SALOMON'S THEOREM FOR POLYNOMIALS WITH SEVERAL PARAMETERS

1. Introduction. Let \mathbb{K} be an algebraically closed field, and $\Lambda=$ $\left(\Lambda_{1}, \ldots, \Lambda_{m}\right)$ and $X=\left(X_{1}, \ldots, X_{n}\right)$ systems of variables.

Let $\bar{K}(\Lambda)^{\text {sep }}$ be the separable closure of $\mathbb{K}(\Lambda)$. We say that polynomials $F_{1}, F_{2} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$ are conjugate over $\mathbb{K}(\Lambda)$ if there exists a $\mathbb{K}(\Lambda, X)$ automorphism φ of $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}(X)$ such that $\varphi\left(F_{1}\right)=F_{2}$.

We say that a polynomial $F \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$ is monic if the last coefficient of F in the lexicographic order is equal to 1 .

In the theory of polynomials the following Salomon's Theorem is wellknown ([Sa], [Sc, Theorem 17]).

Salomon's Theorem. If $F \in \mathbb{K}\left[\Lambda_{1}, X\right]$ is irreducible over $\mathbb{K}\left(\Lambda_{1}\right)$ then all monic factors of F irreducible over $\overline{\mathbb{K}\left(\Lambda_{1}\right)}$ sep are conjugate over $\mathbb{K}\left(\Lambda_{1}\right)$ and the number of linearly independent coefficients over \mathbb{K} of any such factor does not exceed $\operatorname{deg}_{\Lambda_{1}} F+1$.

Using the idea of Krull [Kr] (see also [Sc, Theorem 17]) we give a generalization of this theorem to the case of several parameters Λ (Theorem 2). The upper bound $\operatorname{deg}_{\Lambda_{1}} F+1$ is replaced by the number $\gamma_{\Lambda}(F)$ of integer points of the Newton polyhedron of F which we now define. Let $F \in \mathbb{K}[\Lambda, X]$ be of the form $F=\sum_{J} F_{J} \Lambda^{J}$, where $J=\left(j_{1}, \ldots, j_{m}\right)$ is a multiindex, $\Lambda^{J}=\Lambda_{1}^{j_{1}} \ldots \Lambda_{m}^{j_{m}}$, and $F_{J} \in \mathbb{K}[X]$. Let $\operatorname{supp}_{\Lambda}(F)=\left\{J \in \mathbb{Z}^{m}: F_{J} \neq 0\right\}$. Then we define the Newton polyhedron $\Delta_{\Lambda}(F)$ of F and the number $\gamma_{\Lambda}(F)$ by

$$
\Delta_{\Lambda}(F)=\operatorname{conv}\left(\operatorname{supp}_{\Lambda}(F)\right), \quad \gamma_{\Lambda}(F)=\#\left(\Delta_{\Lambda}(F) \cap \mathbb{Z}^{m}\right)
$$

where conv A denotes the convex envelope of a set $A \subset \mathbb{R}^{m}$. The main difficulty in this generalization is the estimation of the number of linearly

[^0]independent coefficients in the factors. The problem has been suggested by Professor A. Schinzel in a talk with the third author.

The key role in the proof is played by Proposition 1 (Section 2) on a multilinear form in the coefficients of polynomials.

The estimation obtained is a natural generalization of the one-parameter case because, for $m=1$ and an irreducible polynomial F with $\operatorname{deg}_{X} F>0$, we have $\gamma_{\Lambda}(F)=\operatorname{deg}_{\Lambda_{1}} F+1$ (i.e. the number of coefficients of a polynomial in one variable with given degree). Moreover, in this estimation equality is attainable (Example 1), and it easy to see that $\gamma_{\Lambda}(F)$ does not exceed certain numbers which may be generalizations of the number mentioned above:

- $\gamma_{\Lambda}(F) \leq\left({ }^{\operatorname{deg}_{\Lambda}} \underset{m}{F+m}\right)$, i.e. $\gamma_{\Lambda}(F)$ does not exceed the number of coefficients of a polynomial with a given degree,
- $\gamma_{\Lambda}(F) \leq \prod_{i=1}^{m}\left(\operatorname{deg}_{\Lambda_{i}} F+1\right)$, i.e. $\gamma_{\Lambda}(F)$ does not exceed the number of coefficients of a polynomial with given degrees with respect to all variables.

