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ON FULL SUSLIN TREES
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(JERUSALEM, NEW BRUNSWICK, N.J., AND MADISON, WISC.)

0. Introduction. In the present paper we answer a combinatorial ques-
tion of Kunen listed in Arnie Miller’s Problem List. We force, e.g. for the
first strongly inaccessible Mahlo cardinal λ, a full (see 1.1(2)) λ-Suslin tree
and we remark that the existence of such trees follows from V = L (if λ is
Mahlo strongly inaccessible). This answers [Mi91, Problem 15.13].

Our notation is rather standard and compatible with those of classical
textbooks on Set Theory. However, in forcing considerations, we keep the
older tradition that

a stronger condition is the larger one.

We will keep the following conventions concerning use of symbols.

Notation 0.1. (1) λ, µ will denote cardinal numbers and α, β, γ, δ, ξ, ζ
will be used to denote ordinals.

(2) Sequences (not necessarily finite) of ordinals are denoted by ν, η, %
(with possible indices).

(3) The length of a sequence η is lg(η).
(4) For a sequence η and an ordinal α ≤ lg(η), η�α is the restriction of

the sequence η to α (so lg(η�α) = α). If a sequence ν is a proper initial
segment of a sequence η then we write ν C η (and ν E η has the obvious
meaning).

(5) A tilde indicates that we are dealing with a name for an object in
forcing extension (like ˜x).

1. Full λ-Suslin trees. A subset T of α>2 is an α-tree whenever (α is
a limit ordinal and) the following three conditions are satisfied:

• 〈〉 ∈ T , if ν C η ∈ T then ν ∈ T ,
• η ∈ T implies η_〈0〉, η_〈1〉 ∈ T , and
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• for every η ∈ T and β < α such that lg(η) ≤ β there is ν ∈ T such
that η E ν and lg(η) = β.

A λ-Suslin tree is a λ-tree T ⊆ λ>2 in which every antichain is of size
less than λ.

Definition 1.1. (1) For a tree T ⊆ α>2 and an ordinal β ≤ α we let

T[β] := T ∩ β2 and T[<β] := T ∩ β>2.

If δ ≤ α is limit then we define

limδT[<δ] := {η ∈ δ2 : (∀β < δ)(η�β ∈ T )}.
(2) An α-tree T is full if for every limit ordinal δ < α the set limδ(T[<δ])\

T[δ] has at most one element.
(3) An α-tree T ⊆ α>2 has true height α if for every η ∈ T there is ν ∈ α2

such that
η C ν and (∀β < α)(ν�β ∈ T ).

We will show that the existence of full λ-Suslin trees is consistent as-
suming the cardinal λ satisfies the following hypothesis.

Hypothesis 1.2. (a) λ is a strongly inaccessible (Mahlo) cardinal,
(b) S ⊆ {µ < λ : µ is a strongly inaccessible cardinal} is a stationary

set,
(c) S0 ⊆ λ is a set of limit ordinals,
(d) for every cardinal µ ∈ S, ♦S0∩µ holds true.

Further in this section we will assume that λ, S0 and S are as above and
we may forget to repeat these assumptions.

Let us recall that the diamond principle ♦S0∩µ postulates the existence
of a sequence ν = 〈νδ : δ ∈ S0 ∩ µ〉 (called a ♦S0∩µ-sequence) such that
νδ ∈ δ2 (for δ ∈ S0 ∩ µ) and

(∀ν ∈ µ2)[the set {δ ∈ S0 ∩ µ : ν�δ = νδ} is stationary in µ].

Now we introduce a forcing notion Q and its relative Q∗ which will be
used in our proof.

Definition 1.3. (1) A condition in Q is a tree T ⊆ α>2 of a true
height α = α(T ) < λ (see 1.1(3); so α is a limit ordinal) such that
‖limδ(T[<δ]) \ T[δ]‖ ≤ 1 for every limit ordinal δ < α; the order on Q is
defined by T1 ≤ T2 if and only if T1 = T2∩α(T1)>2 (so it is the end-extension
order).

(2) For a condition T ∈ Q and a limit ordinal δ < α(T ), let ηδ(T ) be the
unique member of limδ(T[<δ]) \ T[δ] if there is one, otherwise ηδ(T ) is not
defined.

