COLLOQUIUM MATHEMATICUM

VOL. 80

1999

SALOMON'S THEOREM FOR POLYNOMIALS WITH SEVERAL PARAMETERS

ΒY

MARIA FRONTCZAK, PRZEMYSŁAW SKIBIŃSKI AND STANISŁAW SPODZIEJA (ŁÓDŹ)

1. Introduction. Let \mathbb{K} be an algebraically closed field, and $\Lambda = (\Lambda_1, \ldots, \Lambda_m)$ and $X = (X_1, \ldots, X_n)$ systems of variables.

Let $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ be the separable closure of $\mathbb{K}(\Lambda)$. We say that polynomials $F_1, F_2 \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$ are *conjugate* over $\mathbb{K}(\Lambda)$ if there exists a $\mathbb{K}(\Lambda, X)$ -automorphism φ of $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}(X)$ such that $\varphi(F_1) = F_2$.

We say that a polynomial $F \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$ is *monic* if the last coefficient of F in the lexicographic order is equal to 1.

In the theory of polynomials the following Salomon's Theorem is well-known ([Sa], [Sc, Theorem 17]).

SALOMON'S THEOREM. If $F \in \mathbb{K}[\Lambda_1, X]$ is irreducible over $\mathbb{K}(\Lambda_1)$ then all monic factors of F irreducible over $\overline{\mathbb{K}(\Lambda_1)}^{\text{sep}}$ are conjugate over $\mathbb{K}(\Lambda_1)$ and the number of linearly independent coefficients over \mathbb{K} of any such factor does not exceed $\deg_{\Lambda_1} F + 1$.

Using the idea of Krull [Kr] (see also [Sc, Theorem 17]) we give a generalization of this theorem to the case of several parameters Λ (Theorem 2). The upper bound deg_{A1} F + 1 is replaced by the number $\gamma_{\Lambda}(F)$ of integer points of the Newton polyhedron of F which we now define. Let $F \in \mathbb{K}[\Lambda, X]$ be of the form $F = \sum_{J} F_{J}\Lambda^{J}$, where $J = (j_{1}, \ldots, j_{m})$ is a multiindex, $\Lambda^{J} = \Lambda_{1}^{j_{1}} \ldots \Lambda_{m}^{j_{m}}$, and $F_{J} \in \mathbb{K}[X]$. Let $\operatorname{supp}_{\Lambda}(F) = \{J \in \mathbb{Z}^{m} : F_{J} \neq 0\}$. Then we define the Newton polyhedron $\Delta_{\Lambda}(F)$ of F and the number $\gamma_{\Lambda}(F)$ by

 $\Delta_{\Lambda}(F) = \operatorname{conv}(\operatorname{supp}_{\Lambda}(F)), \quad \gamma_{\Lambda}(F) = \#(\Delta_{\Lambda}(F) \cap \mathbb{Z}^m),$

where conv A denotes the convex envelope of a set $A \subset \mathbb{R}^m$. The main difficulty in this generalization is the estimation of the number of linearly

¹⁹⁹¹ Mathematics Subject Classification: Primary 12E05.

Key words and phrases: conjugate polynomials, decomposition of polynomials.

Research of S. Spodzieja was partially supported by KBN Grant No. 2 P03A 050 10.

^[107]

independent coefficients in the factors. The problem has been suggested by Professor A. Schinzel in a talk with the third author.

The key role in the proof is played by Proposition 1 (Section 2) on a multilinear form in the coefficients of polynomials.