Additionally we have $\gamma_{\Lambda}(F) \leq\left(\operatorname{deg}_{\Lambda} F\right)^{m}+m$.
Theorem 2 does not fully explain the generalization of Bertini's Theorem ([Sc, Theorem 18]) to the case of polynomials with arbitrary degree with respect to the parameters. Such a generalization was claimed by Riehle in $[\mathrm{R}]$ (inaccessible to the authors), but Krull $[\mathrm{Kr}]$ objected to the validity of the proof. Riehle claimed that the number of linearly independent coefficients in the above mentioned factors does not exceed $1+\prod_{i=1}^{m} \operatorname{deg}_{\Lambda_{i}} F$.
2. Multilinear forms in the coefficients of polynomials. For A, B $\subset \mathbb{R}^{m}$ we write

$$
A+B=\{a+b: a \in A, b \in B\} \quad \text { and } \quad n A=\underbrace{A+\ldots+A}_{n \text { times }} .
$$

Thus, if A is convex, then $n A=\{n a: a \in A\}$.
Lemma 1. Let $A \subset \mathbb{R}^{m}$ be bounded and convex. If $G, Q_{1}, \ldots, Q_{N} \in$ $\mathbb{K}[\Lambda]$ are polynomials such that

$$
\begin{equation*}
\Delta_{\Lambda}\left(Q_{i}\right) \subset i A \quad \text { for } i=1, \ldots, N \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{N}+Q_{1} G^{N-1}+\ldots+Q_{N}=0, \tag{2}
\end{equation*}
$$

then $\Delta_{\Lambda}(G) \subset A$.
Proof. Since $\Delta_{\Lambda}\left(G^{i}\right)=i \Delta_{\Lambda}(G)$ for $i=1, \ldots, N$, from (1) and (2) we obtain

$$
\begin{equation*}
N \Delta_{\Lambda}(G) \subset \operatorname{conv}\left(\bigcup_{i=1}^{N}\left[(N-i) \Delta_{\Lambda}(G)+i A\right]\right) . \tag{3}
\end{equation*}
$$

Assume that, on the contrary, $\Delta_{\Lambda}(G) \not \subset A$. Then there exist $J_{0} \in \Delta_{\Lambda}(G) \backslash A$ and a linear form $L: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
L\left(J_{0}\right) \geq L(J) & \text { for } J \in \Delta_{\Lambda}(G) \\
L\left(J_{0}\right)>L\left(J^{\prime}\right) & \text { for } J^{\prime} \in A \tag{5}
\end{array}
$$

By (3) there exist $J_{1}, \ldots, J_{s} \in \Delta_{\Lambda}(G), J_{1}^{\prime}, \ldots, J_{s}^{\prime} \in A, 0<i_{1}, \ldots, i_{s} \leq N$ and $t_{1}, \ldots, t_{s} \in \mathbb{R}, t_{i} \geq 0, t_{1}+\ldots+t_{s}=1$, such that

$$
N J_{0}=\sum_{k=1}^{s} t_{k}\left[\left(N-i_{k}\right) J_{k}+i_{k} J_{k}^{\prime}\right] .
$$

Hence, from (4) and (5) we have

$$
\begin{aligned}
N L\left(J_{0}\right) & =\sum_{k=1}^{s} t_{k}\left[\left(N-i_{k}\right) L\left(J_{k}\right)+i_{k} L\left(J_{k}^{\prime}\right)\right] \\
& <\sum_{k=1}^{s} t_{k}\left[\left(N-i_{k}\right) L\left(J_{0}\right)+i_{k} L\left(J_{0}\right)\right]=N L\left(J_{0}\right)
\end{aligned}
$$

which is impossible. This ends the proof.
We are going to formulate a proposition which plays a crucial role in the proof of Theorem 1. First we define multilinear forms in the coefficients of polynomials which will be used in the proof of Proposition 1.