(3) Let T ∈ Q. A function f : T → limα(T )(T ) is called a witness for T
if (∀η ∈ T )(η C f(η)).
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(4) A condition in Q∗ is a pair (T, f) such that T ∈ Q and f : T →
limα(T )(T ) is a witness for T ; the order on Q∗ is defined by (T1, f1) ≤ (T2, f2)
if and only if T1 ≤Q T2 and (∀η ∈ T1)(f1(η) E f2(η)).

Proposition 1.4. (1) If (T1, f1) ∈ Q∗, T1 ≤Q T2 and

(∗) either ηα(T1)(T2) is not defined or it does not belong to rang(f1)

then there is f2 : T2 → limα(T2)(T2) such that (T1, f1) ≤ (T2, f2) ∈ Q∗.
(2) For every T ∈ Q there is a witness f for T .

P r o o f. Should be clear.

Proposition 1.5. (1) The forcing notion Q∗ is (< λ)-complete, in fact
any increasing chain of length < λ has the least upper bound in Q∗.

(2) The forcing notion Q is strategically γ-complete for each γ < λ.
(3) Forcing with Q adds no new sequences of length < λ. Since ‖Q‖ = λ,

forcing with Q preserves cardinal numbers, cofinalities and cardinal arith-
metic.

P r o o f. (1) It is straightforward: suppose that 〈(Tζ , fζ) : ζ < ξ〉 is an
increasing sequence of elements of Q∗. Clearly we may assume that ξ < λ
is a limit ordinal and ζ1 < ζ2 < ξ ⇒ α(Tζ1) < α(Tζ2). Let Tξ =

⋃
ζ<ξ Tζ

and α = supζ<ξ α(Tζ). Clearly, the union is increasing and Tξ is a full
α-tree. For η ∈ Tξ let ζ0(η) be the first ζ < ξ such that η ∈ Tζ and let
fξ(η) =

⋃
{fζ(η) : ζ0(η) ≤ ζ < ξ}. By the definition of the order on Q∗

we see that the sequence 〈fζ(η) : ζ0(η) ≤ ζ < ξ〉 is C-increasing and hence
fξ(η) ∈ limα(Tξ). Plainly, the function fξ witnesses that Tξ has true height
α, and thus (Tξ, fξ) ∈ Q∗. It should be clear that (Tξ, fξ) is the least upper
bound of the sequence 〈(Tζ , fζ) : ζ < ξ〉.

(2) For our purpose it is enough to show that for each ordinal γ < λ and
a condition T ∈ Q the second player has a winning strategy in the following
game Gγ(T,Q). (Also we can let Player I choose Tξ for ξ odd.)

The game lasts γ moves and during a play the players, called I and II,
choose successively open dense subsets Dξ of Q and conditions Tξ ∈ Q. At
stage ξ < γ of the game, Player I chooses an open dense subset Dξ of Q and
Player II answers playing a condition Tξ ∈ Q such that

T ≤Q Tξ, (∀ζ < ξ)(Tζ ≤Q Tξ), and Tξ ∈ Dξ.
The second player wins if he always has legal moves during the play.

Let us describe the winning strategy for Player II. At each stage ξ < γ
of the game he plays a condition Tξ and writes down a function fξ such that
(Tξ, fξ) ∈ Q∗. Moreover, he keeps an extra obligation that (Tζ , fζ) ≤Q∗

(Tξ, fξ) for each ζ < ξ < γ.
So arriving at a non-limit stage of the game he takes the condition

(Tζ , fζ) he constructed before (or just (T, f), where f is a witness for T ,
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if this is the first move; by 1.4(2) we can always find a witness). Then
he chooses T ∗ζ ≥Q Tζ such that α(T ∗ζ ) = α(Tζ) + ω and (T ∗ζ )[α(Tζ)] =
limα(Tζ)(Tζ). Thus ηα(Tζ)(T ∗ζ ) is not defined. Now Player II takes Tζ+1 ≥Q
T ∗ζ from the open dense set Dζ+1 played by his opponent at this stage.
Clearly ηα(Tζ)(Tζ+1) is not defined, so Player II may use 1.4(1) to choose
fζ+1 such that (Tζ , fζ) ≤Q∗ (Tζ+1, fζ+1) ∈ Q∗.

At a limit stage ξ of the game, the second player may take the least
upper bound (T ′ξ, f

′
ξ) ∈ Q∗ of the sequence 〈(Tζ , fζ) : ζ < ξ〉 (exists by (1))

and then apply the procedure described above.
(3) Follows from (2) above.

