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ALGEBRAS WHOSE EULER FORM IS NON-NEGATIVE

BY

M. B A R O T AND J. A. D E L A P E Ñ A (MÉXICO)

Introduction. Let A be a finite-dimensional algebra over an algebra-
ically closed field k. We denote by modA the category of finite-dimensional
left A-modules and by Db(A) the derived category of modA. We say that two
algebras, A and B, are derived equivalent if their derived categories, Db(A)
and Db(B), are derived equivalent as triangulated categories. See [11] for
definitions and basic concepts.

In recent years a considerable effort has been devoted to the character-
izations of algebras which are derived equivalent to well understood classes
of algebras (tame hereditary algebras, tubular algebras, some special biserial
algebras) [1, 12, 3, 9]. An important invariant entering all these characteri-
zations is the Euler form: if A has finite global dimension, the Grothendieck
group K◦(A) ' Zn is equipped with a (non-symmetric) bilinear form 〈−,−〉A
such that for two modules X,Y ∈ modA we have

〈[X], [Y ]〉A =
∞∑
i=0

dimk ExtiA(X,Y ),

where [X] denotes the class of X in K◦(A). The associated quadratic form
χA(v) = 〈v, v〉A is the Euler form of A. For two derived equivalent algebras,
A and B, the Euler forms χA and χB are equivalent. In particular, χA is
non-negative if and only if so is χB. If χA is non-negative, corankχA is the
rank of the free abelian group radχA = {v ∈ K◦(A) |χA(v) = 0}.

Algebras A whose form χA is non-negative are important. Examples
include the algebras which are derived equivalent to tame hereditary and
tubular algebras [11, 12], certain tree algebras which are derived tame [8, 16]
and others. Recent results in [5] show that, if the Euler form of a connected
algebra A is non-negative, then there exists an invertible linear transfor-
mation T : Zn → Zn such that χAT (x1, . . . , xn) = q∆(x1, . . . , xn−s), where
s = corankχA and q∆ is the quadratic form associated with a uniquely de-
termined Dynkin graph ∆. The graph ∆ = Dyn(χA) is called the Dynkin
type of χA.

1991 Mathematics Subject Classification: 15A63, 16G60.
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The main result of this work completes the description of the algebras A
whose Euler form χA is non-negative with corank χA ≤ 2 (at least for some
classes of algebras).

Theorem. Let A = kQA/I be a connected finite-dimensional k-algebra
such that χA is non-negative of corank 2. Assume that A is in one of the
following classes: (1) tree algebras; (2) strongly simply connected poset alge-
bras. Then A is derived equivalent to a tubular algebra or to a poset algebra
P(n) of the form
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Moreover , if A has more than 6 vertices, then A is derived equivalent to
a tubular algebra (resp. to P(n)) if and only if Dyn(χA) = Ep (p = 6, 7, 8)
(resp. Dyn(χA) = Dn−2).

The work is organized as follows. In Section 1, we recall some examples
and properties of algebras whose Euler form is non-negative. In Section 2,
we describe the Dynkin type of algebras derived equivalent to well-known
classes of algebras. In particular, we show the following result.

Proposition. Let A be a strongly simply connected algebra whose Euler
form is non-negative and of Dynkin type An. Then A is derived equivalent
to a hereditary algebra of type An.

In Section 3, we prove a useful lemma about the connectedness of the
radical of a strongly simply connected algebra. In Sections 4 and 5, we
give the proofs of the above theorem for tree algebras and strongly simply
connected poset algebras respectively. Finally, in the last section, we treat
the case where the associated Euler form is non-negative but has higher
corank.

We gratefully acknowledge support from DGAPA, UNAM and CONA-
CyT.

1. Some algebras whose Euler form is non-negative

1.1. Let A = kQA/I be a finite-dimensional algebra. We shall assume
that QA is connected and without oriented cycles (we say A is connected
and triangular , respectively). In particular, A has finite global dimension.