For a multiindex $I=\left(i_{1}, \ldots, i_{n}\right)$, let $\|I\|=i_{1}+\ldots+i_{n}$ and $X^{I}=$ $X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}$. Let $F_{j} \in \overline{\mathbb{K}(\Lambda)}^{\text {sep }}[X], j=1, \ldots, k$, be of the form

$$
\begin{equation*}
F_{j}=\sum_{\|I\| \leq v} \alpha_{j, I} X^{I} \tag{6}
\end{equation*}
$$

where $v \in \mathbb{Z}, v \geq 0, \alpha_{j, I} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ for $j=1, \ldots, k,\|I\| \leq v$. Let $Y_{j}=$ $\left(Y_{j, I} ;\|I\| \leq v\right), j=1, \ldots, k$. If $g \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{k}\right]$ is a homogeneous form of degree k such that $\operatorname{deg}_{Y_{j}} g=1, j=1, \ldots, k$, then

$$
G=g\left(\alpha_{j, I}:\|I\| \leq v, j=1, \ldots, k\right) \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}
$$

is called a multilinear form in the coefficients of the polynomials F_{1}, \ldots, F_{k} (where for $r \in \mathbb{Z}$ we put $r \cdot 1 \in \overline{\mathbb{K}}(\Lambda)$ sep).

Let $F_{j} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X], j=1, \ldots, k$, be all the conjugates of F_{1} over $\mathbb{K}(\Lambda)$. Then there exist polynomials $P_{1}, \ldots, P_{d} \in \mathbb{K}[X]$ and $\stackrel{\circ}{\alpha}_{j, i} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ such that

$$
\begin{equation*}
F_{j}=\stackrel{\circ}{\alpha}_{j, 1} P_{1}+\ldots+\stackrel{\circ}{\alpha}_{j, d} P_{d} \tag{7}
\end{equation*}
$$

for $j=1, \ldots, k$ (and $\stackrel{\circ}{\alpha}_{1, i}, \ldots, \stackrel{\circ}{\alpha}_{k, i}$ are all the conjugates of $\stackrel{\circ}{\alpha}_{1, i}$ over $\mathbb{K}(\Lambda)$ for $i=1, \ldots, d)$. Let $Z=\left(Z_{1}, \ldots, Z_{d}\right)$ be a system of variables and

$$
E_{j}=\stackrel{\circ}{\alpha}_{j, 1} Z_{1}+\ldots+\stackrel{\circ}{\alpha}_{j, d} Z_{d} \in \overline{\mathbb{K}}(\Lambda)^{\operatorname{sep}}[Z], \quad j=1, \ldots, k .
$$

Proposition 1. Let $f \in \mathbb{K}(\Lambda), f \neq 0$. If d is the minimal number in (7) and

$$
F=f F_{1} \ldots F_{k} \in \mathbb{K}[\Lambda, X],
$$

then

$$
E=f E_{1} \ldots E_{k} \in \mathbb{K}[\Lambda, Z] \quad \text { and } \quad \Delta_{\Lambda}(E)=\Delta_{\Lambda}(F) .
$$

Proof. From the choice of d we see that the polynomials P_{1}, \ldots, P_{d} are linearly independent over \mathbb{K}. Since \mathbb{K} is an infinite field, there exist $x^{1}, \ldots, x^{d} \in \mathbb{K}^{n}$ such that

$$
\begin{equation*}
\operatorname{det}\left[P_{i}\left(x^{j}\right)\right]_{i, j=1, \ldots, d} \neq 0 . \tag{8}
\end{equation*}
$$

From (6) and (7) we have

$$
\sum_{\|I\| \leq v} \alpha_{i, I}\left(x^{j}\right)^{I}=\dot{\alpha}_{i, 1} P_{1}\left(x^{j}\right)+\ldots+\dot{\alpha}_{i, d} P_{d}\left(x^{j}\right), \quad j=1, \ldots, d .
$$

So, by (8), from Cramer's formulae we find that there exist $\xi_{i, I} \in \mathbb{K},\|I\| \leq v$, $i=1, \ldots, d$, such that

$$
\stackrel{\circ}{\alpha} s, i=\sum_{\|I\| \leq v} \alpha_{s, I} \xi_{i, I} .
$$

Thus any multilinear form in the coefficients of $f E_{1}, \ldots, E_{k}$ is a linear combination over \mathbb{K} of multilinear forms in the coefficients of $f F_{1}, \ldots, F_{k}$. Hence, since $F \in \mathbb{K}[\Lambda, X]$, by Kronecker's Theorem ([K], [Sc, Theorem 10], [Kö, VI, $\S 2])$, the multilinear forms in the coefficients of $f E_{1}, \ldots, E_{k}$ are integer over $\mathbb{K}[\Lambda]$. Since F_{1}, \ldots, F_{k} are all the conjugates of F_{1} over $\mathbb{K}(\Lambda)$, it follows that E_{1}, \ldots, E_{k} are all the conjugates of E_{1} over $\mathbb{K}(\Lambda)$. In consequence $E \in \mathbb{K}(\Lambda)[X]$, thus $E \in \mathbb{K}[\Lambda, X]$.