Definition 1.6. Let ˜T be the canonical Q-name for a generic tree added
by forcing with Q:


Q ˜T =
⋃
{T : T ∈ ˜GQ}.

It should be clear that ˜T is (forced to be) a full λ-tree. The main point
is to show that it is λ-Suslin and this is done in the following theorem.

Theorem 1.7. 
Q “˜T is a λ-Suslin tree”.

P r o o f. Suppose that ˜A is a Q-name such that


Q “˜A ⊆ ˜T is an antichain”,

and let T0 be a condition in Q. We will show that there are µ < λ and a
condition T ∗ ∈ Q stronger than T0 such that T ∗ 
Q “˜A ⊆ ˜T[<µ]” (and thus
it forces that the size of ˜A is less than λ).

Let ˜A be a Q-name such that


Q “˜A = {η ∈ ˜T : (∃ν ∈ ˜A)(ν E η) or ¬(∃ν ∈ ˜A)(η E ν)}”.

Clearly, 
Q “˜A ⊆ ˜T is dense open”.
Let χ be a sufficiently large regular cardinal (i7(λ+)+ is enough).

Claim 1.7.1. There are µ ∈ S and B ≺
(
H(χ),∈, <∗χ

)
such that :

(a) ˜A, ˜A, S, S0,Q,Q∗, T0 ∈ B,
(b) ‖B‖ = µ and µ>B ⊆ B,
(c) B ∩ λ = µ.

P r o o f. First construct inductively an increasing continuous sequence
〈Bξ : ξ < λ〉 of elementary submodels of

(
H(χ),∈, <∗χ

)
such that ˜A, ˜A, S,

S0,Q,Q∗, T0 ∈ B0 and for every ξ < λ,

‖Bξ‖ = µξ < λ, Bξ ∩ λ ∈ λ, and µξ≥Bξ ⊆ Bξ+1.

Note that for a club E of λ, for every µ ∈ S ∩ E we have

‖Bµ‖ = µ, µ>Bµ ⊆ Bµ, and Bµ ∩ λ = µ.

Choose µ ∈ S ∩ E and let B = Bµ.
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Let µ ∈ S and B ≺
(
H(χ),∈, <∗χ

)
be given by 1.7.1. We know that

♦S0∩µ holds, so fix a ♦S0∩µ-sequence ν = 〈νδ : δ ∈ S0 ∩ µ〉.
Let

˜I := {T ∈ Q : T is incompatible (in Q) with T0 or:

T ≥ T0 and T decides the value of ˜A ∩ α(T )>2 and
(∀η ∈ T )(∃% ∈ T )(η E % & T 
Q % ∈ ˜A)}.

Claim 1.7.2. ˜I is a dense subset of Q.

P r o o f. Should be clear (remember 1.5(2)).

Now we choose by induction on ξ < µ a continuous increasing sequence
〈(Tξ, fξ) : ξ < µ〉 ⊆ Q∗ ∩B.

Step: i = 0. T0 is already chosen and it belongs to Q∩B. We take any
f0 such that (T0, f0) ∈ Q∗ ∩B (exists by 1.4(2)).

Step: limit ξ. Since µ>B ⊆ B, the sequence 〈(Tζ , fζ) : ζ < ξ〉 is in B.
By 1.5(1) it has the least upper bound (Tξ, fξ) (which belongs to B).

Step: ξ=ζ+1. First we take the (unique) tree T ∗ξ of true height α(T ∗ξ )=
α(Tζ) + ω such that T ∗ξ ∩ α(Tζ)>2 = Tζ and: if α(Tζ) ∈ S0 and να(Tζ) 6∈
rang(fζ) then (T ∗ξ )[α(Tζ)] = limα(Tζ)(Tζ) \ {να(Tζ)}, otherwise (T ∗ξ )[α(Tζ)] =
limα(Tζ)(Tζ).

Let Tξ ∈ Q ∩ ˜I be strictly above T ∗ξ (exists by 1.7.2). Clearly we may
choose such Tξ in B. Now we have to define fξ. We do it by 1.4, but addi-
tionally we require that

if η ∈ Tξ then (∃% ∈ Tξ)(% C fξ(η) & T 
Q “% ∈ ˜A”).

Plainly the additional requirement causes no problems (remember the defi-
nition of ˜I and the choice of Tξ) and the choice can be done in B.

There are no difficulties in carrying out the induction. Finally we let

Tµ :=
⋃
ξ<µ

Tξ and fµ =
⋃
ξ<µ

fξ.

