
COLLOQU IUM MATHEMAT ICUM
VOL. 79 1999 NO. 1

GEOMETRY OF MODULES
OVER TAME QUASI-TILTED ALGEBRAS

BY

GRZEGORZ BOBI ŃSK I AND ANDRZEJ SKOWROŃSKI (TORUŃ)

Introduction. The class of finite-dimensional algebras (associative, with
an identity) over an algebraically closed field K may be divided into two dis-
joint classes (see [10], [11]). One class consists of tame algebras for which
the indecomposable modules occur, in each dimension, in a finite number of
discrete and a finite number of one-parameter families. The second class is
formed by the wild algebras whose representation theory is as complicated
as the study of finite-dimensional vector spaces together with two noncom-
muting endomorphisms, for which the classification up to isomorphism is a
well-known unsolved problem. Hence, we can realistically hope to describe
modules only for tame algebras. Given a finite-dimensional algebra over K,
it is an interesting task to study its associated affine varieties of modules
of fixed dimension-vectors and the actions of the corresponding products
of general linear groups (see [5]–[9], [13], [17], [19]–[21], [23], [26], [27], [31],
[33] for some results in this direction). For example, we may ask when these
affine varieties are irreducible, smooth, complete intersections, Gorenstein,
Cohen–Macaulay, normal, etc.

An important role in recent investigations of finite-dimensional algebras
is played by quasi-tilted algebras. It is the class of algebras of the form A =
EndH(T ), where T is a tilting object in a hereditary abelian K-category H.
It was shown in [15] that an algebra A is quasi-tilted if and only if A is of
global dimension at most two and each indecomposable finite-dimensional
A-module has projective dimension at most one or injective dimension at
most one. Important classes of quasi-tilted algebras are provided by all tilted
algebras, tubular algebras, canonical algebras [28] and their relatives. The
structure of an arbitrary quasi-tilted algebra is not yet known. However, the
class of tame quasi-tilted algebras has been described recently by the second
named author in [30]. In particular, one knows that the dimension-vector
of an indecomposable module over a tame quasi-tilted algebra is either a
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root or a radical vector of the associated Euler (equivalently, Tits) integral
quadratic form.

The main aim of this paper is to describe the geometry of modules
over tame quasi-tilted algebras whose dimension-vectors are the dimension-
vectors of the indecomposable modules. The geometry of module varieties
in the dimension-vectors of directing modules over tame algebras has been
described in our paper [3]. In the present paper we deal with modules whose
dimension-vectors are the dimension-vectors of nondirecting modules over
tame quasi-tilted algebras.

The paper is organized as follows. In Section 1 we present our main
results and recall the related background. Section 2 contains some results
on the module categories of tame quasi-tilted algebras. Section 3 is de-
voted to some geometric preliminary results on affine varieties of modules.
In Sections 4 and 5 we study the geometry of module varieties of tame
quasi-tilted algebras in the dimension-vectors of indecomposable modules
lying in stable tubes and nonstable tubes of the associated Auslander–
Reiten quiver. In Section 6 we sum up the considerations of the previ-
ous sections to get the proofs of the main results. The final Section 7
contains examples illustrating different cases appearing in our considera-
tions.

1. The main results and related background. Throughout the pa-
per K will denote a fixed algebraically closed field. By an algebra is meant
an associative finite-dimensional K-algebra with an identity, which we shall
assume (without loss of generality) to be basic and connected. For such an
algebra A, there exists an isomorphism A ' KQ/I, where KQ is the path
algebra of the Gabriel quiver Q = QA of A and I is an admissible ideal of
KQ, generated by a (finite) system of forms

∑
1≤j≤t λjαmj ,j . . . α1,j (called

K-linear relations), where λ1, . . . , λt are elements ofK and αmj ,j . . . α1,j , 1 ≤
j ≤ t, are paths of length ≥ 2 in Q having a common source and a common
end. Denote by Q0 the set of vertices of Q, by Q1 the set of arrows of Q, and
by s, e : Q1 → Q0 the maps which assign to each arrow α ∈ Q1 its source s(α)
and its end e(α). The category modA of all finite-dimensional (over K) left
A-modules is equivalent to the category repK(Q, I) of all finite-dimensional
K-linear representations V = (Vi, ϕα)i∈Q0,α∈Q1 of Q, where Vi, i ∈ Q0,
are finite-dimensional K-vector spaces and ϕα : Vs(α) → Ve(α), α ∈ Q1,
are K-linear maps satisfying the equations

∑
1≤j≤t λjϕαmj,j . . . ϕα1,j = 0 for

all K-linear relations
∑

1≤j≤t λjαmj ,j . . . α1,j ∈ I (see [14, Section 4] for de-
tails). We shall identify modA with repK(Q, I) and call the finite-dimensional
left A-modules briefly A-modules. The Grothendieck group K0(A) of A is
then identified with the group ZQ0 , and we may assign to each A-module
V = (Vi, ϕα) its dimension-vector dimV = (dimK Vi)i∈Q0 .
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Moreover, we denote by ΓA the Auslander–Reiten quiver of A, and by τA
and τ−A the Auslander–Reiten translations D Tr and Tr D, respectively. We
shall not distinguish between an indecomposable A-module and the vertex
of ΓA corresponding to it. A component in ΓA of the form ZA∞/(τ r), r ≥ 1,
is said to be a stable tube (of rank r). We refer to [2] for basic background
on the Auslander–Reiten theory. Finally, following [11], an algebra A is
said to be tame if, for any dimension d, there exist a finite number of A-
K[X]-bimodules Mi, 1 ≤ i ≤ nd, which are finite rank free right modules
over the polynomial algebra K[X] in one variable and all but finitely many
isomorphism classes of indecomposable A-modules of dimension d are of the
form Mi ⊗K[X] K[X]/(X − λ) for some λ ∈ K and some i.

Fix now a vector d = (di) ∈ K0(A) = ZQ0 with nonnegative coordinates.
Denote by modA(d) the set of all representations V = (Vi, ϕi) in repK(Q, I)
with Vi = Kdi for all i ∈ Q0. A representation V in modA(d) is given
by de(α) × ds(α)-matrices V (α) determining the maps ϕα : Ks(α) → Ke(α),
α ∈ Q1, in the canonical bases of Kdi , i ∈ Q0. Moreover, the matrices V (α),
α ∈ Q1, satisfy the equations∑

1≤j≤t

λjV (αmj ,j) . . . V (α1,j) = 0

for all K-linear relations
∑

1≤j≤t λjαmj ,j . . . α1,j ∈ I. Therefore, modA(d)
is a closed subset of

∏
α∈Q1

Kde(α)×ds(α) in the Zariski topology, and so
modA(d) is an affine variety. We note that modA(d) is not necessarily irre-
ducible. Clearly, it is the case when I = 0. The affine (reductive) algebraic
group G(d) =

∏
i∈Q0

Gldi
(K) acts on the variety modA(d) by conjugation:

(gV )(α) = ge(α)V (α)g−1
s(α)

for g = (gi) ∈ G(d), V ∈ modA(d), α ∈ Q1. We shall identify an A-module V
of dimension-vector d with the corresponding point of the variety modA(d).
The G(d)-orbit G(d)M of a module M in modA(d) will be denoted by
O(M). Observe that two A-modules M and N are isomorphic if and only if
O(M) = O(N).

For M,N ∈ modA(d), we say that N is a degeneration of M if N belongs
to the Zariski closure O(M) of O(M) in modA(d). If N ∈ O(M) implies
O(N) = O(M), then the orbit O(N) is said to be maximal . Clearly, an
orbit in modA(d) of maximal dimension is maximal, but the converse is not
true in general. It is known that the union of all G(d)-orbits in modA(d) of
maximal dimension is an open subset of modA(d), called its open sheet (see
[19], [20]).

Assume now that A = KQ/I is of finite global dimension. Then there is
a (nonsymmetric) bilinear form 〈−,−〉A on K0(A) such that
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〈dimM,dimN〉A =
∞∑
i=0

(−1)i dimK Exti
A(M,N)

for all A-modules M , N (see [28, 2.4]). Then the corresponding quadratic
form χA(x) = 〈x,x〉A, x ∈ K0(A), is called the Euler form of A. If A is
triangular (Q has no oriented cycles), we may also consider the Tits form
qA of A, defined for x = (xi) ∈ ZQ0 = K0(A) as follows:

qA(x) =
∑
i∈Q0

x2
i −

∑
α∈Q1

xs(α)xe(α) +
∑

i,j∈Q0

rijxixj

where rij is the number of K-linear relations with source i and end j in a
minimal set R of K-linear relations generating the ideal I. If gl.dimA ≤ 2
then qA coincides with χA (see [4]). Moreover, we set

a(x) =
∑

α∈Q1

xs(α)xe(α) −
∑

i,j∈Q0

rijxixj

for x = (xi) ∈ ZQ0 . We note that all quasi-tilted algebras A are triangu-
lar of global dimension at most 2, and so the forms χA, qA are defined,
and in fact they coincide. A vector d ∈ ZQ0 is called connected if the full
subquiver of Q given by its support supp(d) = {i ∈ Q0 : di 6= 0} is con-
nected. Moreover, we say that d is positive if d is nonzero and di ≥ 0 for all
i ∈ Q0.

We can now state the main results of the paper.

Theorem 1. Let A be a tame quasi-tilted algebra and d the dimension-
vector of an indecomposable A-module. Then

(i) modA(d) is a complete intersection of dimension a(d) and has at
most two irreducible components.

(ii) The maximal G(d)-orbits in modA(d) consist of nonsingular mod-
ules.

In fact, in the course of our proofs and in [3] we describe completely
all irreducible components and maximal G(d)-orbits in the considered va-
rieties modA(d). We also note that, if the support algebra of d is not a
hereditary algebra, then the semisimple module of dimension-vector d is a
singular point of modA(d), and consequently modA(d) is not smooth (see
[5, Proposition 1]).

Theorem 2. Let A be a tame quasi-tilted algebra and d the dimension-
vector of an indecomposable A-module. Then the following conditions are
equivalent:

(i) modA(d) is irreducible.
(ii) modA(d) is normal.
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(iii) d is not one of the following forms:

(a) d = h+z, where h, z are connected positive vectors with disjoint
supports, χA(h) = 0, χA(z) = 1 and zi ≤ 1 for any i ∈ Q0.

(b) d = h + h′, where h, h′ are connected positive vectors with
χA(h) = 0, χA(h′) = 0, 〈h,h′〉A = 1, 〈h′,h〉A = 0.

We also get the following consequences of the above theorems and their
proofs.