The inclusion $\Delta_{\Lambda}(E) \supset \Delta_{\Lambda}(F)$ is obvious. We prove that $\Delta_{\Lambda}(E) \subset$ $\Delta_{\Lambda}(F)$. Let $E=\sum_{J} A_{J} Z^{J}$, where $A_{J} \in \mathbb{K}[\Lambda]$ for every multiindex J. Since

$$
\Delta_{\Lambda}(E)=\operatorname{conv}\left(\bigcup_{J} \Delta_{\Lambda}\left(A_{J}\right)\right),
$$

it suffices to prove that $\Delta_{\Lambda}\left(A_{J}\right) \subset \Delta_{\Lambda}(F)$ for all J. Take any coefficient $G=A_{J} \in \mathbb{K}[\Lambda]$ of the polynomial E. Obviously G is a multilinear form in the coefficients of $f E_{1}, \ldots, E_{k}$. Then there exist multilinear forms G_{1}, \ldots, G_{M} in the coefficients of $f F_{1}, \ldots, F_{k}$ and $\xi_{1}, \ldots, \xi_{M} \in \mathbb{K}$ such that

$$
\begin{equation*}
G=\xi_{1} G_{1}+\ldots+\xi_{M} G_{M} . \tag{9}
\end{equation*}
$$

By Kronecker's Theorem ([Sc, Theorem 9], [Kö, VI, §2]) there exists a nonempty set of non-zero forms h_{1}, \ldots, h_{N} in the coefficients of $f F_{1}, \ldots, F_{k}$ such that every multilinear form G_{s} in the coefficients of $f F_{1}, \ldots, F_{k}$ satisfies

$$
G_{s} h_{i}=\sum_{j=1}^{N} b_{i, j, G_{s}} h_{j}, \quad i=1, \ldots, N,
$$

where $b_{i, j, G_{s}}$ are some linear forms in the coefficients of F. Hence (9) yields

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\delta_{i, j} G-\sum_{s=1}^{M} \xi_{s} b_{i, j, G_{s}}\right) h_{j}=0, \quad i=1, \ldots, N, \tag{10}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker symbol. Since h_{1}, \ldots, h_{N} are non-zero, the determinant of the linear system (10) vanishes. Thus we have

$$
\begin{equation*}
G^{N}+Q_{1} G^{N-1}+\ldots+Q_{N}=0 \tag{11}
\end{equation*}
$$

where $Q_{j} \in \mathbb{K}[\Lambda]$ is a homogeneous form of degree j in the coefficients of $F, j=1, \ldots, N$. Thus $\Delta_{\Lambda}\left(Q_{j}\right) \subset j \Delta_{\Lambda}(F)$. By Lemma 1, $\Delta_{\Lambda}(G) \subset \Delta_{\Lambda}(F)$, which ends the proof.
3. Generalization of Salomon's Theorem. Let $F \in \mathbb{K}[\Lambda, X]$. The main result of the paper will be preceded by

Theorem 1. Let $F_{j} \in \overline{\mathbb{K}}(\Lambda)^{\mathrm{sep}}[X], j=1, \ldots, k$, be all the conjugates of F_{1} over $\mathbb{K}(\Lambda)$ and let $f \in \mathbb{K}(\Lambda), f \neq 0$, be such that

$$
F=f F_{1} \ldots F_{k} \in \mathbb{K}[\Lambda, X] .
$$

Then the number of linearly independent coefficients (over \mathbb{K}) of any F_{j} does not exceed $\gamma_{\Lambda}(F)$.

Proof. Let $F_{j}, j=1, \ldots, k$, be of the form (6). Let d be the dimension of the following linear space over \mathbb{K} :

$$
\left\{\sum_{\|I\| \leq v} \xi_{I} \alpha_{1, I}: \xi_{I} \in \mathbb{K} \text { for }\|I\| \leq v\right\}
$$

and $\stackrel{\circ}{\alpha}_{1,1}, \ldots, \stackrel{\circ}{\alpha}_{1, d}$ be its basis. Then there exist $P_{1}, \ldots, P_{d} \in \mathbb{K}[X]$ such that

$$
F_{1}=\stackrel{\circ}{\alpha}_{1,1} P_{1}+\ldots+\stackrel{\circ}{\alpha}_{1, d} P_{d} .
$$