The estimation obtained is a natural generalization of the one-parameter case because, for m = 1 and an irreducible polynomial F with $\deg_X F > 0$, we have $\gamma_A(F) = \deg_{A_1} F + 1$ (i.e. the number of coefficients of a polynomial in one variable with given degree). Moreover, in this estimation equality is attainable (Example 1), and it easy to see that $\gamma_A(F)$ does not exceed certain numbers which may be generalizations of the number mentioned above:

• $\gamma_{\Lambda}(F) \leq {\binom{\deg_{\Lambda} F + m}{m}}$, i.e. $\gamma_{\Lambda}(F)$ does not exceed the number of coefficients of a polynomial with a given degree,

• $\gamma_A(F) \leq \prod_{i=1}^m (\deg_{A_i} F + 1)$, i.e. $\gamma_A(F)$ does not exceed the number of coefficients of a polynomial with given degrees with respect to all variables.

Additionally we have $\gamma_A(F) \leq (\deg_A F)^m + m$.

Theorem 2 does not fully explain the generalization of Bertini's Theorem ([Sc, Theorem 18]) to the case of polynomials with arbitrary degree with respect to the parameters. Such a generalization was claimed by Riehle in [R] (inaccessible to the authors), but Krull [Kr] objected to the validity of the proof. Riehle claimed that the number of linearly independent coefficients in the above mentioned factors does not exceed $1 + \prod_{i=1}^{m} \deg_{A_i} F$.

2. Multilinear forms in the coefficients of polynomials. For $A, B \subset \mathbb{R}^m$ we write

$$A + B = \{a + b : a \in A, b \in B\}$$
 and $nA = \underbrace{A + \ldots + A}_{n \text{ times}}$

Thus, if A is convex, then $nA = \{na : a \in A\}$.

LEMMA 1. Let $A \subset \mathbb{R}^m$ be bounded and convex. If $G, Q_1, \ldots, Q_N \in \mathbb{K}[\Lambda]$ are polynomials such that

(1)
$$\Delta_A(Q_i) \subset iA \quad for \ i = 1, \dots, N$$

and

(2)
$$G^N + Q_1 G^{N-1} + \ldots + Q_N = 0,$$

then $\Delta_{\Lambda}(G) \subset A$.

Proof. Since $\Delta_{\Lambda}(G^i) = i \Delta_{\Lambda}(G)$ for i = 1, ..., N, from (1) and (2) we obtain

(3)
$$N\Delta_{\Lambda}(G) \subset \operatorname{conv}\Big(\bigcup_{i=1}^{N} [(N-i)\Delta_{\Lambda}(G) + iA]\Big).$$

Assume that, on the contrary, $\Delta_A(G) \not\subset A$. Then there exist $J_0 \in \Delta_A(G) \setminus A$ and a linear form $L : \mathbb{R}^m \to \mathbb{R}$ such that

(4)
$$L(J_0) \ge L(J) \quad \text{for } J \in \Delta_A(G),$$

(5)
$$L(J_0) > L(J')$$
 for $J' \in A$.

By (3) there exist $J_1, \ldots, J_s \in \Delta_A(G), J'_1, \ldots, J'_s \in A, 0 < i_1, \ldots, i_s \leq N$ and $t_1, \ldots, t_s \in \mathbb{R}, t_i \geq 0, t_1 + \ldots + t_s = 1$, such that

$$NJ_0 = \sum_{k=1}^{s} t_k [(N - i_k)J_k + i_k J'_k]$$

Hence, from (4) and (5) we have

$$NL(J_0) = \sum_{k=1}^{s} t_k [(N - i_k)L(J_k) + i_k L(J'_k)]$$

$$< \sum_{k=1}^{s} t_k [(N - i_k)L(J_0) + i_k L(J_0)] = NL(J_0),$$

which is impossible. This ends the proof.

We are going to formulate a proposition which plays a crucial role in the proof of Theorem 1. First we define multilinear forms in the coefficients of polynomials which will be used in the proof of Proposition 1.

