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0. Introduction. In the present paper we answer a combinatorial ques-
tion of Kunen listed in Arnie Miller’'s Problem List. We force, e.g. for the
first strongly inaccessible Mahlo cardinal A, a full (see 1.1(2)) A-Suslin tree
and we remark that the existence of such trees follows from V = L (if A is
Mahlo strongly inaccessible). This answers [Mi91, Problem 15.13].

Our notation is rather standard and compatible with those of classical
textbooks on Set Theory. However, in forcing considerations, we keep the
older tradition that

a stronger condition is the larger one.
We will keep the following conventions concerning use of symbols.

NoTATION 0.1. (1) A, p will denote cardinal numbers and «, 3,7, 6,&, ¢
will be used to denote ordinals.

(2) Sequences (not necessarily finite) of ordinals are denoted by v, 1, o
(with possible indices).

(3) The length of a sequence 7 is 1g(n).

(4) For a sequence n and an ordinal o < 1g(n), nla is the restriction of
the sequence n to « (so lg(nla) = «). If a sequence v is a proper initial
segment of a sequence 7 then we write v < 17 (and v < 1 has the obvious
meaning).

(5) A tilde indicates that we are dealing with a name for an object in
forcing extension (like ).

1. Full A\-Suslin trees. A subset T of 2 is an a-tree whenever (« is
a limit ordinal and) the following three conditions are satisfied:

e YeT, ifvaneT thenveTl,

e 1 € T implies n(0),n (1) € T, and
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e for every n € T and 8 < « such that 1g(n) < § there is v € T such
that n < v and 1g(n) = G.

A \-Suslin tree is a A-tree T C *>2 in which every antichain is of size
less than A.

DEFINITION 1.1. (1) For a tree ' C ®*2 and an ordinal § < « we let
Tisy:=TNP2 and Tep :=TN"2.
If § < o is limit then we define

limsTiog) = {n € °2: (V8 < 6)(n1 € T)}.
(2) An a-tree T'is full if for every limit ordinal 0 < a the set lims(7j<4)) \
Tis) has at most one element.
(3) An a-tree T' C *>2 has true height « if for every n € T there is v € *2
such that

n<v and (VB<a)(v[feT).
We will show that the existence of full A-Suslin trees is consistent as-
suming the cardinal X\ satisfies the following hypothesis.

HYPOTHESIS 1.2. (a) A is a strongly inaccessible (Mahlo) cardinal,

(b) S C {u < A : pis a strongly inaccessible cardinal} is a stationary
set,

(c) So C \is a set of limit ordinals,

(d) for every cardinal p € S, $g,ny holds true.

Further in this section we will assume that A, Sy and S are as above and
we may forget to repeat these assumptions.

Let us recall that the diamond principle {s,n, postulates the existence
of a sequence 7 = (v5 : 6 € Sy N p) (called a $g,ny-sequence) such that
vs €92 (for § € Sp N ) and

(Vv € #2)[the set {6 € Sy Np:v[§ = s} is stationary in p).

Now we introduce a forcing notion Q and its relative Q* which will be
used in our proof.

DEFINITION 1.3. (1) A condition in Q is a tree T C **2 of a true
height @ = a(T) < X (see 1.1(3); so « is a limit ordinal) such that
[lims(Ti<s)) \ Tig)ll < 1 for every limit ordinal 6 < «; the order on Q is
defined by 17 < T5 if and only if T7 = T n(T)>9 (so it is the end-extension
order).

(2) For a condition T' € Q and a limit ordinal § < «a(T), let ns(T") be the
unique member of lims(Tj4)) \ Tis if there is one, otherwise ns(71") is not
defined.

(3) Let T' € Q. A function f : T — limy(y(T) is called a witness for T

if (VneT)(n< f(n)).
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(4) A condition in Q* is a pair (T, f) such that T € Q and f : T —
limg,(7)(7T') is a witness for T'; the order on Q* is defined by (11, f1) < (T2, f2)
if and only if T} <@ T> and (Vn € T1)(f1(n) < f2(n)).

ProposITION 1.4. (1) If (11, f1) € Q*, Th <@ T> and
(%) either no(r,)(12) is not defined or it does not belong to rang(f1)

then there is fo : To — lima(TQ)(Tg) such that (T1, f1) < (1o, f2) € Q*.
(2) For every T € Q there is a witness f for T.

Proof. Should be clear. =

PROPOSITION 1.5. (1) The forcing notion Q* is (< X)-complete, in fact
any increasing chain of length < X has the least upper bound in Q.

(2) The forcing notion Q is strategically y-complete for each v < \.

(3) Forcing with Q adds no new sequences of length < A. Since |Q[| = A,
forcing with Q preserves cardinal numbers, cofinalities and cardinal arith-
metic.