Corollary 3. Let A be a tame quasi-tilted algebra and d the dimension-
vector of an indecomposable A-module lying in a stable tube of ΓA. Then
modA(d) is irreducible, complete intersection and normal. In particular , this
holds for any positive connected vector d ∈ K0(A) with χA(d) = 0.

Corollary 4. Let A be a tame quasi-tilted algebra. The following con-
ditions are equivalent :

(i) A is tilted , all tubes in ΓA are stable and , for any nonisomorphic inde-
composable τA-invariant A-modules H1 and H2, either dimK HomA(H1,H2)
6= 1 or dimK Ext1A(H2,H1) 6= dimK Ext2A(H2,H1).

(ii) For any indecomposable A-module M , modA(dimM) is irreducible.
(iii) For any indecomposable A-module M , modA(dimM) is normal.
(iv) For any indecomposable A-module M , modA(dimM) is irreducible,

complete intersection and normal.

Finally, we also get the following geometric characterization of tame
quasi-tilted algebras.

Corollary 5. A quasi-tilted algebra A is tame if and only if every
indecomposable A-module M belongs to the open sheet of modA(dimM).

2. Tame quasi-tilted algebras. In this section we recall some facts on
tame quasi-tilted algebras and their module categories, needed in the proofs
of our main results. For details we refer to [15], [18], [24], [25], [28], [30].

2.1. Following [15] an algebra A is said to be quasi-tilted if gl.dimA ≤ 2
and, for any indecomposable A-module X, either pdAX ≤ 1 or idAX ≤ 1.

One important class of quasi-tilted algebras is formed by the tilted al-
gebras, that is, the algebras of the form EndH(T ), where H is a hereditary
algebra and T is a tilting H-module [28]. The structure of module cate-
gories over tame tilted algebras has been described in [18]. In particular, we
know that the Auslander–Reiten quiver ΓB of a tame tilted algebra B con-
sists of a connecting component, a finite number of P1(K)-families of ray
tubes, coray tubes, and a finite number of preprojective components and
preinjective components.
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We now describe the second important class of tame quasi-tilted algebras.
Let C be a tame concealed algebra and T = (Tλ)λ∈P1(K) be the unique
P1(K)-family of stable tubes in ΓC [28, 4.3]. Following [30], by a semiregular
branch enlargement of C we mean an algebra of the form

Λ =

F M 0
0 C D(N)
0 0 B


where

Λ+ =
[
F M
0 C

]
(respectively, Λ− =

[
C D(N)
0 B

]
)

is a tubular extension (respectively, tubular coextension) of C in the sense
of [28, 4.7], and no tube in T admits both a direct summand of M and a
direct summand of N . It is known that such an algebra Λ is quasi-tilted.
Moreover, Λ is tame if and only if both Λ+ and Λ− are tame, or equivalently
are tubular algebras or tilted algebras of Euclidean type (see [1], [28]).

2.2. The following characterization of tame quasi-tilted algebras has been
established in [30, Theorem A].

Theorem. Let A be a quasi-tilted algebra. The following conditions are
equivalent :

(i) A is tame.
(ii) A is tame tilted or a tame semiregular branch enlargement of a tame

concealed algebra.
(iii) χA is weakly nonnegative.
(iv) dimK Ext1A(X,X) ≤ dimK EndA(X) for any indecomposable A-mo-

dule X.

Recall that χA is called weakly nonnegative if χA(x) ≥ 0 for any positive
vector x ∈ K0(A). We also note that every representation-finite quasi-tilted
algebra is tilted [15, II.3.6].

2.3. As a direct consequence of the above theorem, [18, Section 4, 6.2],
[28, 2.4(8), 4.9, 5.2], and arguments applied in the proof of [24, 2.1] one gets
the following proposition.

Proposition. Let A be a quasi-tilted algebra. Then A is tame if and
only if χA controls the category modA, that is, has the following properties:

(i) For any indecomposable A-module X, χA(dimX) ∈ {0, 1}.
(ii) For any connected positive vector d ∈ K0(A) with χA(d) = 1 there is

a unique (up to isomorphism) indecomposable A-module X with dimX = d.
(iii) For any connected positive vector d ∈ K0(A) with χA(d) = 0, there

is an infinite family (Xλ)λ∈Λ of pairwise nonisomorphic indecomposable A-
modules with dimXλ = d for any λ.
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2.4. Sometimes it is convenient to consider an algebra A = KQ/I as
a finite K-category whose objects are the vertices of Q, and, for any two
vertices x, y ∈ Q0, the space of morphisms from x to y is the quotient space
of the K-vector space KQ(x, y) of all K-linear combinations of paths in Q
from x to y by the subspace I(x, y) = I ∩KQ(x, y). A full subcategory C
of A is said to be convex (in A) if, for any path a0 → a1 → . . .→ at with a0

and at in C, all vertices ai, 0 ≤ i ≤ t, belong to C. Clearly, if C is a convex
subcategory of A, we may identify modC with the full subcategory of modA

given by all representations with support contained in C. Moreover, if A
is triangular and C is a convex subcategory of A, then χC and qC are the
restrictions of χA and qA to K0(C).

By the support supp(M) of an A-module M we mean the support of its
dimension-vector. If supp(M) = A then the module M is said to be sincere.

Following [28] an indecomposable A-module M is said to be directing if it
does not belong to a cycle M →M1 → . . .Mr →M of nonzero nonisomor-
phisms between indecomposable A-modules. Examples of directing modules
are provided by indecomposable preprojective and preinjective modules. Fol-
lowing [3] a directing module which is neither preprojective nor preinjective
is said to be internal .

We end this section with the following consequences of Theorem 2.2, [18,
Section 4, 6.2], [24], [28, 4.9, 5.2, p. 375] and the fact that the support of
any directing module is convex [4, 3.2].

Corollary. Let A be a tame quasi-tilted algebra and M an indecom-
posable A-module. Then there is a convex subcategory B of A such that M
is a B-module and one of the following holds:

(i) B is tubular or representation-infinite tilted of Euclidean type, and M
is a nondirecting module from a tube of ΓA consisting entirely of B-modules.

(ii) B is a tame tilted algebra containing at most two different tame
concealed convex subcategories, and M is a sincere directing module lying in
a connecting component of ΓB.

2.5. Corollary. Let A be a tame quasi-tilted algebra. Then

(i) The support of any stable tube Γ of ΓA is a tame concealed or tubular
convex subcategory of A.

(ii) If M is an indecomposable A-module with χA(dimM) = 0 then the
support of M is a tame concealed or tubular convex subcategory of A.

3. Geometric preliminaries. In this section we recall and prove some
facts applied in our investigations of module varieties over tame quasi-tilted
algebras. For basic background we refer to [12], [16], [19], [20], [29].
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3.1. Let A = KQ/I be a triangular algebra (hence gl.dimA < ∞)
and d ∈ K0(A) = ZQ0 . Given a module M ∈ modA(d) we denote by
TM (modA(d)) the tangent space to modA(d) at M and by TM (O(M)) the
tangent space to O(M) at M . Then there is a canonical monomorphism of
K-vector spaces

TM (modA(d))/TM (O(M)) ↪→ Ext1A(M,M)

(see [19, 2.7]). In particular, if Ext1A(M,M) = 0 then O(M) is an irreducible
component of modA(d) and O(M) is an open subset of modA(d).

The local dimension dimM modA(d) is the maximal dimension of the irre-
ducible components of modA(d) containingM . We have dimK TM (modA(d))
≥ dimM modA(d). Further, M ∈ modA(d) is said to be a nonsingular
point if dimM modA(d) = dimK TM (modA(d)). If M is a nonsingular
point of modA(d) then M belongs to exactly one irreducible component
of modA(d) [29, II.2.6]. The nonsingular points in modA(d) form an open
nonempty subset. Clearly, O(M) is irreducible, M is a nonsingular point of
O(M), and hence dimO(M) = dimK TM (O(M)). Moreover, dimO(M) =
dimG(d)− dimK EndA(M) (see [20]).

It is also known that M ∈ modA(d) is nonsingular provided Ext2A(M,M)
= 0. The standard proof of this fact involves schemes and a result by Voigt
(see [13], [26], [32]). For triangular algebras of global dimension at most 2
we shall present an elementary proof of this fact below.

Finally, modA(d) is said to be a complete intersection provided the van-
ishing ideal of modA(d) in the coordinate ring K[A(d)] of the affine space
A(d) =

∏
α∈Q1

Kde(α)×ds(α) is generated by dim A(d) − dim modA(d) poly-
nomials. Observe that this is the case when dim modA(d) = a(d). We also
note that the irreducible components of a complete intersection have the
same dimension.

3.2. We shall need the following fact.

Proposition. Let A be a triangular algebra of global dimension at
most 2, M an A-module with Ext2A(M,M) = 0, and d = dimM . Then M is
a nonsingular point of modA(d), dimM modA(d) = a(d), and dimO(M) =
a(d)− dimK Ext1A(M,M).

Pro o f. For any M ∈ modA(d) we have

a(d) = dimG(d)− qA(d) = dimG(d)− χA(d)
= (dimG(d)− dimK EndA(M))

+dimK Ext1A(M,M)− dimK Ext2A(M,M)
= dimO(M) + dimK Ext1A(M,M)− dimK Ext2A(M,M)
= (dimK TM (O(M)) + dimK Ext1A(M,M))− dimK Ext2A(M,M)
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≥ dimK TM (modA(d))− dimK Ext2A(M,M).

Hence, applying Krull’s generalized principal ideal theorem, we get

dimM modA(d) ≥ a(d) ≥ dimK TM (modA(d))− dimK Ext2A(M,M)

≥ dimM modA(d)− dimK Ext2A(M,M).

If Ext2A(M,M) = 0, this leads to

dimM modA(d) = a(d) = dimK TM (modA(d)).

Moreover, dimO(M) = a(d)− dim Ext1A(M,M). This shows our claims.

3.3. We get the following consequences of the above proposition.

Corollary. Let A be a triangular algebra with gl.dimA ≤ 2, and
d ∈ K0(A) be a positive vector. Assume that for any maximal G(d)-orbit
O(M) in modA(d) we have Ext2A(M,M) = 0. Then modA(d) is a complete
intersection and dim modA(d) = a(d).

Pro o f. Clearly it is enough to show that a(d) = dim modA(d). Observe
that the closure of any G(d)-orbit in modA(d) is an irreducible variety.
Moreover, any module N from modA(d) belongs to the closure O(M) of
a maximal orbit O(M) of modA(d). Hence, it follows from our assump-
tion that any irreducible component Z of modA(d) contains a module M
with Ext2A(M,M) = 0. Applying now 3.2 we conclude that M is a non-
singular point of modA(d), and so Z is a unique irreducible component of
modA(d) containing M . In particular, applying 3.2 again, we have dimZ =
dimM modA(d) = a(d). Therefore, dim modA(d) = a(d), and this finishes
the proof.