A module X ∈ modA is also considered as a representation of QA.
The dimension vector dimX is identified with the class [X] of X in the
Grothendieck group K◦(A) ' Zn.
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For x ∈ Q◦ we denote by Sx the simple module at x. By Px (resp. Ix)
we denote a projective cover (resp. injective envelope) of Sx. We also write
ex instead of dimSx.

1.2. Given two derived equivalent algebras A and B with F : Db(A)→
Db(B) a triangular equivalence, there is an induced isometry f : K◦(A) →
K◦(B) satisfying 〈x, y〉A = 〈f(x), f(y)〉B.

Recall that A[M ] denotes the one-point extension of A by a module M
(see [17]). The following result will be basic for our considerations.

Theorem (see [2]). Let A and B be two algebras and M ∈ modA, N ∈
modB two modules. Suppose there is a triangular equivalence F : Db(A)→
Db(B) which maps the stalk complex M [0] to N [0]. Then there exists a
triangular equivalence F : Db(A[M ])→ Db(B[N ]) extending F .

1.3. For a given subset J of the vertices of the quiver QA, the algebra
B = EndA(

⊕
x∈J Px)op is said to be fully contained in A. If J is path closed

in QA, then B is said to be convex in A. If Q◦ denotes the vertex set of QA

and J = Q◦ \ {y}, we write A \ {y} = B.

Lemma (see [3]). Let B be fully contained in A and assume that χA is
non-negative. Then χB is non-negative and corankχB ≤ corankχA.

1.4. We recall that an algebra A is said to be strongly simply connected
if for every algebra B convex in A, the first Hochschild cohomology H1(B)
vanishes [18]. Equivalently, A is strongly simply connected if and only if
every algebra B convex in A is separated , that is, B = kQB/I

′ and for every
vertex x in QB the following condition is satisfied: let radPx =

⊕t
i=1Mi be

a decomposition into indecomposable modules of the B-module radPx; then
for any i 6= j, the supports of Mi and Mj are contained in different connected
components of QB \ {y : there is a path from y to x}. See also [6, 18].

Examples. (a) If A = kQA/I is a tree algebra (that is, the underlying
graph of QA is a tree), then A is strongly simply connected.

(b) Let A = k[S] be a poset algebra (that is, S is a poset and A = kQS/IS
where QS is the quiver of S, kQS the path algebra of QS and IS the ideal in
kQS generated by the differences of parallel paths in kQS ; see [10]). Then
A is strongly simply connected if and only if A has no crowns (see [7]).
We recall that a crown in A is an algebra C, fully contained in A, of the
form

a1 a2 am

b1 b2 bm
? ? ?
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and such that the convex closure {ai, bi} of {ai, bi} intersects {ai+1, bi} (resp.
{ai, bi−1}) in bi (resp. in ai) for i = 1, . . . ,m and am+1 = a1, b0 = bm.

(c) Suppose we have the following setting: A = kQA/I is an algebra, χA
is non-negative, x is a source in QA and there exists a vector v ∈ radχA
with v(x) 6= 0. Then corankA◦ = corankA− 1 where A◦ = A \ {x}.

The following results are central in our considerations.

Theorem. Let A be a strongly simply connected algebra.

(i) [1, 4] A is derived equivalent to a tame hereditary algebra k∆ if and
only if χA is non-negative with corankχA = 1. In this case, ∆ is of type D̃n
(n ≥ 4) or Ẽp (p = 6, 7, 8).

(ii) [3] If QA has more than 6 vertices, then A is derived equivalent to
a tubular algebra k∆ if and only if χA is non-negative with corankχA = 2
and χ−1A (1) ∩ χ−1A (0)⊥ = ∅ (where V ⊥ = {w ∈ K◦(A) : 〈v, w〉A = 0 for all
v ∈ V }).

1.5. Following [16], we say that A is derived tame if A has finite global
dimension and the repetitive category Â is tame. Examples of derived tame
algebras are the following:

(a) By [11], hereditary tame algebras are derived tame. By [12], tubular
algebras are derived tame.

(b) If A is derived tame and Db(A) ' Db(B) is a triangular equivalence,
then B is also derived tame (see [16]).