For a multiindex $I = (i_1, \ldots, i_n)$, let $||I|| = i_1 + \ldots + i_n$ and $X^I = X_1^{i_1} \ldots X_n^{i_n}$. Let $F_j \in \overline{\mathbb{K}(A)}^{\text{sep}}[X], j = 1, \ldots, k$, be of the form

(6)
$$F_j = \sum_{\|I\| \le v} \alpha_{j,I} X^I,$$

where $v \in \mathbb{Z}, v \geq 0, \alpha_{j,I} \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ for $j = 1, \ldots, k, ||I|| \leq v$. Let $Y_j = (Y_{j,I}; ||I|| \leq v), j = 1, \ldots, k$. If $g \in \mathbb{Z}[Y_1, \ldots, Y_k]$ is a homogeneous form of degree k such that $\deg_{Y_i} g = 1, j = 1, \ldots, k$, then

$$G = g(\alpha_{j,I} : ||I|| \le v, \ j = 1, \dots, k) \in \overline{\mathbb{K}(A)}^{sep}$$

is called a multilinear form in the coefficients of the polynomials F_1, \ldots, F_k (where for $r \in \mathbb{Z}$ we put $r \cdot 1 \in \overline{\mathbb{K}(\Lambda)}^{sep}$).

Let $F_j \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$, j = 1, ..., k, be all the conjugates of F_1 over $\mathbb{K}(\Lambda)$. Then there exist polynomials $P_1, ..., P_d \in \mathbb{K}[X]$ and $\mathring{\alpha}_{j,i} \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ such that

(7)
$$F_j = \mathring{\alpha}_{j,1} P_1 + \ldots + \mathring{\alpha}_{j,d} P_d$$

for j = 1, ..., k (and $\mathring{\alpha}_{1,i}, ..., \mathring{\alpha}_{k,i}$ are all the conjugates of $\mathring{\alpha}_{1,i}$ over $\mathbb{K}(\Lambda)$ for i = 1, ..., d). Let $Z = (Z_1, ..., Z_d)$ be a system of variables and

$$E_j = \mathring{\alpha}_{j,1} Z_1 + \ldots + \mathring{\alpha}_{j,d} Z_d \in \overline{\mathbb{K}(\Lambda)}^{\operatorname{sep}}[Z], \quad j = 1, \ldots, k.$$

PROPOSITION 1. Let $f \in \mathbb{K}(\Lambda)$, $f \neq 0$. If d is the minimal number in (7) and

$$F = fF_1 \dots F_k \in \mathbb{K}[\Lambda, X],$$

then

$$E = fE_1 \dots E_k \in \mathbb{K}[\Lambda, Z]$$
 and $\Delta_{\Lambda}(E) = \Delta_{\Lambda}(F)$

Proof. From the choice of d we see that the polynomials P_1, \ldots, P_d are linearly independent over \mathbb{K} . Since \mathbb{K} is an infinite field, there exist $x^1, \ldots, x^d \in \mathbb{K}^n$ such that

(8)
$$\det[P_i(x^j)]_{i,j=1,\dots,d} \neq 0.$$

From (6) and (7) we have

$$\sum_{\|I\| \le v} \alpha_{i,I}(x^j)^I = \mathring{\alpha}_{i,1} P_1(x^j) + \ldots + \mathring{\alpha}_{i,d} P_d(x^j), \quad j = 1, \ldots, d.$$

So, by (8), from Cramer's formulae we find that there exist $\xi_{i,I} \in \mathbb{K}$, $||I|| \leq v$, $i = 1, \ldots, d$, such that

$$\mathring{\alpha}_{s,i} = \sum_{\|I\| \le v} \alpha_{s,I} \xi_{i,I}.$$

Thus any multilinear form in the coefficients of fE_1, \ldots, E_k is a linear combination over \mathbb{K} of multilinear forms in the coefficients of fF_1, \ldots, F_k . Hence, since $F \in \mathbb{K}[\Lambda, X]$, by Kronecker's Theorem ([K], [Sc, Theorem 10], [Kö, VI, §2]), the multilinear forms in the coefficients of fE_1, \ldots, E_k are integer over $\mathbb{K}[\Lambda]$. Since F_1, \ldots, F_k are all the conjugates of F_1 over $\mathbb{K}(\Lambda)$, it follows that E_1, \ldots, E_k are all the conjugates of E_1 over $\mathbb{K}(\Lambda)$. In consequence $E \in \mathbb{K}(\Lambda)[X]$, thus $E \in \mathbb{K}[\Lambda, X]$.

