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ISOMETRIC IMMERSIONS OF THE
HYPERBOLIC SPACE Hn(−1) INTO Hn+1(−1)

BY

ZE-JUN H U (HANGZHOU AND ZHENGZHOU)

We transform the problem of determining isometric immersions from
Hn(−1) into Hn+1(−1) into that of solving equations of degenerate Monge–
Ampère type on the unit ball Bn(1). By presenting one family of special
solutions to the equations, we obtain a great many noncongruent examples
of such isometric immersions with or without umbilic set.

1. Introduction. Let Hn(c) (c < 0) be an n-dimensional hyperbolic
space form with constant sectional curvature c. Its Cayley model is the
hypersurface F : 〈X,X〉L = 1/c, xn+1 > 0, in the Minkowski space Rn+1

1 ,
where 〈·, ·〉L denotes the inner product in Rn+1

1 , i.e., 〈X,Y 〉L =
∑n

i=1 xiyi−
xn+1yn+1 for X = (x1, . . . , xn+1), Y = (y1, . . . , yn+1) ∈ Rn+1.

Denote by Mn(c) the n-dimensional space form of constant sectional
curvature c, i.e., Mn(0) = En, Mn(c) = Sn(1/

√
c) for c > 0 and Mn(c) =

Hn(c) for c < 0. For the problem of isometric immersions of Mn(c) into
Mn+1(c), the following global results are well-known:

(i) c=0. Each isometrically immersed complete manifold Mn of En into
En+1 must be a cylinder over a plane curve, i.e., Mn = En−1×C, where C
is a curve in the plane orthogonal to En−1. This result is due to Hartman
and Nirenberg [6] and Massey [10].

(ii) c = 1. An isometric immersion of Sn(1) into Sn+1(1) is rigid, i.e., it
can only be a totally geodesic imbedding [1, 4, 13].

In the hyperbolic case, the situation looks quite different. Isometric
immersions seem much more abundant. Indeed, Nomizu [11] constructed
explicitly a one-parameter family of examples of isometric immersions of
H2(−1) into H3(−1) with three different kinds of properties. At the same
time, Ferus [5] showed that given a totally geodesic foliation of codimen-
sion 1 in Hn(−1), there is a family of isometric immersions of Hn(−1) into
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equation.

[17]
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Hn+1(−1) for which the relative nullity foliations coincide with the given fo-
liation. These results completely characterize the space of nowhere umbilic
isometric immersions of Hn(−1) into Hn+1(−1). By considering a broader
class of isometric immersions, Abe and Haas [2] showed that given a dif-
ferentiable lamination on Hn(−1) there is a family of isometric immersions
of Hn(−1) into Hn+1(−1) so that the induced relative nullity foliations are
completely determined by the lamination. While including the result of
[5] and [11], Abe and Haas’ approach provides also examples of isometric
immersions with umbilic sets.

On the other hand, by making use of the fundamental theorem for hy-
persurfaces, Abe–Mori–Takahashi [3] completely parametrizes the space of
isometric immersions of Hn(−1) into Hn+1(−1) by a family of properly
chosen (at most) countable n-tuples of real-valued functions defined on an
open interval. This is an answer to the following open problem posed by
Nomizu [11]: “To determine all isometric immersions from Hn(−1) into
Hn+1(−1)”.

In this paper, we also consider that problem. By presenting a new
approach we transform it into a problem of pure analysis. Precisely, we
transform the problem of determining isometric immersions of Hn(−1) into
Hn+1(−1) into that of solving equations of degenerate Monge–Ampère type
on the unit ball Bn(1). Our main result is the following:

Theorem. Every smooth isometric immersion of Hn(−1) into Hn+1(−1)
corresponds to a solution of the equations

∂2u

∂ξi∂ξj
· ∂2u

∂ξk∂ξl
− ∂2u

∂ξi∂ξk
· ∂2u

∂ξj∂ξl
= 0, ξ = (ξ1, . . . , ξn) ∈ Bn(1),(1)

i, j, k, l = 1, . . . , n.

Conversely , for every smooth solution u of (1) we define

(2)


gij = λ−4(λ2δij + ξiξj), λ =

√
1− ξ21 − . . .− ξ2n,

hij = λ−1
∂2u

∂ξi∂ξj
, i, j = 1, . . . , n.

Then u determines a smooth isometric immersion of Hn(−1) into Hn+1(−1)
with g and h being its first and second fundamental forms, respectively.

Remark 1. Our theorem completely parametrizes the space of isometric
immersions of Hn(−1) into Hn+1(−1) by just one properly chosen real-
valued function on Bn(1). This can be compared with Theorem 1.1 of Abe–
Mori–Takahashi [3].

Remark 2. The special case n = 2 has been considered by G. S. Zhao
and the author in [8]. In another paper [7], we have studied the isometric
immersions of H2(−1) into H3(c) (c < −1), and basing on results obtained
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by Li [9], we partially classified those isometric immersions which are of
bounded principal curvatures.

