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1. Introduction. Let K be an algebraically closed field, and Λ =
(Λ1, . . . , Λm) and X = (X1, . . . , Xn) systems of variables.

Let K(Λ)
sep

be the separable closure of K(Λ). We say that polynomials

F1, F2 ∈ K(Λ)
sep

[X] are conjugate over K(Λ) if there exists a K(Λ,X)-

automorphism ϕ of K(Λ)
sep

(X) such that ϕ(F1) = F2.

We say that a polynomial F ∈ K(Λ)
sep

[X] is monic if the last coefficient
of F in the lexicographic order is equal to 1.

In the theory of polynomials the following Salomon’s Theorem is well-
known ([Sa], [Sc, Theorem 17]).

Salomon’s Theorem. If F ∈ K[Λ1, X] is irreducible over K(Λ1) then

all monic factors of F irreducible over K(Λ1)
sep

are conjugate over K(Λ1)
and the number of linearly independent coefficients over K of any such factor
does not exceed degΛ1

F + 1.

Using the idea of Krull [Kr] (see also [Sc, Theorem 17]) we give a general-
ization of this theorem to the case of several parameters Λ (Theorem 2). The
upper bound degΛ1

F + 1 is replaced by the number γΛ(F ) of integer points
of the Newton polyhedron of F which we now define. Let F ∈ K[Λ,X]
be of the form F =

∑
J FJΛ

J , where J = (j1, . . . , jm) is a multiindex,

ΛJ = Λj11 . . . Λjmm , and FJ ∈ K[X]. Let suppΛ(F ) = {J ∈ Zm : FJ 6= 0}.
Then we define the Newton polyhedron ∆Λ(F ) of F and the number γΛ(F )
by

∆Λ(F ) = conv(suppΛ(F )), γΛ(F ) = #(∆Λ(F ) ∩ Zm),

where convA denotes the convex envelope of a set A ⊂ Rm. The main
difficulty in this generalization is the estimation of the number of linearly
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independent coefficients in the factors. The problem has been suggested by
Professor A. Schinzel in a talk with the third author.

The key role in the proof is played by Proposition 1 (Section 2) on a
multilinear form in the coefficients of polynomials.

The estimation obtained is a natural generalization of the one-parameter
case because, for m = 1 and an irreducible polynomial F with degX F > 0,
we have γΛ(F ) = degΛ1

F+1 (i.e. the number of coefficients of a polynomial
in one variable with given degree). Moreover, in this estimation equality is
attainable (Example 1), and it easy to see that γΛ(F ) does not exceed certain
numbers which may be generalizations of the number mentioned above:

• γΛ(F ) ≤
(
degΛ F+m

m

)
, i.e. γΛ(F ) does not exceed the number of coeffi-

cients of a polynomial with a given degree,

• γΛ(F ) ≤
∏m
i=1(degΛi F + 1), i.e. γΛ(F ) does not exceed the number of

coefficients of a polynomial with given degrees with respect to all variables.

Additionally we have γΛ(F ) ≤ (degΛ F )m +m.

Theorem 2 does not fully explain the generalization of Bertini’s Theorem
([Sc, Theorem 18]) to the case of polynomials with arbitrary degree with
respect to the parameters. Such a generalization was claimed by Riehle in
[R] (inaccessible to the authors), but Krull [Kr] objected to the validity of the
proof. Riehle claimed that the number of linearly independent coefficients
in the above mentioned factors does not exceed 1 +

∏m
i=1 degΛi F .

2. Multilinear forms in the coefficients of polynomials. For A,B
⊂ Rm we write

A+B = {a+ b : a ∈ A, b ∈ B} and nA = A+ . . .+A︸ ︷︷ ︸
n times

.

Thus, if A is convex, then nA = {na : a ∈ A}.

Lemma 1. Let A ⊂ Rm be bounded and convex. If G,Q1, . . . , QN ∈
K[Λ] are polynomials such that

(1) ∆Λ(Qi) ⊂ iA for i = 1, . . . , N,

and

(2) GN +Q1G
N−1 + . . .+QN = 0,

then ∆Λ(G) ⊂ A.

P r o o f. Since ∆Λ(Gi) = i∆Λ(G) for i = 1, . . . , N , from (1) and (2) we
obtain

(3) N∆Λ(G) ⊂ conv
( N⋃
i=1

[(N − i)∆Λ(G) + iA]
)
.
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Assume that, on the contrary, ∆Λ(G) 6⊂ A. Then there exist J0 ∈ ∆Λ(G)\A
and a linear form L : Rm → R such that

L(J0) ≥ L(J) for J ∈ ∆Λ(G),(4)

L(J0) > L(J ′) for J ′ ∈ A.(5)

By (3) there exist J1, . . . , Js ∈ ∆Λ(G), J ′1, . . . , J
′
s ∈ A, 0 < i1, . . . , is ≤ N

and t1, . . . , ts ∈ R, ti ≥ 0, t1 + . . .+ ts = 1, such that

NJ0 =

s∑
k=1

tk[(N − ik)Jk + ikJ
′
k].

Hence, from (4) and (5) we have

NL(J0) =

s∑
k=1

tk[(N − ik)L(Jk) + ikL(J ′k)]

<
s∑

k=1

tk[(N − ik)L(J0) + ikL(J0)] = NL(J0),

which is impossible. This ends the proof.