Since F_{1}, \ldots, F_{k} are conjugate over $\mathbb{K}(\Lambda)$, we have

$$
F_{j}=\dot{\alpha}_{j, 1} P_{1}+\ldots+\dot{\alpha}_{j, d} P_{d}
$$

for $j=2, \ldots, k$ (and $\dot{\alpha}_{1, i}, \ldots, \dot{\alpha}_{k, i}$ are all the conjugates of $\dot{\alpha}_{1, i}$ over $\mathbb{K}(\Lambda)$ for $i=1, \ldots, d$). Let

$$
E_{j}=\stackrel{\circ}{\alpha}_{j, 1} Z_{1}+\ldots+\stackrel{\circ}{\alpha}_{j, d} Z_{d} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[Z], \quad j=1, \ldots, k,
$$

where $Z=\left(Z_{1}, \ldots, Z_{d}\right)$. By Proposition 1 we have $E=f E_{1} \ldots E_{k} \in \mathbb{K}[\Lambda, Z]$ and $\Delta_{\Lambda}(E) \subset \Delta_{\Lambda}(F)$. Thus $\gamma_{\Lambda}(E) \leq \gamma_{\Lambda}(F)$. In consequence there exist homogeneous forms $H_{i} \in \mathbb{K}[Z]$ and polynomials $B_{i} \in \mathbb{K}[\Lambda], i=1, \ldots, \gamma_{\Lambda}(F)$, such that

$$
E=\sum_{i=1}^{\gamma_{\Lambda}(F)} B_{i} H_{i} .
$$

Assume, contrary to our claim, that $\gamma_{\Lambda}(F)<d$. Then the forms H_{1}, \ldots $\ldots, H_{\gamma_{\Lambda}(F)}$ have a common non-trivial zero $\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{K}^{d}$ and so

$$
0=f \prod_{j=1}^{k}\left(\stackrel{\circ}{\alpha}_{j, 1} \xi_{1}+\ldots+\stackrel{\circ}{\alpha}_{j, d} \xi_{d}\right)
$$

In consequence, at least one factor of the right-hand side is zero. This contradicts the definition of d (since for any $j=1, \ldots, k$ the elements $\stackrel{\circ}{\alpha}_{j, 1}, \ldots, \stackrel{\circ}{\alpha}_{j, d}$ are linearly independent over \mathbb{K}). This ends the proof.

For F irreducible, the above theorem immediately yields the following generalization of Salomon's Theorem to the case of several parameters.

Theorem 2. If $F \in \mathbb{K}[\Lambda, X]$ is irreducible over $\mathbb{K}(\Lambda)$ then all monic factors in $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$ of F irreducible over $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ are conjugate over $\mathbb{K}(\Lambda)$ and the number of linearly independent coefficients (over \mathbb{K}) of any such factor does not exceed $\gamma_{\Lambda}(F)$.

Proof. Let F_{1} be a monic factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}^{\text {sep }}$ and F_{2}, \ldots, F_{k} be all its conjugates over $\mathbb{K}(\Lambda)$. Since $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ is Galois over $\mathbb{K}(\Lambda), F_{j}$ are all irreducible over $\mathbb{K}(\Lambda)$ and since they are monic, they are pairwise relatively prime. Hence F_{j} is a divisor of $F, j=1, \ldots, k$. It follows that $\prod_{j=1}^{k} F_{j}$ is a divisor of F. However, $\prod_{j=1}^{k} F_{j}$ is invariant with respect to any automorphism φ of $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ over $\mathbb{K}(\Lambda)$, hence $\prod_{j=1}^{k} F_{j} \in \mathbb{K}(\Lambda)[X]$ and, by the irreducibility of F over $\mathbb{K}(\Lambda)$, there is an $f \in \mathbb{K}(\Lambda)$ such that

$$
\begin{equation*}
F=f \prod_{j=1}^{k} F_{j} \tag{12}
\end{equation*}
$$

Hence, by Theorem 1, we have the assertion.
The upper bound given by Theorem 2 can be attained, as shown by the following