The inclusion $\Delta_{\Lambda}(E) \supset \Delta_{\Lambda}(F)$ is obvious. We prove that $\Delta_{\Lambda}(E) \subset \Delta_{\Lambda}(F)$. Let $E = \sum_{J} A_{J} Z^{J}$, where $A_{J} \in \mathbb{K}[\Lambda]$ for every multiindex J. Since

$$\Delta_A(E) = \operatorname{conv}\Big(\bigcup_J \Delta_A(A_J)\Big),$$

it suffices to prove that $\Delta_A(A_J) \subset \Delta_A(F)$ for all J. Take any coefficient $G = A_J \in \mathbb{K}[A]$ of the polynomial E. Obviously G is a multilinear form in the coefficients of fE_1, \ldots, E_k . Then there exist multilinear forms G_1, \ldots, G_M in the coefficients of fF_1, \ldots, F_k and $\xi_1, \ldots, \xi_M \in \mathbb{K}$ such that

(9)
$$G = \xi_1 G_1 + \ldots + \xi_M G_M.$$

By Kronecker's Theorem ([Sc, Theorem 9], [Kö, VI, §2]) there exists a nonempty set of non-zero forms h_1, \ldots, h_N in the coefficients of fF_1, \ldots, F_k such that every multilinear form G_s in the coefficients of fF_1, \ldots, F_k satisfies

$$G_s h_i = \sum_{j=1}^N b_{i,j,G_s} h_j, \quad i = 1, \dots, N,$$

where b_{i,j,G_s} are some linear forms in the coefficients of F. Hence (9) yields

(10)
$$\sum_{j=1}^{N} \left(\delta_{i,j} G - \sum_{s=1}^{M} \xi_s b_{i,j,G_s} \right) h_j = 0, \quad i = 1, \dots, N,$$

where $\delta_{i,j}$ is the Kronecker symbol. Since h_1, \ldots, h_N are non-zero, the determinant of the linear system (10) vanishes. Thus we have

(11)
$$G^N + Q_1 G^{N-1} + \ldots + Q_N = 0,$$

where $Q_j \in \mathbb{K}[\Lambda]$ is a homogeneous form of degree j in the coefficients of $F, j = 1, \ldots, N$. Thus $\Delta_{\Lambda}(Q_j) \subset j \Delta_{\Lambda}(F)$. By Lemma 1, $\Delta_{\Lambda}(G) \subset \Delta_{\Lambda}(F)$, which ends the proof.

3. Generalization of Salomon's Theorem. Let $F \in \mathbb{K}[\Lambda, X]$. The main result of the paper will be preceded by

THEOREM 1. Let $F_j \in \overline{\mathbb{K}(\Lambda)}^{sep}[X], j = 1, \ldots, k$, be all the conjugates of F_1 over $\mathbb{K}(\Lambda)$ and let $f \in \mathbb{K}(\Lambda), f \neq 0$, be such that

$$F = fF_1 \dots F_k \in \mathbb{K}[\Lambda, X].$$

Then the number of linearly independent coefficients (over \mathbb{K}) of any F_j does not exceed $\gamma_A(F)$.