Proof. (1) It is straightforward: suppose that ((T¢, f¢) : ¢ < &) is an
increasing sequence of elements of Q*. Clearly we may assume that & < A
is a limit ordinal and (1 < (2 < & = a(Ty,) < a(Te,). Let Te = U, T¢
and o = sup;.¢ a(T¢). Clearly, the union is increasing and T¢ is a full
a-tree. For n € T¢ let (y(n) be the first ¢ < & such that n € Ty and let
fe(m) = U{fc(n) : ¢o(n) < ¢ < &}. By the definition of the order on Q*
we see that the sequence (f¢(n) : (o(n) < ¢ < ) is <-increasing and hence
fe(n) € lim, (T¢). Plainly, the function fe witnesses that T has true height
a, and thus (T, fe) € Q*. It should be clear that (T, f¢) is the least upper
bound of the sequence ((T¢, f¢) : ¢ < &).

(2) For our purpose it is enough to show that for each ordinal v < A and
a condition T" € QQ the second player has a winning strategy in the following
game G- (T,Q). (Also we can let Player I choose T¢ for £ odd.)

The game lasts v moves and during a play the players, called I and II,
choose successively open dense subsets D, of Q and conditions T: € Q. At
stage £ < v of the game, Player I chooses an open dense subset D¢ of Q and
Player II answers playing a condition Ty € Q such that

T <o Tg, (VC < ‘5)(TC <o Tg), and Tg S 'Dg.

The second player wins if he always has legal moves during the play.

Let us describe the winning strategy for Player II. At each stage £ < ~
of the game he plays a condition T¢ and writes down a function f¢ such that
(Te, fe) € Q*. Moreover, he keeps an extra obligation that (7¢, f¢) <g-
(T¢, fe) for each ( < & < 7.

So arriving at a non-limit stage of the game he takes the condition
(T¢, f¢) he constructed before (or just (7, f), where f is a witness for T,
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if this is the first move; by 1.4(2) we can always find a witness). Then
he chooses T¢ >q T such that o(T}) = a(T¢) + w and (T¢) (1)) =
limg (7,) (T¢). Thus ne 1) (T7) is not defined. Now Player II takes T¢11 >q
Tg from the open dense set D¢y played by his opponent at this stage.
Clearly 71, )(T¢+1) is not defined, so Player II may use 1.4(1) to choose

fewr such that (T¢, fo) <q+ (Tetr, fera) € Q7

At a limit stage £ of the game, the second player may take the least
upper bound (T¢, f{) € Q* of the sequence ((T¢, f¢) : ¢ < &) (exists by (1))
and then apply the procedure described above.

(3) Follows from (2) above. m

DEFINITION 1.6. Let T be the canonical Q-name for a generic tree added
by forcing with Q:

b T =| J{T: T € Gq}.

It should be clear that T is (forced to be) a full A-tree. The main point
is to show that it is A-Suslin and this is done in the following theorem.

THEOREM 1.7. IFg “T is a A\-Suslin tree”.
Proof. Suppose that A is a Q-name such that
IFg “A C T is an antichain”,

and let Ty be a condition in Q. We will show that there are u < A and a
condition T € Q stronger than Ty such that 7™ I-q “A € T(.,;” (and thus
it forces that the size of A is less than ).

Let A be a Q-name such that

o “A={neT: (@ e A dn) or~(Gved)nav).

Clearly, IFg “A C T is dense open”.
Let x be a sufficiently large regular cardinal (37(A")™ is enough).

CrLam 1.7.1. There are p € S and B < (H(x), €, <}) such that:

(a‘) "iLévsa SO)Qa Q*)TO € %)
(b) [|B]| = p and *>B C B,
(c) BNA=pu.

Proof. First construct inductively an increasing continuous sequence
(B¢ : £ < A) of elementary submodels of (H(x), €, <;‘<) such that 4, A, S,
S0, Q,Q*, Ty € By and for every £ < A,

[Bel| = pe <A, BeNAe A, and “52%5 C Beys.
Note that for a club E of A, for every u € SN E we have
1Bl =p, “*B,CB,, and B,NA=u
Choose p € SN E and let B =B,.
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Let p € S and B < (H(X),€,<;) be given by 1.7.1. We know that
& sonp holds, so fix a $gyny-sequence 7 = (vs5 : 6 € So N p).
Let

T :={T € Q:T is incompatible (in Q) with Ty or:
T > Ty and T' decides the value of AN “T)>9 and
(VneT)(FoeT)nLo&TlFgoc A)}.

Cramm 1.7.2. T is a dense subset of Q.

Proof. Should be clear (remember 1.5(2)).

Now we choose by induction on ¢ < p a continuous increasing sequence
(Te, fe) - § <) CQ"NB.