Example 1. Let $X=\left(X_{0}, \ldots, X_{n}\right)$ be a system of variables and $P\left(t_{1}, t_{2}, X\right)=\sum_{r+s=n} t_{1}^{r} t_{2}^{s} X_{r}$. Let ε be a primitive root of unity of degree n. Then the polynomials

$$
F_{j}=P\left(\sqrt[n]{\Lambda_{2} \ldots \Lambda_{m}}, \varepsilon^{j} \sqrt[n]{\Lambda_{1}}, X\right) \in \overline{\mathbb{K}}(\Lambda)^{\operatorname{sep}}[X], \quad j=1, \ldots, n
$$

are all the conjugates of F_{1} over $\mathbb{K}(\Lambda)$. Hence $F=\prod_{j=1}^{n} F_{j} \in \mathbb{K}[\Lambda, X]$ is irreducible over $\mathbb{K}(\Lambda)$. Moreover, $\gamma_{\Lambda}(F)=n+1$ and the F_{j} have each $n+1$ coefficients linearly independent over \mathbb{K}.

In the above example the polyhedron of F is a segment and one can reduce this example to the case of one parameter Λ_{1} (puting $\Lambda_{2}=\ldots=\Lambda_{m}$ $=1$). The authors do not know such examples with $\Delta_{\Lambda}(F) m$-dimensional.

From Theorem 2 we obtain the following

Theorem 3. Let $F \in \mathbb{K}[\Lambda, X]$. Then the number of linearly independent coefficients (over \mathbb{K}) of any factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}{ }^{\text {sep }}$ does not exceed $\gamma_{\Lambda}(F)$.

Proof. Let $F_{1} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$ be any factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}$ sep Without loss of generality we may assume that F_{1} is monic. Let $F=$ $R_{1} \ldots R_{k}$ be the decomposition of F into irreducible factors in $\mathbb{K}[\Lambda, X]$. From Ostrowski's Theorem ($[\mathrm{O}$, Theorem VI]) we have

$$
\Delta_{\Lambda}\left(R_{1}\right)+\ldots+\Delta_{\Lambda}\left(R_{k}\right)=\Delta_{\Lambda}(F) .
$$

So, $\gamma_{\Lambda}\left(R_{j}\right) \leq \gamma_{\Lambda}(F), j=1, \ldots, k$. Since F_{1} is a divisor of at least one R_{j}, Theorem 2 yields the assertion.

The above theorem is not true for arbitrary factors, as is shown by the following

Example 2. For $F=X_{1}^{s}-\Lambda_{1}$ we have $\gamma_{\Lambda}(F)=2$ and

$$
F=\left(X_{1}-\sqrt[s]{\Lambda_{1}}\right)\left(X_{1}^{s-1}+X_{1}^{s-1} \sqrt[s]{\Lambda_{1}}+\ldots+\left(\sqrt[s]{\Lambda_{1}}\right)^{s-1}\right)
$$

It is easy to see that the last factor has s coefficients linearly independent over \mathbb{K}.

Remark 1. The above results hold for arbitrary Galois extensions of $\mathbb{K}(\Lambda)$ in place of $\overline{\mathbb{K}(\Lambda)}$, ${ }^{\text {sep }}$, with no change in the proofs.
4. A corollary. In this section we give a particular version of Theorem 2.

Assume that \mathbb{K} is an algebraically closed field of characteristic zero. Then $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}$ is the algebraic closure of $\mathbb{K}(\Lambda)$.

In Theorems $1-3$ the reducibility of the polynomial F in $\overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$, by Emma Noether's Theorem ($[\mathrm{N}]$, $[\mathrm{Sc}$, Theorem 15]), is equivalent to the reducibility of $F(\lambda, X)$ in $\mathbb{K}[X]$ for all $\lambda \in \mathbb{K}^{m}$ such that $\operatorname{deg} F(\lambda, X)=$ $\operatorname{deg}_{X} F$. We now give a version of Theorem 2 in the case when $F(\lambda, X)-z$ is reducible in $\mathbb{K}[X]$ for all $z \in \mathbb{K}$ and $\lambda \in \mathbb{K}^{m}$ such that $\operatorname{deg} F(\lambda, X)=\operatorname{deg}_{X} F$.