Proof. Let F_j , j = 1, ..., k, be of the form (6). Let d be the dimension of the following linear space over \mathbb{K} :

$$\Big\{\sum_{\|I\| \le v} \xi_I \alpha_{1,I} : \xi_I \in \mathbb{K} \text{ for } \|I\| \le v \Big\},\$$

and $\mathring{\alpha}_{1,1}, \ldots, \mathring{\alpha}_{1,d}$ be its basis. Then there exist $P_1, \ldots, P_d \in \mathbb{K}[X]$ such that

$$F_1 = \mathring{\alpha}_{1,1}P_1 + \ldots + \mathring{\alpha}_{1,d}P_d$$

Since F_1, \ldots, F_k are conjugate over $\mathbb{K}(\Lambda)$, we have

$$F_j = \mathring{\alpha}_{j,1} P_1 + \ldots + \mathring{\alpha}_{j,d} P_d$$

for j = 2, ..., k (and $\mathring{\alpha}_{1,i}, ..., \mathring{\alpha}_{k,i}$ are all the conjugates of $\mathring{\alpha}_{1,i}$ over $\mathbb{K}(\Lambda)$ for i = 1, ..., d). Let

$$E_j = \mathring{\alpha}_{j,1} Z_1 + \ldots + \mathring{\alpha}_{j,d} Z_d \in \overline{\mathbb{K}(\Lambda)}^{\operatorname{sep}}[Z], \quad j = 1, \ldots, k,$$

where $Z = (Z_1, \ldots, Z_d)$. By Proposition 1 we have $E = fE_1 \ldots E_k \in \mathbb{K}[\Lambda, Z]$ and $\Delta_{\Lambda}(E) \subset \Delta_{\Lambda}(F)$. Thus $\gamma_{\Lambda}(E) \leq \gamma_{\Lambda}(F)$. In consequence there exist homogeneous forms $H_i \in \mathbb{K}[Z]$ and polynomials $B_i \in \mathbb{K}[\Lambda], i = 1, \ldots, \gamma_{\Lambda}(F)$, such that

$$E = \sum_{i=1}^{\gamma_A(F)} B_i H_i.$$

Assume, contrary to our claim, that $\gamma_A(F) < d$. Then the forms $H_1, \ldots, H_{\gamma_A(F)}$ have a common non-trivial zero $(\xi_1, \ldots, \xi_d) \in \mathbb{K}^d$ and so

$$0 = f \prod_{j=1}^{k} (\mathring{\alpha}_{j,1}\xi_1 + \ldots + \mathring{\alpha}_{j,d}\xi_d).$$

In consequence, at least one factor of the right-hand side is zero. This contradicts the definition of d (since for any j = 1, ..., k the elements $\mathring{\alpha}_{j,1}, ..., \mathring{\alpha}_{j,d}$ are linearly independent over \mathbb{K}). This ends the proof.

For F irreducible, the above theorem immediately yields the following generalization of Salomon's Theorem to the case of several parameters.

THEOREM 2. If $F \in \mathbb{K}[\Lambda, X]$ is irreducible over $\mathbb{K}(\Lambda)$ then all monic factors in $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$ of F irreducible over $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ are conjugate over $\mathbb{K}(\Lambda)$ and the number of linearly independent coefficients (over \mathbb{K}) of any such factor does not exceed $\gamma_{\Lambda}(F)$.

Proof. Let F_1 be a monic factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ and F_2, \ldots, F_k be all its conjugates over $\mathbb{K}(\Lambda)$. Since $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ is Galois over $\mathbb{K}(\Lambda)$, F_j are all irreducible over $\mathbb{K}(\Lambda)$ and since they are monic, they are pairwise relatively prime. Hence F_j is a divisor of F, $j = 1, \ldots, k$. It follows that $\prod_{j=1}^k F_j$ is a divisor of F. However, $\prod_{j=1}^k F_j$ is invariant with respect to any automorphism φ of $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ over $\mathbb{K}(\Lambda)$, hence $\prod_{j=1}^k F_j \in \mathbb{K}(\Lambda)[X]$ and, by the irreducibility of F over $\mathbb{K}(\Lambda)$, there is an $f \in \mathbb{K}(\Lambda)$ such that

(12)
$$F = f \prod_{j=1}^{\kappa} F_j.$$

Hence, by Theorem 1, we have the assertion.