(c) Let C be a hereditary tame algebra of type D̃n and let M be an
indecomposable regular C-module of regular length 2 lying in a tube of rank
n−2 in the Auslander–Reiten quiver ΓC . Then the one-point extension C[M ]
is called a 2-tubular algebra (see [14]). In [16], it is shown that B is derived
tame and derived equivalent to the poset algebra P(n+ 2) as defined in the
introduction.

(d) Other examples of derived tame algebras are provided by the poset
algebras associated with posets of the form
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Remarks. (1) All algebras in the above examples have a non-negative
Euler form.

(2) Information on the structure of the module category of a derived
tame algebra was recently obtained in [9].
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2. The Dynkin type of non-negative Euler forms

2.1. Let q : Zn → Z be an integral quadratic form of the shape q(v) =∑n
i=1 qiv(i)2 +

∑
i<j qijv(i)v(j). We say that q is a unit (resp. semi-unit)

form if qi = 1 (resp. qi ∈ {0, 1}) for all i.

Associated with a semi-unit form we define a bigraph Gq with vertices
1, . . . , n; two vertices i 6= j are joined by |qij | full edges if qij < 0 and by qij
dotted edges if qij ≥ 0; for every vertex i, there are 1 − qi full loops at i.
We say that q is connected if Gq is connected. The following are elementary
facts.

(a) If A = kQ/I is a connected and triangular algebra, then χA is a
connected unit form.

(b) Given a connected graph ∆ formed by full edges and at most one
loop at each vertex, there is a semi-unit form q∆ such that Gq∆ = ∆. Then
q∆ is positive (resp. non-negative) if and only if ∆ is a Dynkin diagram
(resp. an extended Dynkin diagram).

For Dynkin diagrams we consider the following partial order:

Am ≤ An ≤ Dn ≤ Dp for m ≤ n ≤ p,
Dp ≤ Ep ≤ Eq for 6 ≤ p ≤ q ≤ 8.

The following result is relevant to our discussion.

Theorem (see [5]). Let q : Zn → Z be a connected , non-negative semi-
unit form. Then there exists a Z-invertible linear transformation T : Zn →
Zn such that qT (x1, . . . , xn) = q∆(x1, . . . , xn−c), where c = corank q and
∆ = Dyn(q) is a Dynkin diagram uniquely determined by q. Moreover , if q′

is a connected restriction of q, then Dyn(q′) ≤ Dyn(q).

2.2. Proposition. Let A be a strongly simply connected algebra with a
non-negative Euler form χA of type An. Then A is derived equivalent to a
hereditary algebra of type An and corankχA = 0.

P r o o f. We show first that corankχA = 0, that is, χA is positive.
Suppose that corankχA > 0. Then there exists an algebra B convex in
A such that corankχB = 1. By 2.1, Dyn(χB) ≤ Dyn(χA) = An, thus
Dyn(χB) = Am for some m ≤ n. By [1, 3], the algebra B is derived equiv-
alent to a hereditary algebra of type D̃m−1 or Ẽm−1 (m = 7, 8, 9), which
implies Dyn(χB) = Dm−1 or Dyn(χB) = Em−1, respectively—in any case a
contradiction. Hence corankχA = 0.

By [1], A is derived equivalent to a hereditary algebra k∆, where ∆ is a
quiver of Dynkin type. Clearly, we have Dyn(χA) = ∆.

2.3. Let us restate the results in [1, 3] mentioned in 1.3. Let A = kQ/I
be a connected and strongly simply connected algebra. Then we have:
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(1) A is derived equivalent to a tame (but not representation-finite)
hereditary algebra if and only if χA is non-negative and corankχA = 1.
In this case, Dyn(χA) is Dn (n ≥ 4) or Ep (p = 6, 7, 8).

(2) If A is derived equivalent to a tubular algebra (resp. to a 2-tubular
algebra), then χA is non-negative and corankχA = 2. If QA has more than
6 vertices, then Dyn(χA) = Ep (p = 6, 7, 8) (resp. Dyn(χA) = Dn (n ≥ 4)),
whereas if QA has 6 vertices in both cases we have Dyn(χA) = D4.