Remark 3. Equations (1) imply that det(∂2u/∂ξi∂ξj) = 0 and
rank(∂2u/∂ξi∂ξj) ≤ 1. For simplicity, we call (1) the degenerate Monge–
Ampère type equation hereafter.

2. Proof of the theorem. Take the hyperplane Π: xn+1 = 1 in Rn+1
1

and consider the central projection p of F : x21 + . . . + x2n − x2n+1 = −1,
xn+1 > 0, from the origin O of Rn+1 into Π. Then F is mapped in a
one-to-one fashion onto the open unit ball Bn(1): ξ21 + . . . + ξ2n < 1. The
mapping p is given by

p : F → Bn(1), (x1, . . . , xn+1)→ (ξ1, . . . , ξn),

where xn+1 =
√

1 + x21 + . . .+ x2n and ξi = xi/xn+1, i = 1, . . . , n. The
parametric representation of F with respect to {ξ1, . . . , ξn} is given by

F : v(ξ1, . . . , ξn) =

(
ξ1
λ
, . . . ,

ξn
λ
,

1

λ

)
, λ =

√
1− ξ21 − . . .− ξ2n.

The metric of Hn(−1) with respect to the global coordinates {ξ1, . . . , ξn}
on Bn(1) is given by the tensor g with

gij = λ−4(λ2δij + ξiξj), i, j = 1, . . . , n,

and det(gij) = λ−2n−2. The Christoffel symbols are Γ k
ij = λ−2(ξiδjk+ξjδik).

Denote by hij the second fundamental form of the immersion x : Hn(−1)
→ Hn+1(−1) w.r.t. the global frame {∂/∂ξ1, . . . , ∂/∂ξn} on Hn(−1). From
the fundamental theorem of hypersurface theory, an isometric immersion
is uniquely determined, in the sense of congruence, by its first and second
fundamental forms. The Gauss equation and the Codazzi equation are the
integrability conditions. It is well known that, for an isometric immersion
of Hn(−1) into Hn+1(−1), the Codazzi equation is equivalent to the second
fundamental form h being a Codazzi tensor on Hn(−1). We will need the
following

Lemma (cf. Proposition 1.3.3 of [12]). Let (M, g) be a Riemannian mani-
fold of constant sectional curvature c (possibly zero) and T a Codazzi tensor
of M . Then for every point of M , there exists a neighborhood U and a
smooth function f : M → R such that T = Hess f + cgf in U . In addition,
if M is simply connected then such a representation is available on all of M .

Conversely , on a manifold (M, g) of constant curvature c, any smooth
function f generates a Codazzi tensor T = Hess f + cgf .

By applying the lemma to Hn(−1) = (Bn(1), g), we see that h being a
Codazzi tensor on Hn(−1) is equivalent to the existence of a globally defined
smooth function f on Bn(1) such that h = Hess f − gf .
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Define a function on Bn(1) by u = λf . Then the components of h are

(3) hij = ∇ijf − gijf =
∂2f

∂ξi∂ξj
− Γ k

ij

∂f

∂ξk
− gijf = λ−1

∂2u

∂ξi∂ξj
,

where ∇ij are the operators of second covariant differentiation in the met-
ric g.

For an isometric immersion of Hn(−1) into Hn+1(−1), the Gauss equa-
tion is expressed in the form

(4) hijhkl − hikhjl = 0, i, j, k, l = 1, . . . , n.

Combining (3) with (4), we obtain the Monge–Ampère type equation (1)
in Bn(1).

Hence, every smooth isometric immersion x of Hn(−1) into Hn+1(−1)
corresponds to a smooth solution u of (1) such that the first and second
fundamental forms g and h of x are given by (2).

On the other hand, if u is a smooth solution of (1), then h defined by
(2) is a Codazzi tensor on Hn(−1) and g, h determine a smooth isometric
immersion x of Hn(−1) into Hn+1(−1) with (1) as its Gauss equation.

This completes the proof of our theorem.

3. Further discussion. Assume that u is a smooth solution of (1),
and that the first and second fundamental forms g and h of the immersion
x which corresponds to u are given by (2). If we denote by σ the principal
curvature of the immersion x, then

(5) det(hij − σgij) = 0.

Now, we mention the following two obvious facts:

(i) Two solutions u and u of (1) determine two congruent immersions
of Hn(−1) into Hn+1(−1) if u− u is a linear function in ξ1, . . . , ξn.

(ii) For any 0 6= a = (a1, . . . , an) ∈ Rn and ξ = (ξ1, . . . , ξn) ∈ Bn(1),
we have −

√∑n
i=1 a

2
i <

∑n
i=1 aiξi <

√∑n
i=1 a

2
i . Denote by Ia the interval

(−
√∑n

i=1 a
2
i ,
√∑n

i=1 a
2
i ). Then for each G ∈ C∞(Ia), u = G(a1ξ1 + . . . +

anξn) is a smooth solution of (1).