The upper bound given by Theorem 2 can be attained, as shown by the following

EXAMPLE 1. Let $X = (X_0, \ldots, X_n)$ be a system of variables and $P(t_1, t_2, X) = \sum_{r+s=n} t_1^r t_2^s X_r$. Let ε be a primitive root of unity of degree n. Then the polynomials

 $F_j = P(\sqrt[n]{\Lambda_2 \dots \Lambda_m}, \varepsilon^j \sqrt[n]{\Lambda_1}, X) \in \overline{\mathbb{K}(\Lambda)}^{\operatorname{sep}}[X], \quad j = 1, \dots, n,$

are all the conjugates of F_1 over $\mathbb{K}(\Lambda)$. Hence $F = \prod_{j=1}^n F_j \in \mathbb{K}[\Lambda, X]$ is irreducible over $\mathbb{K}(\Lambda)$. Moreover, $\gamma_{\Lambda}(F) = n+1$ and the F_j have each n+1coefficients linearly independent over \mathbb{K} .

In the above example the polyhedron of F is a segment and one can reduce this example to the case of one parameter Λ_1 (puting $\Lambda_2 = \ldots = \Lambda_m$ = 1). The authors do not know such examples with $\Delta_{\Lambda}(F)$ *m*-dimensional.

From Theorem 2 we obtain the following

THEOREM 3. Let $F \in \mathbb{K}[\Lambda, X]$. Then the number of linearly independent coefficients (over \mathbb{K}) of any factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ does not exceed $\gamma_{\Lambda}(F)$.

Proof. Let $F_1 \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$ be any factor of F irreducible over $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$. Without loss of generality we may assume that F_1 is monic. Let $F = R_1 \dots R_k$ be the decomposition of F into irreducible factors in $\mathbb{K}[\Lambda, X]$. From Ostrowski's Theorem ([O, Theorem VI]) we have

$$\Delta_{\Lambda}(R_1) + \ldots + \Delta_{\Lambda}(R_k) = \Delta_{\Lambda}(F).$$

So, $\gamma_A(R_j) \leq \gamma_A(F)$, j = 1, ..., k. Since F_1 is a divisor of at least one R_j , Theorem 2 yields the assertion.

The above theorem is not true for arbitrary factors, as is shown by the following

EXAMPLE 2. For $F = X_1^s - \Lambda_1$ we have $\gamma_{\Lambda}(F) = 2$ and

$$F = (X_1 - \sqrt[s]{\Lambda_1})(X_1^{s-1} + X_1^{s-1}\sqrt[s]{\Lambda_1} + \dots + (\sqrt[s]{\Lambda_1})^{s-1})$$

It is easy to see that the last factor has s coefficients linearly independent over \mathbb{K} .

REMARK 1. The above results hold for arbitrary Galois extensions of $\mathbb{K}(\Lambda)$ in place of $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$, with no change in the proofs.

4. A corollary. In this section we give a particular version of Theorem 2. Assume that \mathbb{K} is an algebraically closed field of characteristic zero. Then $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}$ is the algebraic closure of $\mathbb{K}(\Lambda)$.

In Theorems 1–3 the reducibility of the polynomial F in $\overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$, by Emma Noether's Theorem ([N], [Sc, Theorem 15]), is equivalent to the reducibility of $F(\lambda, X)$ in $\mathbb{K}[X]$ for all $\lambda \in \mathbb{K}^m$ such that $\deg F(\lambda, X) = \deg_X F$. We now give a version of Theorem 2 in the case when $F(\lambda, X) - z$ is reducible in $\mathbb{K}[X]$ for all $z \in \mathbb{K}$ and $\lambda \in \mathbb{K}^m$ such that $\deg F(\lambda, X) = \deg_X F$.