3.4. A module variety modA(d) is said to be normal if the local ring OM

of any module M ∈ modA(d) is integrally closed in its total quotient ring. It
is well known that if modA(d) is normal then it is nonsingular in codimension
one, that is, the set of singular points in modA(d) is of codimension at least
two (see [12, Chapter 11]). We shall need the following consequence of Serre’s
normality criterion.

Theorem. Let A be a triangular algebra, d ∈ K0(A) a positive vector ,
and assume that modA(d) is a complete intersection. Then modA(d) is
normal if and only if modA(d) is nonsingular in codimension one.

Pro o f. See [16, II.8.23].

3.5. The following theorem shows that the degenerations of finite-dimen-
sional modules over tame quasi-tilted algebras are given by short exact se-
quences.
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Theorem. Let A be a tame quasi-tilted algebra, d ∈ K0(A) a positive
vector , and M , N two modules in modA(d). Then M ∈ O(N) if and only if
there exist A-modules Ni, Ui, Vi and short exact sequences 0 → Ui → Ni →
Vi → 0 in modA such that N1 = N , Ni+1 = Ui ⊕ Vi, 1 ≤ i ≤ s, M = Ns+1

for some natural number s.

Pro o f. It is a direct consequence of [31, Theorem 3], [33, Corollary 3] and
the well-known fact (see for example [7, 1.1]) that any short exact sequence
0 → U →W → V → 0 of modules gives a degeneration U ⊕ V ∈ O(W ).

3.6. The following characterization of maximal orbits in the module
varieties of tame quasi-tilted algebras will be crucial in our investigations.

Proposition. Let A be a tame quasi-tilted algebra, d ∈ K0(A) a positive
vector , and M a module in modA(d). Then O(M) is a maximal G(d)-
orbit in modA(d) if and only if Ext1A(M ′,M ′′) = 0 for any decomposition
M = M ′ ⊕M ′′ of M .

Pro o f. Suppose M = M ′ ⊕M ′′ and there exists a nonsplittable short
exact sequence

0 →M ′ → E →M ′′ → 0.

Then M = M ′⊕M ′′ is a proper degeneration of E, and hence the inclusion
O(M) ⊂ O(E)\O(E) holds. Therefore, O(M) is not maximal. Assume now
that Ext1A(M ′,M ′′) = 0 for any decomposition M = M ′ ⊕M ′′ of M . Let
O(M) ⊂ O(N) for some module N in modA(d). Applying Theorem 3.5 we
conclude that there are A-modules Ni, Ui, Vi and short exact sequences

0 → Ui → Ni → Vi → 0

in modA such that N1 = N , Ni+1 = Ui ⊕ Vi, 1 ≤ i ≤ s, M = Ns+1 for some
natural number s. Invoking now our assumption we infer that the above
exact sequences are splittable, and consequently M = Ns+1 ' Ns ' . . . '
N1 = N . This shows that O(M) is a maximal orbit in modA(d).

4. Geometry of stable tubes. Let A be a tame quasi-tilted algebra
and d the dimension-vector of an indecomposable A-module lying in a stable
tube of ΓA. We prove in this section that modA(d) is irreducible, complete
intersection, normal, and its open sheet is the union of all maximal G(d)-
orbits. Invoking 2.5(i), we may assume that A is tame concealed or tubular.
We first recall basic information on the structure of ΓA in both cases.

4.1. Assume A is tame concealed. Then it follows from [28, 4.3] that ΓA

is of the form
ΓA = P ∨ T ∨ Q
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where P is a preprojective component containing all indecomposable projec-
tive modules, Q is a preinjective component containing all indecomposable
injective modules, and T = (T (λ))λ∈P1(K) is a family of pairwise orthogonal
standard stable tubes separating P from Q (in the sense of [28, 3.1]). In
particular, we know that all modules in T have projective dimension and
injective dimension one.

4.2. Assume A is tubular. Then by [2.8, 5.2], ΓA is of the form

ΓA = P0 ∨ T0 ∨
( ∨

q∈Q+

Tq

)
∨ T∞ ∨Q∞

where P0 is a preprojective component, Q∞ is a preinjective component,
T0 = (T (λ)

0 )λ∈P1(K) is a family of ray tubes, T∞ = (T (λ)
∞ )λ∈P1(K) is a family

of coray tubes, and each Tq, q ∈ Q+, where Q+ is the set of all positive
rationals, is a family (T (λ)

q )λ∈P1(K) of stable tubes. Further, each Tq, q ∈ Q+∪
{0,∞}, consists of pairwise orthogonal standard tubes, almost all of which
are homogeneous (stable tubes of rank 1). The indecomposable projective
A-modules lie in P0∨T0 while the indecomposable injective A-modules lie in
T∞ ∨Q∞. In particular, we know that all indecomposable A-modules lying
in stable tubes of ΓA have projective dimension and injective dimension one.
Finally, each tubular family Tq, q ∈ Q+ ∪ {0,∞}, separates

Pq = P0 ∨
( ∨

p<q

Tq

)
from Qq =

( ∨
p>q

Tq

)
∨Q∞.

In both cases 4.1 and 4.2, the ordering of families from left to right indicates
that there are nonzero maps only from each family to itself or to the families
to its right.

4.3. Let A be tame concealed or tubular and Γ be a stable tube, say of
rank r, in ΓA. Then for any indecomposable A-module X in Γ there exists
a sectional path X1 → X2 → . . . → Xm = X with X1 lying on the mouth
of Γ , and then m is called the quasi-length of X, denoted by ql(X). It is
known [28, 3.1(3)] that for any indecomposable module X in Γ we have

(1) χA(dimX) = 0 if and only if r divides ql(X).
(2) χA(dimX) = 1 if and only if r does not divide ql(X).

4.4. We shall also need the following known lemma.

Lemma. Let Γ be a stable tube of rank r in ΓA and N an indecomposable
A-module not lying in Γ . Then

(i) If HomA(X,N) 6= 0 for some indecomposable module X from Γ , then
HomA(M,N) 6= 0 for any indecomposable module M in Γ with ql(M) ≥ r.

(ii) If HomA(N,X) 6= 0 for some indecomposable module X from Γ , then
HomA(N,M) 6= 0 for any indecomposable module M in Γ with ql(M) ≥ r.
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4.5. Throughout this section we assume that d is the dimension-vector
of an indecomposable module from a P1(K)-family T of pairwise orthogonal
standard stable tubes of ΓA. If A is tubular we may assume that T = Tq

for some q ∈ Q+, and then we put P = Pq and Q = Qq. Denote by h the
dimension-vector of an indecomposable A-module lying on the mouth of a
homogeneous tube of T . Then we have the following characterization of the
families P, T , Q.

Proposition. Let X be an indecomposable A-module. Then X belongs
to P (respectively , T , Q) if and only if 〈h,dimX〉A < 0 (respectively ,
〈h,dimX〉A = 0, 〈h,dimX〉A > 0).

Pro o f. See [28, 4.3, 5.2].

4.6. Our first aim is to describe the maximal G(d)-orbits in modA(d).
We have two cases to consider: χA(d) = 0 and χA(d) = 1. We call an
indecomposable A-module X with χA(dimX) = 0 isotropic. Clearly, ev-
ery indecomposable homogeneous A-module (lying in a homogeneous tube
of ΓA) is isotropic. We also note that isotropic modules X1, . . . , Xr from T
are pairwise orthogonal if and only if X1, . . . , Xr belong to pairwise different
tubes of T . Moreover, we abbreviate χ = χA and 〈−,−〉 = 〈−,−〉A.

Proposition. Assume χ(d) = 0. Then a G(d)-orbit O(M) in modA(d)
is maximal if and only if M = M1 ⊕ . . .⊕Mt for some pairwise orthogonal
isotropic modules M1, . . . ,Mt from T . Moreover , the open sheet of modA(d)
is the union of all maximal G(d)-orbits in modA(d).

Pro o f. Let M be a module in modA(d) and M = M1 ⊕ . . . ⊕Mt its
decomposition into a direct sum of indecomposable A-modules, and di =
dimMi for 1 ≤ i ≤ t. Assume O(M) is a maximal orbit in modA(d).
Applying 3.5 we get Ext1A(Mi,Mj) = 0 for all i 6= j. Hence, since gl.dimA
≤ 2, we have

〈di,dj〉 = dimK HomA(Mi,Mj)− dimK Ext1A(Mi,Mj)

+ dimK Ext2A(Mi,Mj) ≥ 0

for all i 6= j. Moreover, 〈di,di〉 = χ(di) ≥ 0 for any 1 ≤ i ≤ t, because
M1, . . . ,Mt are indecomposable (see 2.3). Therefore,

0 = χ(d) = 〈d,d〉 =
∑

1≤i,j≤t

〈di,dj〉

implies that 〈di,dj〉 = 0 for all 1 ≤ i, j ≤ t. In particular, we get 〈di,di〉 = 0
for 1 ≤ i ≤ t, and so M1, . . . ,Mt are isotropic. Furthermore, the equalities

0 = 〈di,dj〉 = dimK HomA(Mi,Mj) + dimK Ext2A(Mi,Mj)
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imply that the modules M1, . . . ,Mt are also pairwise orthogonal. Finally,
observe that, for each 1 ≤ j ≤ t, we have

0 = 〈d,dj〉 =
∑

1≤i≤t

〈di,dj〉 = 0.

On the other hand, it follows from our assumption χ(d) = 0 that d = ph for
some p ≥ 1. Therefore, invoking 4.5, we conclude that M1, . . . ,Mt belong to
T . Since these modules are pairwise orthogonal and isotropic, we deduce that
they belong to pairwise different tubes of T . Observe also that di = pih,
1 ≤ i ≤ t, with p1 + . . . + pt = p, and dimK EndA(M) = p. Therefore,
all maximal G(d)-orbits in modA(d) have (see 3.1) the same dimension
dimG(d) − p. In particular, the open sheet of modA(d) is the union of all
maximal G(d)-orbits in modA(d).

Clearly, if M = M1⊕ . . .⊕Mt is a module in modA(d) with M1, . . . ,Mt

isotropic and pairwise orthogonal then dimK EndA(M) = p, and hence the
orbit O(M) is maximal.

4.7. We note that by 2.3 any indecomposable A-module X which is
not isotropic is uniquely determined (up to isomorphism) by its dimension-
vector.