By the choice of B and µ we are sure that Tµ is a µ-tree. It follows from
1.5(1) that (Tµ, fµ) ∈ Q∗, so in particular the tree Tµ has enough µ branches
(and belongs to Q).

Claim 1.7.3. For every % ∈ limµ(Tµ) there is ξ < µ such that

(∃β < α(Tξ+1))(Tξ+1 
Q “%�β ∈ ˜A”).

P r o o f. Fix % ∈ limµ(Tµ) and let

S∗ν := {δ ∈ S0 ∩ µ : α(Tδ) = δ and νδ = %�δ}.
Plainly, the set S∗ν is stationary in µ (remember the choice of ν). By the
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definition of the Tξ’s (and by % ∈ limµ(Tµ)) we conclude that for every
δ ∈ S∗ν ,

if ηδ(Tδ+1) is defined then %�δ 6= ηδ(Tµ) = ηδ(Tδ+1).

But %�δ = νδ (as δ ∈ S∗ν). So look at the inductive definition: necessarily for
some %∗δ ∈Tδ we have νδ = fδ(%∗δ), i.e. %�δ= fδ(%∗δ). Now, %∗δ ∈Tδ =

⋃
ξ<δ Tξ

and hence for some ξ(δ) < δ, we have %∗δ ∈ Tξ(δ). By Fodor’s lemma we find
ξ∗ < µ such that the set

S′ν := {δ ∈ S∗ν : ξ(δ) = ξ∗}
is stationary in µ. Consequently, we find %∗ such that the set

S+
ν := {δ ∈ S′ν : %∗ = %∗δ}

is stationary (in µ). But the sequence 〈fξ(%∗) : ξ∗ ≤ ξ < µ〉 is E-increasing,
and hence the sequence % is its limit. Now we easily obtain the claim using
the inductive definition of the (Tξ, fξ)’s.

It follows from the definition of ˜A and 1.7.3 that

Tµ 
Q “˜A ⊆ Tµ”

(remember that ˜A is a name for an antichain of ˜T), and hence

Tµ 
Q “‖˜A‖ < λ”,

finishing the proof of the theorem.

Definition 1.8. A λ-tree T is S0-full, where S0 ⊆ λ, if for every limit
δ < λ,

• if δ ∈ λ \ S0 then T[δ] = limδ(T ),
• if δ ∈ S0 then ‖T[δ] \ limδ(T )‖ ≤ 1.

Corollary 1.9. Assuming Hypothesis 1.2:

(1) The forcing notion Q preserves cardinal numbers, cofinalities and
cardinal arithmetic.

(2) 
Q “˜T ⊆ λ>2 is a λ-Suslin tree which is full and even S0-full”. [So,
in VQ, in particular we have: for every α < β < µ, for all η ∈ T ∩ α2 there
is ν ∈ T ∩β2 such that η C ν, and for a limit ordinal δ < λ, limδ(T[<δ])\T[δ]

is either empty or has a unique element (and then δ ∈ S0).]

P r o o f. By 1.5 and 1.7.

Of course, we do not need to force.

Definition 1.10. Let S0, S ⊆ λ. A sequence 〈(Cα, να) : α < λ limit〉 is
called a squared diamond sequence for (S, S0) if for each limit ordinal α < λ,

(i) Cα is a club of α disjoint from S,
(ii) να ∈ α2,
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(iii) if β ∈ acc(Cα) then Cβ = Cα ∩ β and νβ C να,
(iv) if µ ∈ S then 〈να : α ∈ Cµ ∩ S0〉 is a diamond sequence.

Proposition 1.11. Assume (in addition to 1.2)

(e) there exists a squared diamond sequence for (S, S0).

Then there is a λ-Suslin tree T ⊆ λ>2 which is S0-full.

P r o o f. Look carefully at the proof of 1.7.

Corollary 1.12. Assume that V = L and λ is Mahlo strongly inacces-
sible. Then there is a full λ-Suslin tree.

P r o o f. Let S ⊆ {µ < λ : µ is strongly inaccessible} be a stationary
non-reflecting set. By Beller and Litman [BeLi80], there is a square 〈Cδ :
δ < λ limit〉 such that Cδ ∩ S = ∅ for each limit δ < λ. As in Abraham,
Shelah and Solovay [AShS 221, §1] we can also have the squared diamond
sequence.
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