Then, for any fixed 0 6= a ∈ Rn and G ∈ C∞(Ia), the principal curvature
σ which corresponds to the smooth solution uG = G(a1ξ1 + . . . + anξn) of
(1) is determined by the equation

Dn :≡ det

(
∂2uG
∂ξi∂ξj

− λσgij
)

= 0.
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By using (2) and ∂2uG/∂ξi∂ξj = aiajG
′′, Dn equals

det

∣∣∣∣∣∣∣
a21α− λ

−1σ − λ−3σξ21 a1a2α− λ−3σξ1ξ2 . . . a1anα− λ−3σξ1ξn
a2a1α− λ−3σξ2ξ1 a22α− λ

−1σ − λ−3σξ22 . . . a2anα− λ−3σξ2ξn
...

...
...

ana1α− λ−3σξnξ1 ana2α− λ−3σξnξ2 . . . a2nα− λ−1σ − λ−3σξ2n

∣∣∣∣∣∣∣
= − λ−1σDn−1

+ anα det

∣∣∣∣∣∣∣∣∣∣

−λ−1σ − λ−3σξ21 −λ−3σξ1ξ2 . . . −λ−3σξ1ξn
−λ−3σξ2ξ1 −λ−1σ − λ−3σξ22 . . . −λ−3σξ2ξn

...
...

...
−λ−3σξn−1ξ1 −λ−3σξn−1ξ2 . . . −λ−3σξn−1ξn

a1 a2 . . . an

∣∣∣∣∣∣∣∣∣∣

− λ−3σξn det

∣∣∣∣∣∣∣∣∣∣

a21α− λ−1σ a1a2α . . . a1anα
a2a1α a22α− λ−1σ . . . a2anα

...
...

...
an−1a1α an−1a2α . . . an−1anα

ξ1 ξ2 . . . ξn

∣∣∣∣∣∣∣∣∣∣
≡: − λ−1σDn−1 + (A) + (B), where α = G′′(a1ξ1 + . . .+ anξn).

Direct computation gives

(A) = (−λ−1σ)n−1α
[
a2n − λ−2

n−1∑
i=0

(anξnaiξi − a2nξ2i )
]
,

(B) = λ−2(−λ−1σ)nξ2n − λ−2(−λ−1σ)n−1α

n−1∑
i=1

(anξnaiξi − a2i ξ2n).

Hence by induction

Dn = (−λ−1σ)Dn−1 + (−λ−1σ)n−1αa2n + λ−2(−λ−1σ)nξ2n

+ (−λ−1σ)n−1αλ−2
n−1∑
i=1

(anξi − aiξn)2

= (−λ−1σ)n−1D1 + (−λ−1σ)n−1α(a2n + . . .+ a22)

+ λ−2(−λ−1σ)n(ξ2n + . . .+ ξ22)

+ (−λ−1σ)n−1αλ−2
n∑

j=2

j−1∑
i=1

(ajξi − aiξj)2

= λ−2(−λ−1σ)n−1
[
−λ−1σ + λ2α

n∑
i=1

a2i + α

n∑
j=2

j−1∑
i=1

(ajξi − aiξj)2
]
.
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Thus, the only generally nonzero principal curvature of the immersion
corresponding to uG satisfies

σ = λG′′
( n∑

i=1

aiξi

)[
λ2

n∑
i=1

a2i +

n∑
j=2

j−1∑
i=1

(ajξi − aiξj)2
]
.

Because λ[λ2
∑n

i=1 a
2
i +

∑n
j=2

∑j−1
i=1 (ajξi − aiξj)2] > 0 in Bn(1), we see

that, by choosing the function G(t) properly, we can obtain a great many
noncongruent isometric immersions of Hn(−1) into Hn+1(−1) with one of
the following properties:

(1) The immersion has bounded principal curvature with no umbilics.

(2) The immersion has one-sided unbounded principal curvature with no
umbilics.

(3) The immersion has bounded principal curvature with umbilic set
consisting of the union of arbitrary finitely many (n − 1)-dimensional sub-
manifolds of Hn+1(−1).

(4) The immersion has one-(or two-)sided unbounded principal curva-
tures with umbilic set consisting of the union of arbitrary finitely many
(n− 1)-dimensional submanifolds of Hn+1(−1).

To study isometric immersions from Hn(−1) into Hn+1(−1), one may
consider the following Dirichlet boundary problem for the degenerate Mon-
ge–Ampère type equation

(6)


∂2u

∂ξi∂ξj
· ∂2u

∂ξk∂ξl
− ∂2u

∂ξi∂ξk
· ∂2u

∂ξj∂ξl
= 0 in Bn(1),

i, j, k, l = 1, . . . , n,

u = φ, on ∂Bn(1).

However, the regularity properties of the solution to (6) are quite compli-
cated. This is clearly seen even in the special case n = 2. Then u =

√
ξ21 + ξ22

satisfies (1) in Bn(1) \ {0} and u|∂Bn(1) ≡ 1, whereas ξ = 0 is a singular
point of u.

On the other hand, for n = 2, if φ ∈ C0(∂Bn(1)), then (6) does have a
unique convex generalized solution. One can consult Wachsmuth [14] for a
more detailed discussion and references on the problem (6) for n = 2. We
hope that a similar result can also be achieved in the general case.
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