Proposition. Assume χ(d) = 1. Then a G(d)-orbit O(M) in modA(d)
is maximal if and only if M = M1 ⊕ . . .⊕Mt, where M1, . . . ,Mt are pair-
wise orthogonal indecomposable modules from T , M1 is not isotropic, and
M2, . . . ,Mt (if t ≥ 2) are isotropic. Moreover , the open sheet of modA(d)
is the union of all maximal G(d)-orbits in modA(d).

Pro o f. Let M = M1⊕ . . .⊕Mt be a decomposition of a module M from
modA(d) into a direct sum of indecomposable A-modules, and di = dimMi

for 1 ≤ i ≤ t. Assume O(M) is a maximal orbit in modA(d). As above we
deduce that 〈di,dj〉 ≥ 0 for all 1 ≤ i, j ≤ t. Moreover, 〈di,di〉 = χ(di) ∈
{0, 1} for any 1 ≤ i ≤ t, by 2.3. Since χ(d) = 1 we have

1 = 〈d,d〉 =
∑

1≤i≤t

χ(di) +
∑
i6=j

〈di,dj〉.

Suppose χ(di) = 0 for any 1 ≤ i ≤ t. Then there exists a pair (i, j) such that
〈di,dj〉 = 1. On the other hand, by our assumption, Mi and Mj are isotropic
modules. Hence, A is tubular andMi,Mj belong to pairwise different tubular
families. Invoking 〈di,dj〉 = 1 and 4.5 we then get 〈dj ,di〉 < 0, which
contradicts the above inequalities.

Therefore, there exists i0 ∈ {1, . . . , t} such that χ(di0) = 1. We may
assume that i0 = 1. Assume t ≥ 2. Then χ(di) = 0 for 2 ≤ i ≤ t, and
consequently the modules M2, . . . ,Mt are isotropic. Moreover,

0 = 〈di,dj〉 = dimK HomA(Mi,Mj) + dimK Ext2A(Mi,Mj)
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for all i 6= j from {1, . . . , t}, and so M1, . . . ,Mt are pairwise orthogonal and
belong to T . Furthermore, d1 = p1h + e and di = pih, 2 ≤ i ≤ t, for some
p1 ≥ 0, p2 ≥ 1, . . . , pt ≥ 1 and a connected positive vector e such that e < h.
Clearly, d = ph + e for p = p1 + . . . + pt. Thus dimK EndA(M1) = p1 + 1,
and dimK EndA(Mi) = pi for 2 ≤ i ≤ t (if t ≥ 2) (see for example [28,
3.1]). Therefore, dimK EndA(M) = p + 1 depends only on d. Hence, all
maximal orbits in modA(d) have the same dimension dimG(d) − (p + 1).
In particular, the open sheet of modA(d) is the union of all maximal G(d)-
orbits in modA(d).

Clearly, if M = M1⊕ . . .⊕Mt is a module in modA(d) with M1, . . . ,Mt

indecomposable pairwise orthogonal A-modules from T , M1 not isotropic,
and M2, . . . ,Mt isotropic (if t ≥ 2), then dimK EndA(M) = p+1 and hence
O(M) is a maximal orbit of modA(d). This finishes the proof.

4.8. We can now derive the following consequence of 3.3, 4.6 and 4.7.

Proposition. The variety modA(d) is a complete intersection and has
dimension a(d). Moreover , the union of all maximal G(d)-orbits in
modA(d) is its open sheet and consists of nonsingular modules.

4.9. Our next aim is to prove that the variety modA(d) is irreducible. It is
enough to show that the union of all maximal G(d)-orbits in modA(d) is its
irreducible subset. We shall use some class of canonical algebras introduced
in [28]. For integers q ≥ p ≥ 1 we denote by Λ(p, q) the path algebra of the
Euclidean quiver
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For integers r ≥ q ≥ p ≥ 2, denote by Λ(p, q, r) the bound quiver algebra
Λ(p, q, r) = K∆(p, q, r)/I(p, q, r), where ∆(p, q, r) is the quiver
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and I(p, q, r) is the ideal in K∆(p, q, r) generated by αp . . . α1 + βq . . . β1 +
γr . . . γ1.

Finally, for a ∈ K \ {0, 1} denote by Λ(2, 2, 2, 2, a) the bound quiver
algebra Λ(2, 2, 2, 2, a) = K∆(2, 2, 2, 2)/I(2, 2, 2, 2, a), where ∆(2, 2, 2, 2) is
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the quiver
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and I(2, 2, 2, 2, a) is the ideal in K∆(2, 2, 2, 2) generated by α2α1 + β2β1 +
γ2γ1 and α2α1 + aβ2β1 + δ2δ1.

The above canonical algebras Λ(p, q), Λ(p, q, r), Λ(2, 2, 2, 2, a) are quasi-
tilted and their Auslander–Reiten quivers admit a canonical separating
tubular P1(K)-family T ′ of tubular type (p, q), (p, q, r), (2, 2, 2, 2), respec-
tively. In all these cases the dimension-vector c of indecomposable modules
lying on the mouth of homogeneous tubes (simple homogeneous modules)
of T ′ has the identity at all vertices of the quiver. Moreover, Λ(p, q) and
Λ(2, 2, 2, 2, a) are tame, and Λ(p, q, r) is tame if and only if 1/p+ 1/q + 1/r
≥ 1. Observe that 1/p + 1/q + 1/r > 1 (respectively, 1/p + 1/q + 1/r =
1) if and only if (p, q, r) = (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, n − 2) with n
≥ 4 (respectively, (p, q, r) = (3, 3, 3), (2, 4, 4), (2, 3, 6)). The algebras Λ(p, q),
Λ(2, 2, n− 2), Λ(2, 3, 3), Λ(2, 3, 4), Λ(2, 3, 5) are tame concealed algebras of
type Ãp+q, D̃n, Ẽ6, Ẽ7, Ẽ8, respectively. The canonical algebras Λ(3, 3, 3),
Λ(2, 4, 4), Λ(2, 3, 6) and Λ(2, 2, 2, 2, a) are called tubular. We refer to [28]
for the representation theory of canonical algebras. We need the following
lemma.

Lemma. Let Λ be one of the above canonical algebras and c the dimen-
sion-vector of simple homogeneous modules in the tubular family T ′. Then
for any indecomposable Λ-module W with dimW = c there exists a regular
map ϕ : K → modΛ(c) such that ϕ(K) ∩O(W ) 6= ∅ and ϕ(K) ∩O(H) 6= ∅
for any simple homogeneous Λ-module H.

Pro o f. This is an easy exercise due to a very simple structure (see [28,
3.7]) of indecomposable Λ-modules of dimension-vector c. We indicate the
argument for the algebra Λ(3, 3, 3). In this case, the indecomposable modules
of dimension-vector c lying in one of the three tubes of rank 3 in T ′ are of
the form
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If W is the first of the above modules then the required regular map ϕ :
K → modΛ(c) assigns to each µ ∈ K the representation

K
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Clearly, ϕ(0) = W and ϕ(µ), µ 6= 0, 1, form (up to isomorphism) the family
of all simple homogeneous Λ-modules in T ′.

4.10. Let Λ be one of the above tame canonical algebras. Then

ΓΛ = P ′ ∨ T ′ ∨Q′

where the indecomposable modules in these families may be characterized
as follows (see 4.5): an indecomposable Λ-module Z belongs to P ′ (respec-
tively, T ′, Q′) if and only if 〈c,dimZ〉Λ < 0 (respectively, 〈c,dimZ〉Λ = 0,
〈c,dimZ〉Λ > 0) (see [28, 3.7]). Let d′ be the dimension-vector of an inde-
composable Λ-module lying in T ′. Then we have the following

Proposition. The variety modΛ(d′) is irreducible.

Pro o f. We have two cases to consider: χΛ(d′) = 0 and χΛ(d′) = 1.
Assume first χΛ(d′) = 0. Then d′ = pc for some p ≥ 1. Fix a homogeneous
module N0 of dimension-vector c.

Let M1, . . . ,Mt be indecomposable Λ-modules from T ′ of dimension-
vectors p1c, . . . , ptc, respectively, where p1, . . . , pt are positive integers such
that p = p1 + . . .+ pt. Observe that then there exist indecomposable mod-
ules N1, . . . , Nt in T ′ of dimension-vector c such that Np1

1 ⊕ . . . ⊕ Npt
t ∈

O(M1 ⊕ . . .⊕Mt) in modΛ(pc) = modΛ(d′).
Indeed, for each 1 ≤ i ≤ t, there exists an exact sequence 0 → Ni →

Mi → Li → 0 where Ni and Li are indecomposable Λ-modules lying on
the same ray as Mi (in the tube of T ′ containing Mi), and dimNi = c,
dimLi = (pi − 1)c. Clearly, Li ⊕ Ni ∈ O(Mi) in modΛ(pic). Hence our
claim follows by induction on p1, . . . , pt.

Since the closures of orbits are irreducible, we conclude thatM1⊕. . .⊕Mt

and Np1
1 ⊕ . . . ⊕ Npt

t belong to a common irreducible component Z1 of
modΛ(d′). On the other hand, by Proposition 4.9, there are regular maps
%i : K → modΛ(c), 1 ≤ i ≤ t, such that %i(K) intersects both O(Ni) and
O(N0). For each 1 ≤ i ≤ t, we then get a regular map ξi : Kpi → modΛ(pic)
such that ξi(Kpi) intersects both O(Npi

i ) and O(Npi
0 ).

Finally, consider the regular map η : G(d′) × Kp → modΛ(pc) which
assigns to each (g, µ1, . . . , µt) ∈ G(d′)×Kp = G(d′)×Kp1 × . . .×Kpt the



GEOMETRY OF MODULES 101

module g(
⊕t

i=1 ξi(µi)) ∈ modΛ(d′). Then the image of η is an irreducible
subset of modΛ(pc) containing both Np1

1 ⊕ . . . ⊕ Npt
t and Np

0 . Therefore,
Np1

1 ⊕ . . . ⊕Npt
t and Np

0 belong to a common irreducible component Z2 of
modΛ(d′).

We now note that any module X ∈ modΛ(d′) which is a direct sum
of indecomposable modules from T ′ is nonsingular, because then X is of
projective dimension at most one, and so Ext2Λ(X,X) = 0. This shows that
Z1 = Z2, and it is a unique irreducible component containing M1⊕ . . .⊕Mk

(respectively, Np
0 ). Therefore, there exists a unique irreducible component

Z of modΛ(d′) containing all maximal G(d′)-orbits of modΛ(d′), and so
modΛ(d′) is irreducible.

