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UNIFORM BOUNDARY STABILIZATION OF A THERMOELASTIC
BAR WITH A NONLINEAR WEAK DAMPING

BY
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1. Introduction. In this paper we shall prove exponential decay of the
energy of a one-dimensional homogeneous thermoelastic bar of unit length.
Let u be the displacement and 6 be the temperature deviation from the refer-
ence temperature. Then u and 6 satisfy the following linear one-dimensional
thermoelastic system:

(11) Ut — Ugpy + b@m =0 in (07 1) X (O, OO),

(12) Ht — me =+ bumt = 0 in (07 1) X (O, OO),

with initial conditions

(1.3) u(z,0) =ugp(z), u(0,2) =ui(z), 0(0,z)=~0y(x),

where b # 0 is a real number.
We assume that u and 6 satisfy the boundary conditions

(1.4) 0(0,t) =0(1,t)=0, t>0,
(1.5) u(0,t) =0, wuy(1,t) = —g(u(1,t)), ¢>0.

Since the pioneering work of Dafermos [5] on linear thermoelasticity,
significant progress has been made on the mathematical aspect of thermoe-
lasticity (see [2, 4, 6, 7, 9-11, 14-19] among others). Most studies focused on
the existence, regularity, and asymptotic behavior of solutions. More pre-

cisely, Dafermos [5] has shown that if (ug,u1,6p) € H* x L? x L?, then the
energy function of the system defined as

(1.6) E(t) = llua|* + uell* + [16]?

converges to zero as time goes to infinity. However, no decay rate was given.
In 1981, Slemrod [19] used the energy method to prove that for the system
(1.1)—(1.3) if u, @ satisfy Dirichlet and Neumann boundary conditions at
both ends and if (ug,ui,0g) € H? x H' x H? satisfy the compatibility
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conditions, then there are positive constants M and « such that

(L7) e @) + e @)1 + e (@)1 + luoe (@)1 + lluee (@)1
OO + 10 + 162D + (102 ()]

< M(Jluoll7 + luallFn + ll6ol72)e ™", >0,

where || - || denotes the L? norm in (0,1) and H* is the usual Sobolev space.

In 1992, Munoz Rivera [15] proved that the estimate (1.7) still holds if u
and € both satisfy the Dirichlet boundary condition at both ends (clamped,
constant temperature). The problem of establishing an energy estimate of
the form

(1.8) E(t) < ME(0)e™®, VWVt >0,

has remained open for some time now.

When u and @ satisfy the Dirichlet and Neumann boundary conditions,
respectively (or vice versa), Hansen [7] in 1992 succeeded in establishing
(1.8) using the Fourier series expansion method and a decoupling technique.
We refer to Gibson—Rosen—Tao [6] for another approach, a combination of
semigroup theory and the energy method. When u and 6 both satisfy the
Dirichlet boundary conditions, Kim [11] and Liu—Zheng [14] independently
proved that the estimate (1.8) still holds. The methods of these two papers
are quite different. Kim’s method is based on a control theory approach and
a unique continuation theorem by Lions. In [14], Liu-Zheng used a spectral
theorem due to Huang [8].

Quite recently, in 1996, Ammar Khodja—Benabdallah—Teniou [3] proved
that if the function g appearing in (1.5) is linear, then (1.8) still holds. They
used the method based on the construction of energy functionals developed
by Komornik—Zuazua [13]. However, their result has a serious drawback from
the point of view of physical applications: the feedback g(z) = z is never
bounded. Motivated by this problem, we are interested here in the decay
property of the solutions of the problem (1.1)—(1.5) with g(z) such that

(1.9) —00 < xll}I_noo g(z) < xll}ngo g(x) < oo.

If g satisfies at most (1.9) the dissipative effect by g(u;) is weak as |u| is
large and for convenience we call such a term weak dissipation.

Hereafter, we consider the most typical example g(z) = z/v1+ 22,
which is increasing, globally Lipschitz continuous, satisfies zg(x) > 0 for
all z € R, and lim,_, 1 g(z) = £1.

In this paper we shall prove that (1.8) still holds for solutions of
(1.1)—(1.5). Our main tool is an integral inequality, combined with a multi-
plier technique.
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The paper is organized as follows. In Section 2, we state the main theo-
rem. In Section 3, we give the proof of the main result.

2. Statement of the main theorem. First, let us introduce some
notations. We denote by (2 the interval (0,1), and

(2.1) Hp (2) ={ue H'(£2) : u(0,t) = 0},
(2.2) Hy(02) = {uec HY(N) : u(0,t) = u(1,t) = 0}.

The problem (1.1)—(1.5) is well-posed and dissipative. Indeed, we can write
it in the first order form

(2.3) U + AU =0,

(2.4) U(0) = Uy,

where U = (u,u¢,0), Uy = (up,u1,0p) and the operator A is given by
(2.5) A(u,ug, 0) = (—ug, —Ugy + 005, —0pp + buys),

(2.6)  D(A) = {(u,us,0) € Hp, x L* x L? : uy, € L, uy € Hp,,
0 c H>NHY, uy(1,t) = —g(u(1,1))}.

For all given initial data (ug,u1,00) € H}, x L? x L?, by the standard
semigroup theory, there exists a unique weak solution (u, ) such that

(2.7) u e C(Ry, Hp, (2)) N CHRy, L (12)),
(2.8) 0 € C(Ry, L*(12)).