STEP: ¢ = 0. Tj is already chosen and it belongs to Q NB. We take any
fo such that (To, fo) € Q* N'B (exists by 1.4(2)).

STEP: limit £. Since #~%B C B, the sequence ((T¢, f¢) : ¢ < &) is in B.
By 1.5(1) it has the least upper bound (¢, f¢) (which belongs to B).

STEP: {=(+1. First we take the (unique) tree T of true height a(7y)
a(T¢) + w such that Tg N AT)>2 = T, and: if o(T;) € Sy and Va(Ty)
rang(f¢) then (Tg*)[a(Tg)] = lima(TC)(TC) \ {VQ(TC)}, otherwise (Tg)[a(Tc)}
hma(TC) (T¢).

Let Te € QN Z be strictly above Ty (exists by 1.7.2). Clearly we may
choose such T¢ in 8. Now we have to define f.. We do it by 1.4, but addi-
tionally we require that

if neTe then (JoeTe)(o< fe(n) & Tlkg “poc A”).

Plainly the additional requirement causes no problems (remember the defi-
nition of Z and the choice of T¢) and the choice can be done in B.
There are no difficulties in carrying out the induction. Finally we let

T,:=|JTe and f, =] fe.
E<p E<p

By the choice of B and p we are sure that T}, is a p-tree. It follows from
1.5(1) that (T}, f.) € Q*, so in particular the tree T}, has enough p branches
(and belongs to Q).

CrAM 1.7.3. For every o € lim,(T},) there is & < p such that
(38 < a(Tesn))(Tes Iho “olf € A7),
Proof. Fix ¢ € lim,(7},) and let
Sri={0€SoNu:a(Ts) =39 and vs = o[d}.
Plainly, the set S} is stationary in p (remember the choice of 7). By the

I N
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definition of the T¢’s (and by ¢ € lim,(7),)) we conclude that for every
0eS;,
if ns(Ts41) is defined then 0[d # ns(Ty) = ns(Ts41)-

But o[d = vs (as § € S}). So look at the inductive definition: necessarily for
some g € Ts we have vs = fs(05), i.e. 0o[d= fs5(05). Now, o5 € Ts =, 5Tt
and hence for some £(6) < 0, we have g5 € T¢(5). By Fodor’s lemma we find
€* < p such that the set

S, = {0 € Sp 1 €(6) = €}
is stationary in p. Consequently, we find ¢* such that the set
S, ={d €5} :0" = 05}
is stationary (in p). But the sequence (fe(0*) : & < € < p) is <-increasing,

and hence the sequence g is its limit. Now we easily obtain the claim using
the inductive definition of the (T¢, f¢)’s.

It follows from the definition of A and 1.7.3 that
Ty o “4 - Tu”
(remember that A is a name for an antichain of T'), and hence
T, kg “Al < 3",
finishing the proof of the theorem. m

DEFINITION 1.8. A A-tree T is Sy-full, where Sy C A, if for every limit
O <A,

e if § € A\ Sp then T[(;] = limgs(7),

e if 6 € Sy then HT[é] \hma(T)H < 1.

COROLLARY 1.9. Assuming Hypothesis 1.2:

(1) The forcing notion Q preserves cardinal numbers, cofinalities and
cardinal arithmetic.

(2) Ikg “T C*>2 s a A\-Suslin tree which is full and even So-full”. [So,
in V@ in particular we have: for every o < 3 < p, for all € T N2 there

is v € TNP2 such that n < v, and for a limit ordinal § < \, lims (Ti<s1) \ T5)
is either empty or has a unique element (and then 6 € Sp).]

Proof By 1.5 and 1.7. m
Of course, we do not need to force.

DEFINITION 1.10. Let Sp, S C A. A sequence ((Cq, V) @ a < A limit) is
called a squared diamond sequence for (S, Sy) if for each limit ordinal o < A,

(i) C4 is a club of « disjoint from S,
(ii) va € @2,
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(iii) if B € acc(Cy) then Cg = Co N G and vg < vq,
(iv) if p € S then (v, : a € C\, N Sp) is a diamond sequence.

PROPOSITION 1.11. Assume (in addition to 1.2)

(e) there exists a squared diamond sequence for (S, Sp).
Then there is a A-Suslin tree T C *>2 which is So-full.

Proof. Look carefully at the proof of 1.7. m

COROLLARY 1.12. Assume that V = L and X\ is Mahlo strongly inacces-
sible. Then there is a full A-Suslin tree.

Proof. Let S C {u < X : p is strongly inaccessible} be a stationary
non-reflecting set. By Beller and Litman [BeLi80], there is a square (Cj :
0 < A limit) such that C5 NS = 0 for each limit § < A. As in Abraham,
Shelah and Solovay [AShS 221, §1] we can also have the squared diamond
sequence. m
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