(3) Assume A = B[M ] is such that χA is non-negative, corankχA = 2,
corankχB = 1 and M is indecomposable. Then A is derived equivalent to a
tubular or a 2-tubular algebra.

We conjecture that the following hold for a strongly simply connected
algebra A:

(4) If corankχA = 2, then

(4.1) if Dyn(χA) = Dn and n ≥ 5, then A is derived equivalent to a
2-tubular algebra,

(4.2) if Dyn(χA) = Ep (p = 6, 7, 8), then A is derived equivalent to a
tubular algebra.

(5) If corankχA ≥ 3 then Dyn(χA) = Dn.

The results we show in this work are special cases of conjecture (4). In
[9], special cases of conjecture (5) are considered.

2.4. We recall from [4, 5] examples showing that the above conjectures
may be expected only in the strongly simply connected case.

(a) Let A be the algebra given by the following quiver with commuta-
tivity relations as indicated by dotted lines.
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Then χA is non-negative with corankχA = 2 and Dyn(χA) = E8. More-
over, A is wild and hence A cannot be derived tame, by 1.5.

(b) Let A be the algebra given by the following quiver with zero relations
as indicated by dotted lines.
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Then χA is non-negative with corankχA = 3 and Dyn(χA) = E6.

3. Connectivity of the radical. In the following we prove a general
result about the convex closure of the support of the radical of a strongly
simply connected algebra with non-negative Euler form. Although the proof
is quite technical, it will be of great use in the forthcoming considerations.

Proposition. Let A = kQ/I be a strongly simply connected algebra with
non-negative Euler form. Then the convex closure radχA of the support of
radχA is connected in A.

P r o o f. Suppose that there exists a strongly simply connected algebra
A such that radχA is not connected in A. We assume that A is a minimal
such example and let radχA =

⋃t
i=1Ri (t ≥ 2) be a decomposition into

connected algebras Ri which are convex in A.
The proof is done in several steps:

(i) We first show that corankχA ≥ 2. Any vector v ∈ radχA decomposes
as v =

∑t
i=1 vi with vi ∈ K◦(Ri) ⊂ K◦(A). Hence 0 = χA(v) =

∑t
i=1 χRi(vi)

(since for i 6= j, x ∈ suppRi and y ∈ suppRj there are no directed paths
between x and y implying that 〈ei, ej〉A = 0). Since χA is non-negative, we
have vi ∈ radχRi for 1 ≤ i ≤ t, and therefore corankχA ≥ 2.

(ii) We show t = 2, that is, radχA = R1∪R2 where R1, R2 are connected
and convex in A. Choose i 6= j such that there is a walk γ between Ri and
Rj in QA of minimal length. Then the convex closure of Ri, Rj and γ in A
is a strongly simply connected algebra A◦ with radχA◦ = Ri ∪ Rj . By the
minimality of A we get A = A◦ and t = 2.

(iii) Next we verify that for i = 1, 2 there is a source or a sink yi such
that A \ {yi} is connected and yi ∈ Ri. First observe that A \ {R1 ∪ R2}
contains a vertex x0 which is a source or a sink in QA, and that for any such
point x0, by minimality, A \ {x0} is not connected.

Choose such a point x0 ∈ A\{R1∪R2}, say a source, and set A\{x0} =
B1∪B2 with R1 ⊂ B1 and R2 ⊂ B2. Now, choose a sink x1 ∈ B1. If A\{x1}
decomposes, say A \ {x1} = C1 ∪ C2 with R2 ⊂ C2, we choose a source
x2 ∈ C1. Again, if A \ {x2} decomposes, say A \ {x2} = D1 ∪ D2 with
B2 ⊂ D2, we choose a sink x3 ∈ D1. Observe that |B1| > |C1| > |D1| > . . .
This process may be continued until we find a source or a sink xm not
belonging to R2 such that A \ {xm} is connected. By the above, we thus
have y1 := xm ∈ R1. Dually we find y2.