Assume now χΛ(d′) = 1. Then d′ = pc+e′ for some p ≥ 0 and e′ positive
with e′ < c. For each 0 ≤ i ≤ p, the vector d′i = ic+e′ is positive, connected,
with χΛ(d′i) = 1; let Vi be the unique indecomposable Λ-module (lying in T ′)
such that dimVi = d′i. In fact V0, V1, . . . , Vp are indecomposable modules
lying on one ray of a tube in T ′. Hence, for each 0 ≤ i < p, we have an exact
sequence

0 → Vi → Vp →Wi → 0

where Wi is an indecomposable Λ-module of dimension-vector (p−i)c, lying
on the same coray as Vp. In particular, Vi ⊕Wi ∈ O(Vp) in modΛ(d′). On
the other hand, it follows from the first part of our proof that the set of
all modules in modΛ(d′) of the form Vi ⊕W , for all modules W in T ′ with
dimW = (p − i)c, is irreducible. Further, the modules Vp, Vi ⊕Wi, 0 ≤
i < p, are nonsingular, because they have projective dimension at most one.
Invoking now Proposition 4.7 we conclude that there exists an irreducible
component of modΛ(d′) containing all maximal G(d′)-orbits. Consequently,
modΛ(d′) is irreducible.

4.11. We now return to our considerations concerning the tubular family
T over a tame concealed or tubular algebra A. Applying some results by
Bongartz [6] and Lenzing–de la Peña [22] we are now able to prove the
following fact.

Proposition. The variety modA(d) is irreducible.

Pro o f. It follows from [22, Section 5] that there exists a canonical (tame
concealed or tubular) algebra Λ of the same tubular type as A and a tilting
Λ-module T such that A = EndΛ(T ), T ′ is contained in the torsion part
GΛ of modΛ defined by the vanishing of Ext1Λ(T,−), T is contained in the
torsion-free part YA of modA defined by the vanishing of TorA

1 (T,−), and
T is the image of T ′ via the functor F = HomΛ(T,−).

Let M ′ be an indecomposable Λ-module in T ′ such that dimF (M ′)=d,
and let d′ = dimM ′. Denote by GΛ(d′) the open subset of modΛ(d′) con-
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sisting of all torsion modules and by YA(d) the open subset of modA(d)
consisting of torsion-free modules. It follows from [6, Section 4] that there
is an affine variety Z and two bundles ϕ : Z → GΛ(d′) and ψ : Z → YA(d)
such that, for each X ∈ GΛ(d′), we have ψϕ−1(O(X)) = O(F (X)). This es-
tablishes a bijection between the G(d′)-orbits in GΛ(d′) and the G(d)-orbits
in YA(d).

Denote by SΛ(d′) the open sheet of modΛ(d′) and by SA(d) the open
sheet of modA(d). It follows from 4.8 that SΛ(d′) is contained in GΛ(d′)
and SA(d) is contained in YA(d). Moreover, SΛ(d′) consists of all maximal
G(d′)-orbits in modΛ(d′) and SA(d) consists of all maximal G(d)-orbits
in modA(d). Since modΛ(d′) = SΛ(d′) is irreducible (by 4.10), the variety
GΛ(d′) is also irreducible, and invoking the definitions of Z and ϕ (see [6]
for details) we conclude that Z is irreducible. Hence YA(d) is irreducible
and consequently so is modA(d) = YA(d).

4.12. Our final aim in this section is to prove that the variety modA(d)
is normal. Since modA(d) is a complete intersection, it is enough to show
that modA(d) is nonsingular in codimension one (see 3.4). We also note that
since modA(d) is irreducible, the normality of modA(d), as defined in 3.4,
is equivalent to the fact that the coordinate ring of modA(d) is integrally
closed in its quotient field.

We need some preliminary observations and notations. We may decom-
pose each module X in modA(d) into a direct sum X = M ⊕ N , where
N is a direct sum of indecomposable modules from tubes of rank 1 (homo-
geneous modules) and M has no homogeneous direct summand. We know
by [28, 4.3, 5.2] that there are only finitely many (up to isomorphism) such
direct summands M of X. We define M(d) to be the (finite) set of (iso-
morphism classes) of A-modules M without homogeneous direct summands
such that M ⊕ N ∈ modA(d) for some A-module N which is a direct sum
of homogeneous modules.

For each M ∈ M(d) consider the set WM (d) consisting of all modules
L⊕N ∈ modA(d) such that L 'M and N is a direct sum of homogeneous
modules. It follows from 4.6 and 4.11 that WM (d) is irreducible. Moreover,
WM (d), M ∈ M(d), are G(d)-invariant subsets of modA(d) whose union
is modA(d). Finally, for an A-module Z, denote by µ(Z) the number of
homogeneous direct summands (including the multiplicities) of Z. Then
dimWM (d) is the maximum of dimO(Z)+µ(Z) for all modules Z ∈ WM (d).

4.13. We first consider the case χ(d) = 0.

Lemma. Assume χ(d) = 0. Then modA(d) is normal.

Pro o f. As 0=χ(d)=dimG(d)−a(d), applying 4.8 we get dim modA(d)
= a(d) = dimG(d). In order to prove that modA(d) is nonsingular in codi-
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mension one, it is enough to show that if a set WM (d), M ∈M(d), contains
a singular module then dimWM (d) ≤ dimG(d)− 2.

Suppose L⊕N ∈ WM (d), with L 'M , is a singular point of modA(d).
Invoking 3.2 we then have Ext2A(L ⊕ N,L ⊕ N) 6= 0. Since N is a direct
sum of homogeneous modules, it follows from 4.1 and 4.2 that pdAN =
1 = idAN . Hence Ext2A(L,L) 6= 0. Then there exist indecomposable direct
summands L1, L2 of L such that Ext2A(L2, L1) 6= 0. Clearly, idA L1 = 2,
pdA L2 = 2, and so L1 ∈ P, L2 ∈ Q. In particular, L1 6' L2. Therefore,
dimK EndA(L⊕N) ≥ 2 + µ(N), and so

dimO(L⊕N) = dimG(d)− dimK EndA(L⊕N) ≤ G(d)− 2− µ(N).

But then dimWM (d) ≤ dimG(d)− 2 = dim modA(d)− 2, and this finishes
the proof.

4.14. Our next step is to prove the following fact.

Proposition. Assume χ(d) = 1 and A is tame concealed. Then the
variety modA(d) is normal.

Pro o f. As 1=χ(d)=dimG(d)−a(d), applying 4.8 we get dim modA(d)
= a(d) = dimG(d)−1. Hence, in order to prove that modA(d) is nonsingular
in codimension one, it is enough to show that if WM (d), for some M ∈
M(d), contains a singular module, then dimWM (d) ≤ dimG(d)− 3.

Since A is tame concealed, by 4.1 we have ΓA = P ∨T ∨Q, where P is a
preprojective component containing all indecomposable projective modules
and Q is a preinjective component containing all indecomposable injective
modules. Moreover, for any homogeneous module H ∈ T , X ∈ P, Y ∈ Q,
we have HomA(X,H) 6= 0 and HomA(H,Y ) 6= 0. Since χ(d) = 1, d is of the
form d = ph + e with 0 < e < h. Then it follows from 4.7 that all maximal
G(d)-orbits in modA(d) have dimension dimG(d)− (p+ 1).

Suppose now that L ⊕ N ∈ WM (d), M ∈ M(d), L ' M , is a singular
point of modA(d). Then Ext2A(L,L) = Ext2A(L⊕N,L⊕N) 6= 0, and there
exist indecomposable direct summands L1, L2 of L with Ext2A(L2, L1) 6= 0.
Clearly, idA L1 = 2, pdA L2 = 2, and hence L1 ∈ P and L2 ∈ Q.

Assume N 6= 0. Then HomA(L1, N) 6= 0, HomA(N,L2) 6= 0, and so we
have

dimO(L⊕N) = dimG(d)− dimK EndA(L⊕N)
≤ dimG(d)− 4− µ(N) ≤ (dimG(d)− 1)− 3− µ(N).

Thus dimWM (d) ≤ dim modA(d)− 3.
Let N = 0. In such a case WM (d) = O(M) and dimO(M) < dimG(d)−

(p + 1), because O(M) is not maximal (see 4.7). Hence, if p ≥ 1, we have
dimWM (d) ≤ dimG(d)− p− 2 ≤ modA(d)− 2.
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Suppose p = 0. If dimK EndA(M) ≥ 3, then dimO(M) ≤ dimG(d)−3 ≤
dim modA(d)− 2, and there is nothing to show. Assume dim EndA(M) = 2.
Then M = L1 ⊕L2 and EndA(L1) = K, EndA(L2) = K and HomA(L1, L2)
= 0, HomA(L2, L1) = 0. Further, since L1 ∈ P and L2 ∈ Q, we also have
Ext1A(L1, L1) = 0 and Ext1A(L2, L2) = 0. Moreover, dimO(M) = dimG(d)−
2 = dim modA(d) − 1. On the other hand, it follows from the description
of maximal orbits in modA(d), given in 4.7, that modA(d) = O(V ) for the
unique indecomposable A-module V with dimV = d = e (because p = 0).
Hence L is a minimal degeneration of V , and consequently applying 3.5 we
get a nonsplittable exact sequence

0 → L1 → V → L2 → 0

with L = L1 ⊕ L2. Consider now the induced exact sequence

Ext1A(L1, L1) → Ext2A(L2, L1) → Ext2A(V,L1)

induced by the above short exact sequence. Then Ext2A(V,L1) = 0 because
V ∈T implies pdA V =1, and, as we have seen above, also Ext1A(L1, L1)=0.
Hence Ext2A(L2, L1) = 0, a contradiction. Therefore, the set of singular
points in modA(d) is of codimension at least 2.

4.15. Our final aim of this section is to prove the following fact which
completes the proof that modA(d) is normal.

Proposition. Assume χ(d) = 1 and A is tubular. Then modA(d) is
normal.

Pro o f. Since χ(d) = 1, we again have dim modA(d) = dimG(d) − 1.
Further, by 4.2, ΓA is of the form

ΓA = P0 ∨ T0 ∨
( ∨

q∈Q+

Tq

)
∨ T∞ ∨Q∞

and, by our assumption 4.5, T = Tq for some q ∈ Q+. Moreover, d =
ph + e with 0 < e < h, and all maximal G(d)-orbits in modA(d) have
dimension dimG(d)− (p+1) = dim modA(d)−p. Assume that M ∈M(d),
and L ⊕ N ∈ WM (d) with L ' M is a singular point of modA(d). Since
pdAN = idAN = 1, there are indecomposable direct summands L1 and L2

of L with Ext2A(L2, L1) 6= 0. Then idA L1 = 2, pdA L2 = 2, and consequently
L1 belongs either to P0 or to a tube of T0 with a projective module, and L2

belongs either to Q∞ or to a tube of T∞ containing an injective module.
Suppose now that L⊕N = U1⊕U2⊕W for some indecomposable direct

summands U1 and U2 with HomA(U1, U2) 6= 0 or dimK EndA(L) ≥ 3. Then

dimO(L⊕N) = dimG(d)− dimK EndA(L⊕N)
≤ dimG(d)− 3− µ(N) ≤ dim modA(d)− 2− µ(N),
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and hence dimWM (d) ≤ dim modA(d)− 2. Therefore, we may assume that
L⊕N is a direct sum of pairwise orthogonal indecomposable modules, and
L = L1 ⊕ L2 with dimK EndA(L) = 2.

