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ON THE METRIC THEORY OF CONTINUED FRACTIONS

BY

JOËL R IVAT (LYON)

Introduction. For any positive integer n we denote by P (n) the Lebe-
sgue measure of the set of irrational numbers x ∈ (0, 1) whose closest ratio-
nal approximation with denominator ≤ n is a convergent of the continued
fraction expansion of x.

The question of the behaviour of P (n) was asked by M. Deléglise to
A. Schinzel. Recently I. Aliev, S. Kanemitsu and A. Schinzel [1] proved that

P (n) =
1

2
+

6

π2
(log 2)2 +O

(

1

n

)

.

In this article we shall improve this result to the following

Theorem. There exists c > 0 such that

(1) P (n) =
1

2
+

6

π2
(log 2)2 +O

(

1

n
exp

(

−c
(log n)3/5

(log log n)1/5

))

.

Under the Riemann hypothesis we have

(2) P (n) =
1

2
+

6

π2
(log 2)2 +O(n−4/3+ε).

Remark. I. Aliev, S. Kanemitsu and A. Schinzel [1] also note that the
main term, but not the error term, can be derived from Theorem 1.3 of
P. Kargaev and A. Zhigljavsky [2].

Classical results. We denote by ⌊x⌋ the greatest integer not exceeding
x and write ψ(x) = x− ⌊x⌋ − 1/2.

Lemma 1. Let f be a function with a continuous derivative in the interval

[a, b]. Then

∑

a<n≤b

f(n) =

b\
a

f(x) dx+ ψ(a)f(a)− ψ(b)f(b) +

b\
a

ψ(x)f ′(x) dx.

P r o o f. See for example Titchmarsh [4], formula 2.1.2, page 13.
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Applying this lemma and writing φ(x) = ψ(x)/x, log+ x = max(log x, 1)
we obtain

Lemma 2. For arbitrary positive numbers a < b we have

∑

a<n≤b

1

n
= log b− log a+ φ(a)− φ(b) +O

(

1

a2

)

,

∑

a<n≤b

log n

n
=

(log b)2 − (log a)2

2
+ φ(a) log a− φ(b) log b+O

(

log+ a

a2

)

,

∑

a<n≤b

1

n2
=

1

a
−

1

b
+O

(

1

a2

)

.

Corollary 1. For any positive number x, we have

∑

x/2<k≤x

1

k
= log 2 + φ

(

x

2

)

− φ(x) +O

(

1

x2

)

,

∑

x/2<k≤x

log k

k
= log

(

x

2

)

log 2 +
(log 2)2

2

+ φ

(

x

2

)

log

(

x

2

)

− φ(x) log x+O

(

log+ x

x2

)

,

∑

x/2<k≤x

1

k2
=

1

x
+O

(

1

x2

)

.

Lemma 3. There exists c > 0 such that for any x ≥ 1 we have

∑

1≤d≤x

µ(d)

d
= O

(

exp

(

−c
(log x)3/5

(log log x)1/5

))

,

∑

1≤d≤x

µ(d)

d2
=

6

π2
+O

(

1

x
exp

(

−c
(log x)3/5

(log log x)1/5

))

.

Under the Riemann hypothesis, for any x ≥ 1 we have

∑

1≤d≤x

µ(d)

d
= O(x−1/2+ε),

∑

1≤d≤x

µ(d)

d2
=

6

π2
+O(x−3/2+ε).

P r o o f. By partial summation, for any 1 ≤ x ≤ y we have

∑

x<d≤y

µ(d)

d
=

1

y

∑

x<d≤y

µ(d) +

y\
x

(

∑

x<d≤t

µ(d)
)dt

t2
,

∑

x<d≤y

µ(d)

d2
=

1

y2

∑

x<d≤y

µ(d) + 2

y\
x

(

∑

x<d≤t

µ(d)
)dt

t3
.
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By Satz 3 of A. Walfisz [5], page 191, there exists c′ > 0 such that

∑

1≤d≤x

µ(d) = O

(

x exp

(

−c′
(log x)3/5

(log log x)1/5

))

.