(iv) Now we prove that A is tubular or 2-tubular. By 1.4(c), we have
corankχA\{yi} < corankχA for i = 1, 2, and hence by minimality corankχR1

= 1 = corankχR2 . Therefore corankχA = 2.
We may assume that y1 is a source. Since A is strongly simply connected,

M = radPy1 is indecomposable and A′ = A \ {y1} is strongly simply con-
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nected with corankχA′ = 1. By 2.3(3), A is either derived equivalent to a
tubular or to a 2-tubular algebra.

(v) Finally, we show that this leads to a contradiction. In both cases we
have radχA = kv1 ⊕ kv2 with 〈v1, v2〉A 6= 0 (in the tubular case this follows
from [17], in the 2-tubular case it may be easily verified for the poset algebra
P(n)). But this contradicts the fact that there are vectors w1, w2 ∈ radχA
with wi ∈ K◦(Ri) ⊂ K◦(A) for i = 1, 2, which implies that 〈w1, w2〉A = 0.
This completes the proof of the proposition.

4. The tree case

4.1. The first result we state provides the inductive step dealing with
tree algebras with non-negative Euler form.

Proposition. Let A be a tree algebra with non-negative Euler form and
corankχA = c. Then there exists an algebra B with the following properties.

(i) B is derived equivalent to a tree algebra and χB is non-negative with
corankχB = c− 1.

(ii) A is derived equivalent to B[M ] for some indecomposable B-mod-
ule M .

We give the proof of the proposition in 4.4 after some preparation.

4.2. Lemma. Let A = kQA/I be a tree algebra. Consider the convex
closure radχA of the support of radχA and let x be a source or a sink in
radχA. Then A \ {x} is again a tree algebra.

P r o o f. Suppose A \ {x} is not a tree. Denote by y1, . . . , yt the vertices
in QA such that there exists an arrow αi : yi → x and denote by z1, . . . , zs
those vertices with an arrow βi : x→ zi (since χA is non-negative, we have
t+ s ≤ 4). Since A \ {x} is not a tree, it fully contains an algebra B of the
form

yi1 yi2 yir

zj1 zj2 zjr
? ? ?

PPPPPPPPPPPq
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with r ≥ 2 and the arrows are compositions βjαi for some 1 ≤ i ≤ t and
1 ≤ j ≤ s. Then there exists a vector v ∈ radχA with v(yi1) 6= 0 6= v(zj1).
This contradicts the fact that x was chosen to be a source or a sink in
radχA.

4.3. Let A = kQA/I be a triangular algebra and x a source in QA.
Let A◦ = A \ {x} and write A = A◦[M ] as a one-point extension with
M = radPx. Then S+

x A = [M ]A◦ is the source-reflection of A at x. In
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[11] it is shown that A and S+
x A are derived equivalent. We denote the

extension-vertex in QS+
x A

by x∗, that is, Ix∗/soc Ix∗ = M .

For any vertex x ∈ QA we assume that

x<A := {a 6= x : there is a path from a to x} = {a1, . . . , at}

is enumerated in such a way that the existence of a path from ai to aj
implies that i ≤ j. Define the algebra Ax = S+

at . . . S
+
a1A, which is derived

equivalent to A. Clearly, x is then a source in Ax. For any point u ∈ x<A and
y = u∗ ∈ QAx we also write u = y∗.

Lemma. Let A be a tree algebra such that χA is non-negative, and let
x be a source in radχA. Then for any arrow α : x → y in QAx we have
y ∈ radχA.

P r o o f. We assume that there exists y 6∈ radχA such that there is an
arrow α : x→ y in QAx and proceed in several steps.

(i) First we show that x is the only vertex in radχA which is the starting
point of a path in QAx to y. Assume there exists a vertex x′ ∈ radχA, x′ 6= x
and a path

x′ → z0 → z1 → . . .→ zt → y

in QAx . By Proposition 3, we know that it is possible to connect x and x′

by a walk inside radχA, thus, since A is a tree algebra, we have y ∈ (x<A)∗.
If there exists i > 0 such that zi−1 does not belong to (x<A)∗, we choose i
maximal with this property. Then in A we have the following paths:

x′ → z0 → z1 → . . .→ zi−1

z∗i → z∗i+1 → . . .→ z∗t → y∗
f→ x

where f itself is a path. Together with a path from z∗i to zi−1 and a walk
inside radχA between x′ and x, we obtain a closed walk in QA, contrary
to the assumption that A is a tree algebra. The case where z∗i ∈ x<A for all
i = 0, . . . , t is similar.