We claim that N = 0. Suppose N 6= 0. Observe that N has no inde-
composable direct summands from a family Tr, r ∈ Q+, because otherwise
HomA(L1, N) 6= 0 and HomA(N,L2) 6= 0, by the separation property of Tr.
Next assume that N admits two indecomposable direct summands N1 ∈ T0

and N2 ∈ T∞. Then the supports C0 of N1 and C∞ of N2 are unique tame
concealed convex subcategories of A, and A is a tubular extension of C0

(respectively, coextension of C∞). In particular, C0 and C∞ have a common
object x. Then there is an indecomposable projective module P ∈ P0 and
a nonzero map P → N2 which factorizes through any tube of T0. Hence
HomA(N1, N2) 6= 0, which contradicts our assumption on L⊕N .

Therefore, by symmetry, we may assume that L1 belongs to a ray tube
of T0 containing a projective module, the indecomposable direct summands
of N lie in homogeneous tubes of T0, and L2 is a module in T∞ ∨Q∞ whose
restriction to C0 is zero. We shall prove that in fact N = 0. Take a module
H lying on the mouth of a homogeneous tube of T0 containing no direct
summand of N . Then

〈d,dimH〉
= 〈dim(L1 ⊕N) + dimL2,dimH〉

= 〈dim(L1 ⊕N),dimH〉+ 〈dimL2,dimH〉

= 〈dimL2,dimH〉

= dimK HomA(L2,H)− dimK Ext1A(L2,H) + dimK Ext2A(L2,H)

= − dimK Ext1A(L2,H) = −dimK HomA(τ−AH,L2)

= − dimK HomA(H,L2) = 0.

Moreover, d = ph + e, 0 < e < h, where e = dimZ for an indecomposable
module Z ∈ T . We also know that HomA(Z,H) = 0, pdA Z = 1, and
〈h,dimH〉 < 0, by 4.5. Finally, if p = 0, then Z is a sincere A-module and so
HomA(H,Z) 6= 0, or equivalently, 〈dimZ,dimH〉 = −dimK Ext1A(H,Z) =
−dimK HomA(Z,H) < 0. Altogether this gives

〈d,dimH〉 = p〈h,dimH〉+ 〈e,dimH〉
= p〈h,dimH〉+ 〈dimZ,dimH〉 < 0,

a contradiction.
Therefore N = 0, and WM (d) = O(M). If p ≥ 1 then

dimWM (d) = dimO(M) ≤ dim modA(d)− p− 1 ≤ dim modA(d)− 2,

because the orbit O(M) is not maximal.



106 G. BOBIŃSKI AND A. SKOWROŃSKI

Assume p = 0. We claim that Ext1A(L1, L1) = 0. Indeed, suppose it is
not the case. Since EndA(L1) = K and pdA L1 ≤ 1, we then have

χ(dimL1) = dimK EndA(L1)− dimK Ext1A(L1, L1) + dimK Ext2A(L1, L1)

= 1− dimK Ext1A(L1, L1),

so χ(dimL1) = 0. Hence L1 is an isotropic C0-module and

〈dimL1,d〉 = 〈dimL1,dimZ〉
= dimK HomA(L1, Z)
= dimK HomC0(L1, Z|C0) > 0,

because Z|C0 6= 0 and is a direct sum of indecomposable preinjective C0-
modules. But then we get

dimK HomA(L1, L2) = 〈dimL1,dimL2〉
= 〈dimL1,dimL1 + dimL2〉
= 〈dimL1,d〉 > 0,

contrary to our assumption that L1 and L2 are orthogonal.
Therefore, Ext1A(L1, L1) = 0. Repeating now the arguments applied in

the final part of 4.14 we conclude that Ext2A(L2, L1) = 0, again a contradic-
tion. This finishes the proof.

5. Geometry of nonstable tubes. Let A be tame quasi-tilted and d
the dimension-vector of a nonstable nondirecting indecomposable A-module.
We shall describe the maximal G(d)-orbits in modA(d), the irreducible com-
ponents of modA(d), discuss the normality of modA(d), and prove that
modA(d) is a complete intersection.

5.1. We may assume that A is either tubular or tilted of Euclidean type
and d = dimX for an indecomposable nondirecting A-module X lying in a
tube of ΓA containing a projective module. Moreover, invoking [28, Section 4]
(see also [1]) we may assume that additionally the following hold:

(1) There exist a convex tame concealed subcategory C of A, a convex
linear category Λ = K∆ (∆ is a quiver of type An) and an indecomposable
C-module R lying on the mouth of a stable tube Γ (0) of ΓC such that C
is obtained from the one-point extension C[R] by identifying its extension
vertex with one of the ends of ∆.

(2) The restriction X|C of X to C is an indecomposable C-module lying
on the ray of Γ (0) starting at R while the restriction X|Λ of X to Λ is a
unique indecomposable sincere Λ-module.

(3) The Auslander–Reiten quiver ΓA is of the form

ΓA = P ∨ T ∨ Q
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where P is the preprojective component of ΓC , T =(T (λ))λ∈P1(K) is a P1(K)-
family of tubes obtained from the unique P1(K)-family Γ = (Γ (λ))λ∈P1(K)

of stable tubes of ΓC by ray insertions in the tube Γ (0) containing R, and Q
is either a preinjective component (if A is tilted of Euclidean type) or is of
the form Q = (

∨
q∈Q+ Tq) ∨ T∞ ∨ Q∞ (if A is tubular), in the notation 4.2.

Hence, T (λ) = Γ (λ) for any λ ∈ P1(K) = K ∪ {∞} different from 0.
We denote by Σ the unique ray of T (0) starting from R. Then for any

nondirecting indecomposable A-module Z in T (0) with Z|Λ 6= 0, the module
Z|C is indecomposable and lies on Σ. Denote by h the dimension-vector of
a module lying on the mouth of a homogeneous tube of T (equivalently,
of Γ ). Then d = ph + e with d|C 6= 0 and e 6= 0 such that 0 ≤ e|C < h and
e|Λ having 1 at each vertex of ∆. Moreover, χA(d) = 1.

5.2. The following proposition describes the maximal G(d)-orbits in
modA(d).

Proposition. Let M be a module in modA(d). Then the G(d)-orbit
O(M) is maximal in modA(d) if and only if M = M1⊕ . . .⊕Mt, t ≥ 1, for
some pairwise orthogonal indecomposable A-modules M1, . . . ,Mt such that
M2, . . . ,Mt (if t ≥ 2) are isotropic modules from T , and either M1 lies in
the nonstable tube of T (0) or M1|C = 0, t ≥ 2, and Σ does not contain any
of the modules M2, . . . ,Mt.

Pro o f. We know from 3.6 that the orbit O(M) is maximal if and only
if Ext1A(M ′,M ′′) = 0 for any decomposition M = M ′ ⊕ M ′′ of M . As-
sume O(M) is maximal. Applying the same arguments as in 4.7 we con-
clude that M = M1 ⊕ . . . ⊕Mt, where M1, . . . ,Mt are indecomposable A-
modules with χ(dimM1) = 1, χ(dimMi) = 0 for 2 ≤ i ≤ t (if t ≥ 2),
〈dimMi,dimMj〉 = 0 for all i 6= j from {1, . . . , t}, and dimM1 = p1h + e,
dimMi = pih, 2 ≤ i ≤ t, with p1 ≥ 0, p2 ≥ 1, . . . , pt ≥ 1 such that
p = p1 + . . .+ pt. Moreover, the modules M1, . . . ,Mt are pairwise orthogo-
nal, and clearly M2, . . . ,Mt lie in T .

Further, since M |Λ = M1|Λ is a sincere indecomposable Λ-module we
conclude that M1 lies in T (and then in the nonstable tube T (0)) if and only
if M1|C 6= 0. Assume M1|C = 0. Hence M1 = M |Λ lies in Q. Observe also
that then Ext1A(M1, Z) 6= 0 for any module Z lying on the ray Σ, and so
M2, . . . ,Mt do not lie on Σ.

We now determine dimO(M) = dimG(d) − dimK EndA(M). We have
dimK EndA(M1)=p1+1 if dimM1|C 6=p1h with p1≥1, and dimK EndA(M1)
= p1 if dimM1|C = p1h > 0. Moreover, dimK EndA(Mi) = pi for 2 ≤ i ≤ t.
Therefore, we get dimK EndA(M) = p + 1 if d|C 6= ph or M1|C = 0, and
dimK EndA(M) = p if d|C = ph and M1|C 6= 0.
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Hence, if d|C 6= ph then all maximal G(d)-orbits in modA(d) have the
same dimension dimG(d) − (p + 1), and their union is the open sheet of
modA(d). Moreover, in this case, ifM = M1⊕. . .⊕Mt withM1, . . . ,Mt pair-
wise orthogonal indecomposable lying in T , M2, . . . ,Mt (if t ≥ 2) isotropic,
and M1 lying in T (0), we have dimK EndA(M) = p + 1, and so O(M) is a
maximal G(d)-orbit modA(d).

Assume now that d|C = ph. Note that d|C 6= 0 because X|C 6= 0. It
follows from the above discussion that the open sheet of modA(d) is the
union of all G(d)-orbits of the form O(M), where M = M1 ⊕ . . .⊕Mt with
M1, . . . ,Mt indecomposable A-modules from T such that M1 belongs to
T (0) and M2, . . . ,Mt are isotropic modules lying in pairwise different tubes
of T and different from T (0).

Conversely, if M = M1 ⊕ . . . ⊕Mt for M1, . . . ,Mt pairwise orthogonal
indecomposable A-modules such that M1|C = 0,M2, . . . ,Mt are isotropic
modules from T and do not lie on the ray Σ, then Ext1A(Mi,Mj) = 0 for all
i 6= j from {1, . . . , t}, and O(M) is maximal by 3.6. Clearly, such an orbit
O(M) has dimension dimG(d)− (p+ 1) and hence is not contained in the
open sheet of modA(d).

5.3. We may also state the following consequence of the above consider-
ations.

Proposition. The variety modA(d) is a complete intersection and has
dimension a(d). Moreover , the maximal G(d)-orbits consist of nonsingular
modules.