Moreover, if (ug,u1,00) € D(A) then we have the following regularity prop-
erty:

(2.9) ue C(Ry,H*NHp)NC Ry, H) N C*(Ry, L),
(2.10) 6cCRy, H*NH) NCYHR,, L?);

we say in this case that (u, ) is a strong solution.
We define the energy of the solutions by the formula

(2.11) E(t) = % V(uf +u2 +62) da.
2

If (u, ) is a strong solution, then we have by a simple computation
(2.12) (1) = —{ 02 do + (1, 0)g(ue (1,6)) } <0,
Q

and for all 0 < S < T < o0,

T T
(2.13) E(S)— E(T) =\ \ 02 dwdt + | u,(1,t)g(us (1,1)) dt.
S 2 S
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This identity remains valid for all mild solutions by an easy density ar-
gument. Hence, the energy is non-increasing and our main result is the
following

MAIN THEOREM. There exist two constants M > 0, w > 0 such that
(2.14) E(t) < ME(0)e ", Vt>0,
for all initial data (ug,u1,6p) € D(A).

For the proof, we need the following lemma.

LeMMA 2.1 ([12], Lemma 8.1). Let E : Ry — Ry be a non-increasing

function and assume that there exists a constant T > 0 such that
o0

(2.15) | E(s)ds <TE(t), VteR,.
t

Then

(2.16) E(t) < E0)e YT, Vt>T.

3. Proof of the main theorem. From now on we denote by c¢ various
positive constants which may be different at different occurrences.

First, we multiply the equation (1.1) with v and integrate over (0,7") to
obtain

T
0= S S(uttu — Ugpt + b0 u) do dt
00

T T
uut}o —X uf—i-xxui
0 00

Hence . i . .
[ §uf+u2+06%) = - Huut] +2( ud + {107 — bo,u)
0 2 0N 0N
T
— Vu(1,t)g(u, (1,1)) dt.
0
That is,
(3.1) 2| E@t)dt = — guutr+2§§u$+§§(a2—wxu)
0 2 0 0



BOUNDARY STABILIZATION 67

Next, we multiply (1.1) with 2zu, and integrate over (0,7") to obtain

(3.2) 0= S S(?xuxutt — 20Uy Uy + 2bxu,0,) do dt
00
—_—
= { S 2xuxut} . S S(qutum + 2zUp Uy, ) dx dt
17, 0

T
+ 2b S S UL
00

Since we have

S(Q:cututz + 22U Uy ) = S(:c(u?)r — Uy (22Uy) ) do + [22u2]}
2 2

=Vl 4+ u}) do +uf (1,8) + u2(1,1),
2

we conclude from (3.2) that

T T
(33) 0= [(S}Qmurut]j + (S) (S) u? +u?) dxdt + 2b (S) (S):cuxHI dx dt

— V@i, 1) + g?(ue(1, 1)) dt.
0

Hence the relations (3.1)—(3.3) give

T o T T
QSE(t)dtg“(uut—i—élxuxut]T—i—Sx — bl,u) 4b§§x
0 Q 00 00
T
+ 1 (20° (ue(1,1)) — u(1,1)g(ue(1,1)) + 2u7 (1,1)) dt.
0

Now we want to majorize the right hand side of the above inequality.
We have

(3.4)

S(uut—i—élxuxut Su2+8ut+48ui+4gu?§cE(O),
2 2 2 2
S — bub,) S 02 + eu® + c(e)02) dx
Q Q
< c(e) S 02 dx + cs X u? dr < —c(e)E’ + ccE(0)
2 2

and hence
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T T
(3.5) | 1 (0% — b0,u) dz dt < c(e)E(0) + c= | E(t) dt,
0 0

T T T
(3.6) ‘4b§§xux0 dx(genu dedt + c(e) | | 02 da dt
0N 0N 0N
T
<e | E(t)dt + c(e) E(0),
0
and finally,
(3.7) |—u(1,8)g(us (1,6))] < eu®(1,8) + e(e)g? (ue(1,1))
<e\uldr+c(e)g®(w(1,1)
2

< 2eB(t) + c(e)g* (ug(1,1)).
We deduce from (3.4)—(3.7) that

38)  (2—ce) :E t)dt < c(e)E(0) + c(s)g(uf(l,t) + g% (uy(1,1))) dt.
As the function g(z) = x/v/1 + 22 satisfies

(3.9) %m <lg@) <lal if el <1,

(3.10) 7 <lg@)l <o if Ja| > 1,

we conclude from (3.8) th
T T

(3.11) (2—ce) | E(t)dt < c(e)E(0) + c(e) | uf(1,1) dt.
0 0

If |us(1,¢)] <1, then from (3.9) and (3.11) we obtain

T T
(2 — ce) S E(t)dt < c(e)E(0) + c(e) S ug(1,8)g(ue(1,¢)) dt

< ¢(e)E(0).

Choosing € = 1/¢, we obtain the desired result by applying Lemma 2.1.
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If |us(1,¢)| > 1, then from the trace theorem H'(§2) — C(£2) — L>(I")

and (3.10) we obtain

T T
(2—ce) | E(t)dt < c(e)E(0) + [[ullsoc(e) | uegluy) dt
0 0
< c(e) E(0),
and hence, the choice ¢ = 1/¢ with Lemma 2.1 yields the desired decay
estimate.
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