(ii) Now we show that the assumption leads to a contradiction. Let A′ =
A \ {y<Ax \ {x}}. Clearly, A′ is convex in Ax and radχAx is fully contained
in A′. It is thus sufficient to show that for A′ the assumption leads to a
contradiction.

Consider a projective resolution of the simple module Sy in modA′

0→ P (n)→ P (n− 1)→ . . .→ P (0)→ Sy → 0.

Then 〈dimP (i), v〉A′ = 0 for all i = 0, . . . , n and v ∈ radχA′ .

Let v ∈ radχA′ be such that v(x) 6= 0. Then

〈v, ey〉A′ = 〈v,dim Iy〉A′ − 〈v,dim Ix〉A′ = −v(x) 6= 0
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because y 6= radχA′ and x is the only predecessor of y in QA′ . On the other
hand,

〈ey, v〉A′ =
n∑
i=0

(−1)i〈dimP (i), v〉A′ = 0.

Therefore χA′(2v + ey) < 0, contradicting the non-negativity of χA′ .

Obviously, the dual statement may be proved similarly.

4.4. Proof of Proposition 4.1. By Proposition 3, radχA is connected.
Choose a source or sink x in radχA such that radχA \{x} is still connected.
Say x is a source in radχA. Consider the algebra A◦ = A \ {x} which
is fully contained in A. By 4.2, A◦ is again a tree algebra and by 1.4(c),
corankχA◦ = c− 1.

As in the proof of Lemma 4.3, we have radχA = radχAx and in particular
radχA = radχAx . Observe that x is a source in Ax and define B = Ax \{x}.
Hence B = S+

at . . . S
+
a1A◦ (where x<A = {a1, . . . , at} is supposed to be “well-

enumerated”) and corankχB = corankχA◦ = c− 1.

It remains to show that the B-module M = radPx is indecompos-
able. First, observe that M ′ = radPx|radχAx is indecomposable (because

radχA = radχAx). By 4.3, any arrow x → y in QAx belongs to radχAx .
Therefore a decomposition of M yields a decomposition of M ′, thus M is
indecomposable. �

4.5. Proof of the main theorem for tree algebras. Let A be a tree algebra
with non-negative Euler form of corank 2. By 4.1, there exists a triangular,
connected algebra B which is derived equivalent to a tree algebra C and such
that χB is non-negative of corank one and there exists an indecomposable
B-module M such that A is derived equivalent to B[M ]. In particular, χC
is non-negative of corank one. The result follows from 2.3(3).

5. The poset case. A rereading of the proof of the main theorem in
the tree case reveals that the assumption on A to be a tree algebra is only
needed in the proof of Lemma 4.2 and in the step (i) of Lemma 4.3.

In the following we just give the arguments which establish the same
assertions as 4.2 and 4.3 if A is a strongly simply connected poset algebra.

5.1. Lemma. Let A be a strongly simply connected poset algebra. Let
x be a source or sink in radχA. Then A \ {x} is again a strongly simply
connected poset algebra.

P r o o f. The algebra B = A \ {x} is clearly a poset algebra. To show
that B is strongly simply connected, it is enough to show that B admits no
crown (see 1.4). This is shown exactly as in the proof of Lemma 4.2.
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5.2. Lemma. Let A be a strongly simply connected poset algebra such
that χA is non-negative, and let x be a source in radχA. Then for any
arrow α : x→ y in QAx we have y ∈ radχAx.

P r o o f. Again, we assume that there exists an arrow α : x → y such
that y 6∈ radχA.

