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A REMARK ON A MODIFIED SZÁSZ–MIRAKJAN OPERATOR

BY

GUANZHEN Z H O U (NINGBO AND HANGZHOU) AND

SONGPING Z H O U (NANGCHONG AND HANGZHOU)

Abstract. We prove that, for a sequence of positive numbers δ(n), if n1/2δ(n) 6→ ∞
as n → ∞, to guarantee that the modified Szász–Mirakjan operators Sn,δ(f, x) converge
to f(x) at every point, f must be identically zero.

1. Introduction. Let Cα be the set of all continuous functions on [0,∞)
satisfying |f(t)|≤Mtαt for some real numbers M > 0 and α > 0. For f ∈Cα
and x∈ [0,∞), the well-known Szász–Mirakjan operator is defined by

Sn(f, x) =

∞∑
k=0

f

(
k

n

)
e−nx

(nx)k

k!
=:

∞∑
k=0

f

(
k

n

)
pk(nx).

From Hermann [2], we know that for f ∈ Cα, Sn(f, x) converges to f(x)
uniformly on any closed subset of [0,∞), hence in particular at every point
x in [0,∞). At the same time, Hermann also pointed out that Cα, for all
α > 0, are the largest sets, in the usual sense, which guarantee Sn(f, x) to
exist.

For computational reasons, Gróf [1] and Lehnhoff [3] suggested using a
partial sum of Sn(f, x) (which only has a finite number of terms depending
upon n and x) to approximate f(x). Let δ = δ(n) be a sequence of positive
numbers. Lehnhoff examined the operator

Sn,δ(f, x) =

[n(x+δ)]∑
k=0

f

(
k

n

)
pk(nx),

and he proved that, for all f in Cα satisfying |f(t)| ≤M1 +M2t
2m for some

positive numbers M1, M2 and some natural number m, Sn,δ(f, x) converges
to f(x) at every point on [0,∞) if

(1) lim
n→∞

n1/2δ(n) =∞.
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Recently, Sun [4] showed that the condition (1) is a sharp necessary and
sufficient condition for Sn,δ(f, x) to converge pointwise to f(x) for f in Cα.
More precisely, he showed that for f ∈ Cα the condition (1) is sufficient for
Sn,δ(f, x) to converge to f(x) uniformly on any closed subset of [0,∞), and
he also proved that if (1) does not hold, then for the function f0(x) = xαx ∈
Cα, Sn,δ(f0, x) does not converge to f0(x) at some point x.

A natural question is whether (1) can be weakened if we consider a subset
of Cα (for example, the subset that Lehnhoff studied). Our result exhibits
a surprising phenomenon that if (1) does not hold, then to guarantee that
Sn,δ(f, x) converges to f(x) at every point, f must be identically zero.

2. Result and proof. In what follows, we always use C to indicate a
positive constant, whose value may be different in different situations.

Theorem. Let δ = δ(n), n = 1, 2, . . . , be a sequence of positive numbers
such that n1/2δ(n) 6→ ∞ as n→∞, and assume that f ∈ Cα. If f(x0) 6= 0
for some x0 ∈ [0,∞), then Sδ(f, x0) 6→ f(x0) as n→∞.

P r o o f. Suppose n1/2δ(n) 6→ ∞ as n → ∞. Without loss of generality,
there exists a constant A > 0 and a sequence {nj} of positive integers such

that n
1/2
j δ(nj) ≤ A, and f(x0) > 0 for x0 ∈ (0,∞), say. There are M0 > 0

and ε0 > 0 such that f(x) > M0 for all x ∈ (x0 − ε0, x0 + ε0) ⊂ (0,∞).
Write

f+(x) = 1
2 (f(x) + |f(x)|), f−(x) = 1

2 (f(x)− |f(x)|).
Then

Rn(f, x) := Sn(f, x)− Sn,δ(f, x) = Rn(f+, x) +Rn(f−, x)

since Rn is a linear operator. At the same time, noting that Rn is also a
positive operator, we calculate that

Rnj (f+, x0) =

∞∑
k=[nj(x0+δ)]+1

f(k/nj)pk(njx0)

≥
∑

njx0+An
1/2
j

+1≤k≤njx0+2An
1/2
j

+2

f(k/nj)pk(njx0).

For njx0 + An
1/2
j + 1 ≤ k ≤ njx0 + 2An

1/2
j + 2 and sufficiently large j,

k/nj ∈ (x0 − ε0, x0 + ε0), so that

Rnj
(f+, x0) ≥M0

∑
njx0+An

1/2
j

+1≤k≤njx0+2An
1/2
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+2

pk(njx0)

≥ AM0n
1/2
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1/2
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]
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by the monotonicity of {pk(nx0)} for k ≥ nx0. It is easy to obtain

p
[njx0+2An

1/2
j

]
(njx0) ≥ C(njx0)−1/2e−4A

2/x0

from Stirling’s formula, hence

Rnj
(f+, x0) ≥ CAM0x

−1/2
0 e−4A

2/x0 > 0,

that is,

(2) Rnj
(f+, x0) 6→ 0 as j →∞.

For Rn(f−, x0), we see that

Rn(f−, x0) =
∑

k/n−x0≥ε0

f(k/n)pk(nx0)

in view of f−(x) = 0 for x ∈ (x0 − ε0, x0 + ε0). Thus for any given ε > 0,
there is an N > 0 such that∣∣∣ ∞∑

k=N+1

f(k/n)pk(nx0)
∣∣∣ < ε.

Similarly to the standard proof of the Korovkin theorem, we have∣∣∣ N∑
k=[nx0+nε0]+1

f(k/n)pk(nx0)
∣∣∣ ≤ max

0≤t≤N/n
|f(t)|

∑
k/n−x0≥ε0

pk(nx0)

≤MNαNε−20 Sn((t− x0)2, x0)→ 0

as n→∞, or

Rn(f−, x0)→ 0 as n→∞,
therefore, with (2),

Rnj (f, x0) ≥ Rnj (f+, x0)− |Rnj (f−, x0)| ≥ C > 0,

or Rn(f, x0) 6→ 0 as n→∞. Consequently, f(x0)−Sn,δ(f, x0) = Rn(f, x0)+
f(x0)− Sn(f, x0) 6→ 0 as n→∞. The theorem is proved.

Corollary. Let δ = δ(n), n = 1, 2, . . . , be a sequence of positive num-
bers such that n1/2δ(n) 6→ ∞ as n → ∞, and assume that f ∈ Cα. Then
limn→∞ Sn,δ(f, x) = f(x) holds for every x ∈ [0,∞) if and only if f ≡ 0.
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