Corollary 1. Let $F \in \mathbb{K}[\Lambda, X]$ be an irreducible polynomial monic with respect to X_{1}. If $F(\lambda, X)-z$ is reducible for all $z \in \mathbb{K}$ and $\lambda \in \mathbb{K}^{m}$ such that $\operatorname{deg} F(\lambda, X)=\operatorname{deg}_{X} F$, then there exists a representation

$$
F=F_{1} \ldots F_{k},
$$

where $F_{j} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[X]$ are all the conjugates of F_{1} over $\mathbb{K}(\Lambda)$, $\operatorname{deg} F_{j}<$ $\operatorname{deg}_{X} F$ and the number of linearly independent coefficients (over \mathbb{K}) of any F_{j} does not exceed $2^{-m}\left(\operatorname{deg}_{\Lambda_{1}} F+2\right) \ldots\left(\operatorname{deg}_{\Lambda_{m}} F+2\right)$.

Proof. By [FS, Corollary 6] there exist $R \in \mathbb{K}[\Lambda, X], \operatorname{deg}_{X} R<\operatorname{deg}_{X} F$, $a_{i} \in \mathbb{K}[\Lambda], i=0, \ldots, s, s \geq 2$, such that

$$
F=a_{0} R^{s}+a_{1} R^{s-1}+\ldots+a_{s} .
$$

Moreover, one can assume that $R(\Lambda, 0)=0$. Hence

$$
\begin{aligned}
\operatorname{deg}_{\Lambda_{j}} F & \geq \operatorname{deg}_{\Lambda_{j}}\left(F-a_{s-1} R-a_{s}\right) \\
& \geq \operatorname{deg}_{\Lambda_{j}}\left(a_{0} R^{s-2}+a_{1} R^{s-3}+\ldots+a_{s-2}\right)+2 \operatorname{deg}_{\Lambda_{j}} R
\end{aligned}
$$

and so

$$
\begin{equation*}
\operatorname{deg}_{\Lambda_{j}} R \leq \frac{\operatorname{deg}_{\Lambda_{j}} F}{2} \quad \text { for } j=1, \ldots, m \tag{15}
\end{equation*}
$$

Since F is monic with respect to X_{1}, we may assume that R is monic with respect to X_{1} and $a_{0}=1$. From the irreducibility of F we see that $h=a_{0} Z^{s}+a_{1} Z^{s-1}+\ldots+a_{s}$ is irreducible in $\mathbb{K}[\Lambda, Z]$, hence,

$$
h=\left(Z-f_{1}\right) \ldots\left(Z-f_{s}\right)
$$

where $Z-f_{j} \in \overline{\mathbb{K}}(\Lambda)^{\text {sep }}[Z]$ are conjugate over $\mathbb{K}(\Lambda)$. Taking $F_{j}=R-f_{j}$ we see that F_{j} are conjugate over $\mathbb{K}(\Lambda)$ and, by (15), the number of linearly independent coefficients (over \mathbb{K}) of any F_{j} does not exceed $2^{-m}\left(\operatorname{deg}_{\Lambda_{1}} F+2\right)$ $\ldots\left(\operatorname{deg}_{\Lambda_{m}} F+2\right)$. This gives the assertion.

REFERENCES

[FS] M. Frontczak, P. Skibiński and S. Spodzieja, On factorization of polynomials with holomorphic coefficients, Bull. Polish Acad. Sci. Math. 46 (1998), 39-54.
[Kö] J. König, Einleitung in die allgemeine Theorie der algebraischen Größen, Teubner, Leipzig, 1903.
[K] L. Kronecker, Zur Theorie der Formen höherer Stufen, Monatsber. Akad. Wiss. Berlin 37 (1883), 957-960; Werke 2, Chelsea, 1968, 417-424.
[Kr] W. Krull, Über einen Irreduzibilitätssatz von Bertini, J. Reine Angew. Math. 177 (1937), 94-104.
[N] E. Noether, Ein algebraisches Kriterium für absolute Irreduzibilität, Math. Ann. 85 (1922), 26-33.
[O] A. M. Ostrowski, On multiplication and factorization of polynomials. I. Lexicographic orderings and extreme aggregates of terms, Aequationes Math. 13 (1975), 201-228.
[R] A. Riehle, Über den Bertinischen Satz und seine Erweiterung, Diss. Tübingen, 1919.
[Sa] G. Salomon, Über das Zerfallen von Systemen von Polynomen, Jahresber. Deutsche Math.-Verein. 24 (1915), 225-246.
[Sc] A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982.

Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: spodziej@imul.uni.lodz.pl

[^0]: 1991 Mathematics Subject Classification: Primary 12E05.
 Key words and phrases: conjugate polynomials, decomposition of polynomials.
 Research of S. Spodzieja was partially supported by KBN Grant No. 2 P03A 05010.