Writing

δ(t) = exp

(

−c′
(log t)3/5

(log log t)1/5

)

we have
∑

x<d≤t µ(d) ≪ tδ(t), hence

∑

x<d≤y

µ(d)

d
≪ δ(y) +

y\
x

δ(t)
dt

t

≪ δ(y) + δ(x)(log x)2
y\
x

dt

t(log t)2
≪ δ(x) log x,

∑

x<d≤y

µ(d)

d2
≪

δ(y)

y
+

y\
x

δ(t)
dt

t2
≪

δ(y)

y
+ δ(x)

y\
x

dt

t2
≪

δ(x)

x
,

In 1909, Landau [3] proved that
∑∞

d=1 µ(d)/d = 0. Hence for any c with
0 < c < c′ we have

∑

1≤d≤x

µ(d)

d
= − lim

y→∞

∑

x<d≤y

µ(d)

d
≪ δ(x) log x≪ exp

(

−c
(log x)3/5

(log log x)1/5

)

,

which proves the first estimate of Lemma 3.

Furthermore,

∑

1≤d≤x

µ(d)

d2
=

6

π2
−

∑

d>x

µ(d)

d2
=

6

π2
+O

(

δ(x)

x

)

,

which proves the second estimate of Lemma 3.

The proof of the estimates under the Riemann hypothesis is similar.

Proof of the theorem. In [1] I. Aliev, S. Kanemitsu and A. Schinzel
reduce the problem to the evaluation of an elementary sum by proving

Lemma 4 (Aliev, Kanemitsu, Schinzel). For n > 1 we have

P (n) =
1

2
+ 2

∑

b,c

1

bc

where the sum is taken over all integers b, c such that 1 ≤ b ≤ n < c < 2b
and (b, c) = 1.
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Applying this lemma we have

P (n) =
1

2
+ 2

n
∑

b=1

∑

n<c<2b

1

bc

∑

d | (b,c)

µ(d)

=
1

2
+ 2

n
∑

d=1

µ(d)

d2

∑

1≤k≤n/d

1

k

∑

n/d<m<2k

1

m
=

1

2
+ 2

n
∑

d=1

µ(d)

d2
S

(

n

d

)

where

S(x) =
∑

x/2<k≤x

1

k

∑

x<m<2k

1

m
.

Lemma 5. For any positive number x we have

S(x) =
(log 2)2

2
−

1

4x
+O

(

log+ x

x2

)

.

P r o o f. The argument is similar to those used in [1]. We use Corollary 1,
which is a simple application of the Euler–Maclaurin summation:

S(x) =
∑

x/2<k≤x

1

k

∑

x<m≤2k

1

m
−

∑

x/2<k≤x

1

2k2

=
∑

x/2<k≤x

1

k
(log 2k − log x+ φ(x)− φ(2k) +O(x−2))−

∑

x/2<k≤x

1

2k2

=
∑

x/2<k≤x

log k

k
−

∑

x/2<k≤x

1

4k2
− (log(x/2) − φ(x) +O(x−2))

∑

x/2<k≤x

1

k

=
(log 2)2

2
−

1

4x
+O

(

log+ x

x2

)

.

If we replace S(n/d) by the asymptotic formula above and do a straight-
forward summation over d we obtain the result of I. Aliev, S. Kanemitsu
and A. Schinzel in [1].

Howewer, we observe that if d is large, then n/d is small and therefore
the error term in the asymptotic formula above is bad. Hence we need a
different argument when d is large.

Let R be an integer such that R ≍ n1/3 (this choice will be explained
later). We then have

P (n) =
1

2
+ 2

∑

1≤d≤n/R

µ(d)

d2
S

(

n

d

)

+ 2
∑

1≤r<R

∑

n/(r+1)<d≤n/r

µ(d)

d2
S

(

n

d

)

.

We observe that for any real number x > 0 we have S(x) = S(⌊x⌋). Indeed,
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if k and m are integers we have

x/2 < k ≤ x⇔ ⌊x⌋/2 < k ≤ ⌊x⌋, x < m ≤ 2k ⇔ ⌊x⌋ < m ≤ 2k.

