), (u, v, f2(u, v))

)
− d
(
(X,Y, Z), (x, y, f1(x, y))

)
= 0,

with (x, y) and (u, v) representing the projections Π1(X,Y, Z) and Π2(X,Y, Z), given by
the expressions above.

An extensive calculation leads to the following expression for the 3-jet of the Monge
representation of C in a neighborhood of p = (0, 0, 0):

Z =
(a30 − b30)
2(1 + ar)3

X3

6
+

(a21 − b21)
2(1 + br)(1 + ar)2

X2Y

2

+
(a12 − b12)

2(1 + ar)(1 + br)2
XY 2

2
+

(a03 − b03)
2(1 + br)3

Y 3

6
+ . . . .
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This follows by using the Implicit Function Theorem applied to the function c(X,Y, Z),
and observing that c(0, 0, 0) = 0 and ∂c

∂Z (0, 0, 0) = 4r 6= 0.
Since the Darbouxian type of the umbilic is defined by semialgebraic conditions on

the coefficients of j3Z(0, 0), the behavior of lines of curvature near p can be expressed in
terms of the coefficients of the 3-jets of the surfaces Bi at pi.

R e m a r k 4. Under generic conditions on the coefficients, the cubic form above de-
termines the index (± 1

2 ) as well as the singularity (hyperbolic, elliptic) and Darbouxian
(D1, D2, D3) types of the umbilic of the conflict surface C.

In the example discussed above the caustic umbilic (on the focal surface) is located at
infinity. By taking a+k and b+k, k 6= 0, instead of a and b in f1 and keeping f2 unchanged,
the caustic umbilic of the conflict surface moves to (0, 0, 1

k ). The index of the umbilic,
as well as the Darbouxian and singularity types of the umbilic will be also determined
by the coefficients of the cubic form, changed accordingly to the presence of constant k.
The generic conditions referred invoked above are expressed by the non-vanishing of a
quadratic form, for the index, to which the non-vanishing of pertinent cubic forms should
be added for the singularity and Darbouxian classifications [2].
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[4] J. Sotomayor and C. Guti é rrez, Structurally stable configurations of lines of principal
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