And again, we first show that then x is the only start point of a path
from radχAx to y in QAx . So assume that this is not so: let x′ ∈ radχAx be
different from x such that there exists a path

x′ → z0 → z1 → . . .→ zt → y

in Ax. Since radAx is connected there exists a fully contained algebra C in
radAx of the form

x′

c0

b1

c1

bt

ct

x
@@R @@R @@R��	 ��	

p p p
x′

b1

c1

bt

ct

x
@@R @@R��	 ��	

p p p(∗) or

First, suppose y 6∈ (x<A)∗. Then we have x′ 6< x in A because there is an
arrow x → y and A is a poset algebra. If there exists a j such that cj < y
then we choose j maximal with that property. Observe that j < t. Thus
{bj+1, cj+1, . . . , bt, ct, x, y} is a crown in A, contrary to the fact that A is
strongly simply connected (see 1.4(b)). On the other hand, if there is no j
with cj < y then (∗) together with y yields a crown in A.

Thus we have y∗ ∈ x<A and therefore y∗ < x < ct. On the other hand,
since x→ y is an arrow in QAx , the vertex y∗ cannot be smaller than ct in
A. This contradicts the fact that A is a poset algebra.

The rest of the proof goes as in 4.3.

6. Higher coranks

6.1. We shall prove the following result which is related to the conjecture
about algebras A with corankχA > 2 (see 2.3(5)).

Proposition. Let A be a tree algebra or a strongly simply connected
poset algebra with non-negative Euler form. Then any properly contained ,
convex algebra B in A whose Euler form has corank 2 is derived equivalent
to a poset algebra P(n).

6.2. We shall need the following result.

Proposition. Let A be an algebra which is derived equivalent to a tubu-
lar algebra and let M be an indecomposable A-module. Then:

(i) χA(dimM) ∈ {0, 1}.
(ii) The Euler form of A[M ] is indefinite.
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P r o o f. (i) By [11], the inclusion modA ↪→ Db(A), X 7→ X[0], induces an
isometry K◦(A) → K◦(D

b(A)). Hence we shall prove that χDb(A)(M [0]) ∈
{0, 1}. By [12], for an indecomposable object X ∈ Db(A), there is a tubu-
lar algebra B such that X lies in the image of the composition modB ↪→
Db(B) → Db(A) of the inclusion with some triangular equivalence F , say
X = F (Y [0]) for some indecomposable B-module Y . Hence χA(dimM) =
χDb(A)([M [0]]) = χDb(B)([Y [0]]) = χB(dimY ), and finally χB(dimY ) ∈
{0, 1} by the results of [17].

(ii) Let M be an indecomposable A-module and A′ = A[M ]. Then
χA(dimM) ∈ {0, 1}. Assume first χA(dimM) = 0. As we have seen in
the proof of Proposition 3, there exists a vector v ∈ radχA such that
〈dimM,v〉A 6= 0. Let x be the extension vertex in QA′ such that radPx =
M . Then 〈v, ex〉A′ = 0 and 〈ex, v〉A′ = 〈dimPx, v〉A′ − 〈dimM, v〉A′ =
−〈dimM,v〉A 6= 0, which implies that χA′ is indeed indefinite.

Now assume χA(dimM) = 1. Suppose that χA′ is non-negative. We show
that dimM ∈ χ−1A (1)∩χ−1A (0)⊥ contrary to 1.4. Indeed, if v ∈ χ−1A (0), then
〈ex, v〉A′ + 〈v, ex〉A′ = 0 (since otherwise χA′(2v ± ex) < 0, a contradiction).
Since 〈v, ex〉A′ = 0, we have 0 = 〈ex, v〉A′ = −〈dimM, v〉A.

6.3. Proof of Proposition 6.1. Let B be connected and convex in A with
B 6= A and such that corankχB = 2. By our main theorem, B is derived
equivalent to a tubular algebra or to a 2-tubular algebra. Since B 6= A, there
exists a B-module M such that B[M ] (or [M ]B) is still convex in A. Since
then B[M ] (resp. [M ]B) is strongly simply connected, the module M has
to be indecomposable and by 6.2, the algebra B cannot be tubular.
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[7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550–565.
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