Pro o f. Let O(M) be a maximal G(d)-orbit and M = M1⊕ . . .⊕Mt be
a decomposition of M into a direct sum of indecomposable modules. Then
for each pair i, j ∈ {1, . . . , t} we have

0 = 〈dimMi,dimMj〉 = dimK HomA(Mi,Mj) + dimK Ext2A(Mi,Mj)

(see 4.7), and so Ext2A(Mi,Mj) = 0. Therefore, Ext2A(M,M) = 0 and M is
a nonsingular point of modA(d), by 3.2. Applying 3.3 we then conclude that
modA(d) is a complete intersection and dim modA(d) = a(d).

5.4. Our next aim is to prove the following fact.

Proposition. The variety modA(d) has at most two irreducible com-
ponents. Moreover , modA(d) is irreducible if and only if d|C 6= ph for any
p ≥ 1.

Pro o f. Denote by X the set of all modules in modA(d) of the form
M1 ⊕ . . . ⊕Mt where M1, . . . ,Mt are pairwise orthogonal indecomposable
A-modules from T , M2, . . . ,Mt are isotropic, and M1 lies in T (0) and is
not isotropic. Applying arguments as in 4.10 we infer that X is irreducible.
Moreover, it follows from 5.2 that X contains the open sheet of modA(d).



GEOMETRY OF MODULES 109

Let Z1 be the closure of X in modA(d). Clearly, Z1 is irreducible of
dimension a(d), and so is an irreducible component of modA(d). Moreover,
if d|C 6= ph for any p ≥ 1, then Z1 = modA(d) and consequently modA(d)
is irreducible.

Assume now that d|C = ph for some p ≥ 1. Denote by Z2 the set of
all modules (representations) M in modA(d) such that M(α) = 0 for any
arrow connecting the extension vertex of C[R] with C. Obviously, Z1 is not
contained in Z2.

We claim that Z2 is an irreducible component of modA(d). Indeed, Z2

consists of all modules in modA(d) of the form U⊕V , where U is a C-module
with dimU = ph and V is a Λ-module with dimV = d − ph = e. We
know that e is the dimension-vector of a unique sincere indecomposable Λ-
module N , and then modΛ(e) is the closure of O(N). Hence modΛ(e) is irre-
ducible. Applying 4.11 we conclude that modC(ph) is irreducible. Therefore,
Z2 is also irreducible as a product of modC(ph) and modΛ(e). Moreover,
dimZ2 = dim modA(ph) + dim modΛ(e) = a(d), because d = ph + e and
the supports of ph and e are disjoint. This shows that Z2 is an irreducible
component of modA(d). Finally, observe that every maximal G(d)-orbit of
modA(d) is contained in Z1 or Z2, and hence modA(d) = Z1∪Z2. Therefore,
modA(d) has exactly two irreducible components Z1 and Z2. This finishes
the proof.

5.5. The final aim of this section is to prove the following.

Proposition. The variety modA(d) is normal if and only if d|C 6= ph
for any p ≥ 1.

Pro o f. Assume first that d|C = ph for some p ≥ 1. We claim that then
modA(d) is not normal. We know from 5.4 that modA(d) has two irreducible
components Z1 and Z2. It is well known that Z1 ∩ Z2 consists of singular
modules. Hence, in order to prove that modA(d) is not normal it is enough
(see 3.4) to find an irreducible subset of Z1 ∩ Z2 of dimension a(d)− 1.

Consider the set Z of all modules in modA(d) of the form N = N0⊕N1⊕
. . .⊕Np, where N0 is a unique indecomposable A-module with N0|C = 0 and
N |Λ = N0|Λ, N1 is a unique indecomposable A-module of dimension-vector
h lying on the ray Σ of T (0) starting at R, and N2, . . . , Np (if p ≥ 2)
are modules lying on the mouth of pairwise different homogeneous tubes
of T . Observe that Z is contained in Z2. Further, there exists a short exact
sequence

0 → N1 →M1 → N0 → 0

where M1 is a unique indecomposable A-module in T (0) with dimM1 =
d−(p−1)h. Hence, any moduleN = N0⊕N1⊕. . .⊕Np of Z is a degeneration
of a module M = M1 ⊕ N2 ⊕ . . . ⊕ Np from Z1. This shows that Z is
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contained in Z1 ∩ Z2. On the other hand, by 4.11, Z is an irreducible set
and dimZ = a(d)− 1. Therefore, modA(d) is not normal.

Assume now that d|C 6= ph for any p ≥ 1. We know from 5.4 that
then modA(d) is irreducible. We claim that modA(d) is also normal. Since
modA(d) is a complete intersection, it is enough to show that modA(d) is
nonsingular in codimension one.

We proceed as in 4.14 and 4.15, and use notation introduced in 4.12.
Assume M ∈ M(d) and L ⊕ N ∈ M(d), with L ' M , is a singular point
of modA(d). We claim that dimWM (d) ≤ dim modA(d)− 2. As in 4.15 we
reduce the consideration to the case where L⊕N is a direct sum of pairwise
orthogonal indecomposable A-modules, L = L1 ⊕ L2, dimK EndA(L) = 2,
Ext2A(L2, L1) 6= 0, and by definition N is a direct sum of homogeneous
A-modules. Since pdA L1 = 2, we have L1 ∈ P or L1 ∈ T (0). Similarly,
since idA L2 = 2, we infer that L2 belongs to a component Q (coray tube or
preinjective) containing an injective module.

We prove that N = 0. Suppose it is not the case. We claim that then
N is a direct sum of homogeneous modules from T . Indeed, assume there
exists an indecomposable direct summand H of N which does not belong
to T . Then

〈d,dimH〉 = 〈dimX,dimH〉 = dimK HomA(X,H) > 0

where X is a unique indecomposable module with dimX = d. On the other
hand, H = N ⊕W for some indecomposable A-module W and

〈d,dimH〉 = 〈dim(L⊕W ) + dimH,dimH〉 = 〈dim(L⊕W ),dimH〉
= dimK HomA(L⊕W,H)− dimK Ext1A(L⊕H)

because χ(dimH) = 0 and pdAH = 1. Finally, we get HomA(L⊕W,H) 6= 0,
which contradicts our assumption on L⊕N .

Thus, N is a direct sum of homogeneous modules from T , and conse-
quently L2|C = 0. Take a module H lying on the mouth of a homogeneous
tube of T containing no direct summand of N . Then

〈dimH,d〉 = 〈dimH,dimL+ dimN〉
= dimK HomA(H,L2) + dimK HomA(H,N)

because pdAH = 1 and HomA(L⊕N, τAH) = HomA(L⊕N,H) = 0. On the
other hand, d = dimX for a unique indecomposable A-module X lying in
T (0), and so 〈dimH,d〉 = 0. Hence, HomA(H,L2) = 0 and HomA(H,N) =
0. In particular, L2|C = 0 and N is a direct sum of homogeneous modules
from T . We know that if τ−AL1|Λ 6= 0, then it is an indecomposable Λ-
module. Observe that L2 = L2|Λ is also an indecomposable Λ-module. Since
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Λ is a hereditary algebra of type An, we then get the inequality

dimK Ext1A(L2, L1) = dimK D HomA(τ−AL1, L2)

≤ dimK HomΛ(τ−AL1|Λ, L2) ≤ 1.

But then we obtain
1 = 〈d,d〉 = 〈dim(L1 ⊕ L2 ⊕N),dim(L1 ⊕ L2 ⊕N)〉

= χ(dimL1) + χ(dimL2)− dimK Ext1A(L2, L1) + dimK Ext2A(L2, L1)

= 2− dimK Ext1A(L2, L1) + dimK Ext2A(L2, L1)

≥ 1 + dimK Ext2A(L2, L1),

and so Ext2A(L2, L1) = 0, a contradiction.
Hence, N = 0. If d = ph+e with p ≥ 1, then dimWM (d) = dimO(M) ≤

dim modA(d)− p− 1 ≤ dim modA(d)− 2, because O(M) is not a maximal
orbit in modA(d). Finally, as in 4.14, p = 0, dimK EndA(L1 ⊕ L2) = 2 and
pdAX ≤ 1 again leads to Ext2A(L2, L1) = 0.

This finishes the proof that modA(d) is nonsingular in codimension one,
and consequently is normal, in the case d|C 6= ph for any p ≥ 1.

6. Proofs of the main results. The aim of this section is to sum up
the results of Sections 4, 5 and our paper [3] and prove the results stated in
Section 1.

6.1. Theorem 1 is a direct consequence of 4.8, 4.11, 5.3, 5.4 and [3, The-
orem 1].

6.2. Theorem 2 follows from 2.3, 2.4, 2.5, 4.11, 4.13, 4.14, 4.15, 5.4, 5.5
and [3, Theorem 2].

6.3. Corollary 3 is a direct consequence of 2.3, 2.5 and Theorems 1 and 2.

6.4. We now prove Corollary 4. Let A be a tame quasi-tilted algebra.
First observe that if ΓA admits a nonstable tube Γ then, by 5.4, 5.5 and
their duals, there exists an indecomposable A-module X in Γ such that
modA(dimX) is neither irreducible nor normal. In particular, it is the case
if A is not tilted (see 2.2).

Therefore, assume that A is tilted and all tubes of ΓA are stable. Then
any nondirecting indecomposable A-module M lies in a stable tube and
it follows from 4.11, 4.13, 4.14 and 4.15 that modA(dimM) is both irre-
ducible and normal. Let M be a directing (indecomposable) A-module. We
know from [3, Theorem 2] that modA(dimM) is not irreducible (equiva-
lently, is not normal) if and only if M is an internal directing A-module
and dimM = h1 + h2 with connected positive vectors h1 = dimH1,
h2 = dimH2 ofK0(A) such that χA(h1) = 0, χA(h2) = 0 and 〈h1,h2〉A = 1,
for some indecomposable modules H1 and H2 lying in homogeneous tubes of
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ΓA and with the property dimK HomA(H1,H2) = 1. Moreover, we then also
have 〈h2,h1〉 = 0, HomA(H2,H1) = 0, and hence −dimK Ext1A(H2,H1) +
dimK Ext2A(H2,H1) = 〈h2,h1〉 − dimK HomA(H2,H1) = 0.

Conversely, suppose that H1, H2 are indecomposable modules from ho-
mogeneous tubes of ΓA such that

dimK HomA(H1,H2) = 1, dimK Ext1A(H2,H1) = dimK Ext2A(H2,H1).