Now for n/(r + 1) < d ≤ n/r we have ⌊n/d⌋ = r. Hence

(3) P (n) =
1

2
+ 2

∑

1≤d≤n/R

µ(d)

d2
S

(

n

d

)

+ 2
∑

1≤r<R

S(r)
∑

n/(r+1)<d≤n/r

µ(d)

d2
.

We will use Lemma 5 to replaceS(n/d) andS(r) by the corresponding
asymptotic formula. We recall that R ≍ n1/3, which implies that log(n/R) ≍
log n. We deduce from Lemma 3 that there exists c > 0 such that for
1 ≤ r ≤ R,

∑

d>n/r

µ(d)

d2
≪

r

n
exp

(

−c
(log n)3/5

(log log n)1/5

)

.

The term (log 2)2/2 from Lemma 5 for S(n/d) and S(r) contributes to
P (n) (in (3)) the amount

(log 2)2
(

∑

1≤d≤n/R

µ(d)

d2
+

∑

1≤r<R

∑

n/(r+1)<d≤n/r

µ(d)

d2

)

= (log 2)2
∑

1≤d≤n

µ(d)

d2
=

6

π2
(log 2)2 − (log 2)2

∑

d>n

µ(d)

d2
,

which gives the constant term 6
π2 (log 2)

2 and an admissible error term by
Lemma 3.

The term −1/(4(n/d)) from Lemma 5 for S(n/d) contributes to P (n)
(in (3)) the amount

−
1

2n

∑

1≤d≤n/R

µ(d)

d
,

which by Lemma 3 is an error term of order

O

(

1

n
exp

(

−c
(log n)3/5

(log log n)1/5

))

and under the Riemann hypothesis

O

(

1

n

(

n

R

)−1/2+ε)

= O(R1/2n−3/2+ε).

The term −1/(4r) from Lemma 5 for S(r) contributes to P (n) (in (3))
the amount
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−
1

2

∑

1≤r<R

1

r

∑

n/(r+1)<d≤n/r

µ(d)

d2

= −
1

2

∑

1≤r<R

1

r

(

∑

d>n/(r+1)

µ(d)

d2
−

∑

d>n/r

µ(d)

d2

)

= −
1

2

(

1

R

∑

d>n/R

µ(d)

d2
−

∑

d>n

µ(d)

d2
+

∑

2≤r≤R

1

r(r − 1)

∑

d>n/r

µ(d)

d2

)

,

which is of order

O

((

1

R

R

n
+

1

n
+

1

n

∑

2≤r≤R

1

(r−1)

)

exp

(

−c
(log n)3/5

(log log n)1/5

))

,

which in turn is

O

(

1

n
exp

(

−c′
(log n)3/5

(log log n)1/5

))

for 0 < c′ < c.

Under the Riemann hypothesis this error term becomes

O

(

1

R

(

n

R

)−3/2+ε

+ n−3/2+ε +
∑

1≤r≤R

1

r2

(

n

r

)−3/2+ε)

= O(R1/2n−3/2+ε).

The error term O(log+(n/d)/(n/d)2) from Lemma 5 for S(n/d) con-
tributes to P (n) (in (3)) the amount

O

(

∑

1≤d≤n/R

log+(n/d)

n2

)

= O

(

log n

nR

)

The error term O((log+(r))/r2) from Lemma 5 for S(r) contributes to
P (n) (in (3)) the amount

O

(

∑

1≤r<R

log+(r)

r2

∣

∣

∣

∣

∑

n/(r+1)<d≤n/r

µ(d)

d2

∣

∣

∣

∣

)

,

which is

O

(

log n
∑

1≤r<R

1

r2
r + 1

n
exp

(

−c
(log n)3/5

(log log n)1/5

))

,

which in turn is

O

(

1

n
exp

(

−c′
(log n)3/5

(log log n)1/5

))

for 0 < c′ < c.

Under the Riemann hypothesis this error term becomes

O

(

log n
∑

1≤r<R

1

r2

(

n

r + 1

)−3/2+ε)

= O((log n)R1/2−εn−3/2+ε).
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We now see that the choice R ≍ n1/3 permits us to optimize the sum
R1/2n−3/2 + 1/(nR) and completes the proof of the theorem.
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