COROLLARY 1. Let $F \in \mathbb{K}[\Lambda, X]$ be an irreducible polynomial monic with respect to X_1 . If $F(\lambda, X) - z$ is reducible for all $z \in \mathbb{K}$ and $\lambda \in \mathbb{K}^m$ such that deg $F(\lambda, X) = \deg_X F$, then there exists a representation

$$F = F_1 \dots F_k,$$

where $F_j \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[X]$ are all the conjugates of F_1 over $\mathbb{K}(\Lambda)$, deg $F_j < \deg_X F$ and the number of linearly independent coefficients (over \mathbb{K}) of any F_j does not exceed $2^{-m}(\deg_{A_1} F + 2) \dots (\deg_{A_m} F + 2)$.

Proof. By [FS, Corollary 6] there exist $R \in \mathbb{K}[\Lambda, X]$, $\deg_X R < \deg_X F$, $a_i \in \mathbb{K}[\Lambda]$, $i = 0, \ldots, s, s \ge 2$, such that

$$F = a_0 R^s + a_1 R^{s-1} + \ldots + a_s.$$

Moreover, one can assume that $R(\Lambda, 0) = 0$. Hence

$$\deg_{\Lambda_j} F \ge \deg_{\Lambda_j} (F - a_{s-1}R - a_s)$$
$$\ge \deg_{\Lambda_j} (a_0 R^{s-2} + a_1 R^{s-3} + \ldots + a_{s-2}) + 2 \deg_{\Lambda_j} R,$$

and so

(15)
$$\deg_{A_j} R \le \frac{\deg_{A_j} F}{2} \quad \text{for } j = 1, \dots, m$$

Since F is monic with respect to X_1 , we may assume that R is monic with respect to X_1 and $a_0 = 1$. From the irreducibility of F we see that $h = a_0 Z^s + a_1 Z^{s-1} + \ldots + a_s$ is irreducible in $\mathbb{K}[\Lambda, Z]$, hence,

$$h = (Z - f_1) \dots (Z - f_s)$$

where $Z - f_j \in \overline{\mathbb{K}(\Lambda)}^{\text{sep}}[Z]$ are conjugate over $\mathbb{K}(\Lambda)$. Taking $F_j = R - f_j$ we see that F_j are conjugate over $\mathbb{K}(\Lambda)$ and, by (15), the number of linearly independent coefficients (over \mathbb{K}) of any F_j does not exceed $2^{-m}(\deg_{\Lambda_1} F + 2)$ $\dots (\deg_{\Lambda_m} F + 2)$. This gives the assertion.

REFERENCES

- [FS] M. Frontczak, P. Skibiński and S. Spodzieja, On factorization of polynomials with holomorphic coefficients, Bull. Polish Acad. Sci. Math. 46 (1998), 39–54.
- [Kö] J. König, Einleitung in die allgemeine Theorie der algebraischen Größen, Teubner, Leipzig, 1903.
- [K] L. Kronecker, Zur Theorie der Formen höherer Stufen, Monatsber. Akad. Wiss. Berlin 37 (1883), 957–960; Werke 2, Chelsea, 1968, 417–424.
- [Kr] W. Krull, Über einen Irreduzibilitätssatz von Bertini, J. Reine Angew. Math. 177 (1937), 94–104.
- [N] E. Noether, Ein algebraisches Kriterium f
 ür absolute Irreduzibilit
 ät, Math. Ann. 85 (1922), 26–33.
- [O] A. M. Ostrowski, On multiplication and factorization of polynomials. I. Lexicographic orderings and extreme aggregates of terms, Aequationes Math. 13 (1975), 201–228.
- [R] A. Riehle, Über den Bertinischen Satz und seine Erweiterung, Diss. Tübingen, 1919.
- [Sa] G. Salomon, Über das Zerfallen von Systemen von Polynomen, Jahresber. Deutsche Math.-Verein. 24 (1915), 225–246.
- [Sc] A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982.

Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: spodziej@imul.uni.lodz.pl

> Received 16 June 1998; revised 10 September 1998