Then it follows from the structure of ΓA, described in [18], that H1 is a
torsion-free module and H2 is a torsion module, in the torsion theory given
by the tilting module defining the tilted algebra A, and hence HomA(H2,H1)
= 0. Clearly, χA(dimH1) = 0 and χA(dimH2) = 0, because H1, H2 are
from homogeneous tubes. Then we get the equalities

〈dimH1,dimH2〉 = dimK HomA(H1,H2)− dimK Ext1A(H1,H2)

+ dimK Ext2A(H1,H2) = dimK HomA(H1,H2) = 1

and
〈dimH2,dimH1〉 = dimK HomA(H2,H1)− dimK Ext1A(H2,H1)

+ dimK Ext2A(H2,H1) = dimK HomA(H2,H1) = 0.

Hence, χA(dimH1 + dimH2) = 〈dimH1 + dimH2,dimH1 + dimH2〉 =
1. Moreover, dimH1 + dimH2 is connected, because HomA(H1,H2) 6= 0.
Therefore, applying 2.3 we conclude that dimH1 + dimH2 = dimM for a
unique indecomposable A-module M . In fact then M lies in the connecting
component of ΓA, and so is an internal directing A-module. In particular,
modA(dimM) is neither irreducible nor normal. Finally, we recall that an
indecomposable A-module H lies in a homogeneous tube of ΓA if and only
if it is τA-invariant, that is, τAH = H. This finishes the proof of Corollary 4.

6.5. Let A be a quasi-tilted algebra. It has been proved in [31, Theorem 3]
that A is tame if and only if for any modules M , N such that dimM =
dimN and N ∈ O(M)\O(M) in modA(d), the module N is decomposable.
Therefore, A is tame if and only if the orbit O(M) of any indecomposable
A-module M is maximal. In particular, if every indecomposable A-module
belongs to the open sheet of modA(dimM) then A is tame.

Conversely, if A is tame and d is the dimension-vector of an indecompos-
able A-module then it follows from 4.6, 4.7, 5.2 and [3, Theorem 1] that the
G(d)-orbits of indecomposable modules in modA(d) have maximal dimen-
sion, and so belong to the open sheet of modA(d). This proves Corollary 5.

7. Examples. We shall illustrate our considerations by some examples.

7.1. Let A = KQ/I be the bound quiver algebra given by the quiver

� �α β
1 2 3Q:
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and the ideal I in KQ generated by αβ. It is well known that A is a tilted
algebra of type A3 and the Auslander–Reiten quiver ΓA is of the form

��� @@R

@@R ���

S1

P2

S2

I2

S3

where dimS1 = (1, 0, 0), dimP2 = (1, 1, 0), dimS2 = (0, 1, 0), dim I2 =
(0, 1, 1), dimS3 = (0, 0, 1). In particular, we have Ext1A(X,X) = 0 for any
indecomposable A-module X. Then for any dimension-vector d ∈ K0(A) =
Z3, the irreducible components of modA(d) are the closures of the orbits of
modules M in modA(d) with Ext1A(M,M) = 0 (see [5, Lemma 4]).

Take now d = (2, 2, 2). Then it is easy to see that the irreducible compo-
nents of modA(d) are the closures of orbits of the following three modules:

M1 = S1 ⊕ P2 ⊕ I2 ⊕ S3,

M2 = P2 ⊕ P2 ⊕ S3 ⊕ S3,

M3 = S1 ⊕ S1 ⊕ I2 ⊕ I2.

Moreover, dimK EndA(M1) = 7, dimK EndA(M2) = 8 and dimK EndA(M3)
= 8. Since dimG(d) = 12, we get dimO(M1) = 5, dimO(M2) = 4 and
dimO(M3) = 4. Hence, the irreducible components of modA(d) are not
equidimensional. Therefore, modA(d) is not Cohen–Macaulay and so is not
a complete intersection. On the other hand, note that d is not the dimension-
vector of an indecomposable A-module.

7.2. Let A = KQ/I be the bound quiver algebra given by the quiver

@@R

���

���

@@R

?

��	

@@I

α

β

γ

σ

ξ

η

%

1

2

3

4

5

6

7

8

Q:

and I generated by γξ and σξ. Then A is a tilted algebra of Euclidean
type D̃7, being the domestic tubular extension of the tame concealed (even
hereditary) algebra of Euclidean type D̃4 given by the vertices 1, 2, 3, 4, 5.
The Auslander–Reiten quiver ΓA of A consists of a preprojective component,
a preinjective component and a P1(K)-family of ray tubes, all of them stable
with the exception of one tube which is of the form
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���
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where the indecomposable modules are replaced by their dimension-vectors
and the dotted lines have to be identified in order to obtain the (ray) tube.
Then according to 5.4 and 5.5,

n

n

n

n
2n

1
0

0

n

n

n

n
2n

1
1

0

n

n

n

n
2n

1
1

1

form a complete list of the dimension-vectors d of indecomposable A-modu-
les for which the module variety modA(d) is not irreducible (equivalently, is
not normal).

7.3. Let A = KQ/I be the bound quiver algebra given by the quiver

�
�

�
�1 2 3

α β

γ σ
Q:

and the ideal I in KQ generated by αβ, γσ and γβ−ασ. Then A is a tame
tilted algebra obtained by glueing two Kronecker algebras C1 = KQ(1) and
C2 = KQ(2), where Q(1) (respectively, Q(2)) is the full subquiver of A given
by vertices 1 and 2 (respectively, 2 and 3). Moreover, ΓA is of the form

ΓA = P1 ∨ T1 ∨ C ∨ T2 ∨Q2

where P1 is the preprojective component of ΓC1 , T1 is a P1(K)-family of
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stable (homogeneous) tubes of ΓC1 , T2 is a P1(K)-family of stable (homoge-
neous) tubes of ΓC2 , Q2 is the preinjective component of ΓC2 , and C is the
connecting component of the form

��� ��� ��� ���
��� ��� ��� ���@@R @@R @@R @@R

@@R @@R @@R @@R

��� @@R

` ` ` ` ` `
3 4 0 1 2 0 0 2 1 0 4 3

2 3 0 0 1 0 0 3 2

1 2 1

obtained by glueing the preinjective component of ΓC1 and the preprojective
component of ΓC2 using the indecomposable projective-injective A-module
P of dimension-vector d = (1, 2, 1). Observe that d = h1 + h2, where h1 =
(1, 1, 0) and h2 = (0, 1, 1) are generators of the radicals of χC1 and χC2 ,
respectively. Moreover, 〈h1,h2〉A = 1 and 〈h2,h1〉A = 0, and it follows from
Theorem 2 that modA(d) is neither normal nor irreducible.

On the other hand, any indecomposable A-module nonisomorphic to P
is either a C1-module or a C2-module. Hence, modA(e) is normal and irre-
ducible for the remaining dimension-vectors e of indecomposable A-modules.

7.4. Finally, let A = KQ/I be the bound quiver algebra given by the
quiver

@@R

���

-
���

@@R

@@R

���

1

2

3 4

5

6

7

α

β

γ

σ

δ

ξ

η

Q:

and the ideal I generated by ξσγ − ηδγ and ξσγα. Denote by C1 the tame
hereditary algebra of type Ã4 given by vertices 4, 5, 6, 7, and by C2 the tame
hereditary algebra of type D̃5 given by vertices 1, 2, 3, 4, 5, 6. Moreover, let
B1 be the convex subcategory of A given by all vertices except 1. Then B1

is a tilted algebra of type D̃5 which is the tubular extension of C1 using the
simple homogeneous module

���

@@R

@@R

���
K

K

K

K

1

1

1

1

Moreover, A is the one-point extension B1[R] of B1 by the indecomposable
preinjective B1-module R of the form

���

-
���

@@R

@@R

���
0

K K

K

K

0
1

1

1
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Further, the radicals of χC1 and χC2 are generated respectively by

h1 = 0

0
0 1

1

1
1 and h2 = 1

1
2 2

1

1
0

Then it follows (see also [25, 1.5]) that A is a tame tilted algebra whose
Auslander–Reiten quiver is of the form

ΓA = P1 ∨ T1 ∨ C ∨ T2 ∨Q2

where P1 is the preprojective component of ΓC1 , T1 is the P1(K)-family of
ray tubes of ΓB1 , T2 is the P1(K)-family of stable tubes of ΓC2 , Q2 is the
preinjective component of ΓC2 , and the connecting component C contains a
unique sincere indecomposable (directing) module M and

dimM =
1

1
2 3

2

2
1 = 0

0
0 1

1

1
1 + 1

1
2 2

1

1
0 = h1 + h2.

In fact, C is a glueing of the preinjective component of ΓB1 with the prepro-
jective component of ΓC2 , and the neighbourhood of M in C is as follows:

��� ��� ��� ��� ���

- - - - - - - - - -

@@R @@R @@R @@R @@R
- - - - - - - - - -

��� ��� ��� ��� ���

@@R @@R @@R @@R @@R

��� ��� ��� ��� ���

@@R @@R @@R @@R @@R

��� ���@@R @@R` ` `` ` `` ` `
` ` `
` ` `

` ` `` ` `` ` `
` ` `
` ` `

0
0 0 1 1

1 0 0
0 1 2 1

1 1 0
1 1 1 1

1 0 1
0 1 2 1

1 0 0
1 2 2 1

1 0

0
0 0 2 1

1 1 0
0 1 3 2

2 1 0
0 1 1 1

1 0

R

0
1 2 3 2

2 1 1
1 2 3 2

2 1

M

1
1 2 3 2

2 0 0
1 1 2 1

1 0 1
1 3 4 2

2 0 1
0 2 2 1

1 0

0
1 2 4 3

3 2 0
1 1 2 2

1 1 0
1 1 3 2

2 1 0
0 0 1 0

1 0 0
0 1 2 1

1 0 0
0 1 1 1

0 0 1
1 3 3 2

2 0 1
1 2 2 1

2 0 2
2 4 5 3

3 0

0
1 1 2 1

2 1 0
0 0 1 1

0 0 0
0 1 1 0

1 0 1
1 2 2 2

1 0

1
0 1 1 1

1 0 0
1 1 2 1

1 1

Moreover, it is easy to check that 〈h1,h2〉A = 2, and hence modA(dimM)
is irreducible and normal. Observe that if N is an arbitrary indecomposable
directing A-module nonisomorphic to M then N is either a B1-module or
a C2-module, and consequently modA(dimN) is irreducible, normal and a
complete intersection.

On the other hand, we note that the tubular family T1 has one nonstable
tube containing indecomposable modules with dimension-vectors

0

0
1n

n

n
n = 0

0
1 0

0

0
0 + nh1,

0

1
1n

n

n
n = 0

1
1 0

0

0
0 + nh1, n ≥ 1,

for which the associated modules varieties are, according to 5.4 and 5.5,
neither irreducible nor normal.
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