We are going to formulate a proposition which plays a crucial role in the
proof of Theorem 1. First we define multilinear forms in the coefficients of
polynomials which will be used in the proof of Proposition 1.

For a multiindex I = (i1, . . . , in), let ‖I‖ = i1 + . . . + in and XI =

Xi1
1 . . . Xin

n . Let Fj ∈ K(Λ)
sep

[X], j = 1, . . . , k, be of the form

(6) Fj =
∑
‖I‖≤v

αj,IX
I ,

where v ∈ Z, v ≥ 0, αj,I ∈ K(Λ)
sep

for j = 1, . . . , k, ‖I‖ ≤ v. Let Yj =
(Yj,I ; ‖I‖ ≤ v), j = 1, . . . , k. If g ∈ Z[Y1, . . . , Yk] is a homogeneous form of
degree k such that degYj g = 1, j = 1, . . . , k, then

G = g(αj,I : ‖I‖ ≤ v, j = 1, . . . , k) ∈ K(Λ)
sep

is called a multilinear form in the coefficients of the polynomials F1, . . . , Fk

(where for r ∈ Z we put r · 1 ∈ K(Λ)
sep

).

Let Fj ∈K(Λ)
sep

[X], j=1, . . . , k, be all the conjugates of F1 over K(Λ).

Then there exist polynomials P1, . . . , Pd ∈ K[X] and α̊j,i ∈ K(Λ)
sep

such
that

(7) Fj = α̊j,1P1 + . . .+ α̊j,dPd

for j = 1, . . . , k (and α̊1,i, . . . , α̊k,i are all the conjugates of α̊1,i over K(Λ)
for i = 1, . . . , d). Let Z = (Z1, . . . , Zd) be a system of variables and

Ej = α̊j,1Z1 + . . .+ α̊j,dZd ∈ K(Λ)
sep

[Z], j = 1, . . . , k.
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Proposition 1. Let f ∈ K(Λ), f 6= 0. If d is the minimal number in
(7) and

F = fF1 . . . Fk ∈ K[Λ,X],

then

E = fE1 . . . Ek ∈ K[Λ,Z] and ∆Λ(E) = ∆Λ(F ).

P r o o f. From the choice of d we see that the polynomials P1, . . . , Pd
are linearly independent over K. Since K is an infinite field, there exist
x1, . . . , xd ∈ Kn such that

(8) det[Pi(x
j)]i,j=1,...,d 6= 0.

From (6) and (7) we have∑
‖I‖≤v

αi,I(x
j)I = α̊i,1P1(xj) + . . .+ α̊i,dPd(x

j), j = 1, . . . , d.

So, by (8), from Cramer’s formulae we find that there exist ξi,I ∈ K, ‖I‖ ≤ v,
i = 1, . . . , d, such that

α̊s,i =
∑
‖I‖≤v

αs,Iξi,I .

Thus any multilinear form in the coefficients of fE1, . . . , Ek is a linear combi-
nation over K of multilinear forms in the coefficients of fF1, . . . , Fk. Hence,
since F ∈ K[Λ,X], by Kronecker’s Theorem ([K], [Sc, Theorem 10], [Kö,
VI, §2]), the multilinear forms in the coefficients of fE1, . . . , Ek are integer
over K[Λ]. Since F1, . . . , Fk are all the conjugates of F1 over K(Λ), it fol-
lows that E1, . . . , Ek are all the conjugates of E1 over K(Λ). In consequence
E ∈ K(Λ)[X], thus E ∈ K[Λ,X].

The inclusion ∆Λ(E) ⊃ ∆Λ(F ) is obvious. We prove that ∆Λ(E) ⊂
∆Λ(F ). Let E =

∑
J AJZ

J , where AJ ∈ K[Λ] for every multiindex J . Since

∆Λ(E) = conv
(⋃

J

∆Λ(AJ)
)
,

it suffices to prove that ∆Λ(AJ) ⊂ ∆Λ(F ) for all J . Take any coefficient
G = AJ ∈K[Λ] of the polynomial E. Obviously G is a multilinear form in the
coefficients of fE1, . . . , Ek. Then there exist multilinear forms G1, . . . , GM
in the coefficients of fF1, . . . , Fk and ξ1, . . . , ξM ∈ K such that

(9) G = ξ1G1 + . . .+ ξMGM .

By Kronecker’s Theorem ([Sc, Theorem 9], [Kö, VI, §2]) there exists a non-
empty set of non-zero forms h1, . . . , hN in the coefficients of fF1, . . . , Fk such
that every multilinear form Gs in the coefficients of fF1, . . . , Fk satisfies

Gshi =

N∑
j=1

bi,j,Gshj , i = 1, . . . , N,
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where bi,j,Gs are some linear forms in the coefficients of F . Hence (9) yields

(10)

N∑
j=1

(
δi,jG−

M∑
s=1

ξsbi,j,Gs

)
hj = 0, i = 1, . . . , N,

where δi,j is the Kronecker symbol. Since h1, . . . , hN are non-zero, the
determinant of the linear system (10) vanishes. Thus we have

(11) GN +Q1G
N−1 + . . .+QN = 0,

where Qj ∈ K[Λ] is a homogeneous form of degree j in the coefficients of
F , j = 1, . . . , N . Thus ∆Λ(Qj) ⊂ j∆Λ(F ). By Lemma 1, ∆Λ(G) ⊂ ∆Λ(F ),
which ends the proof.

3. Generalization of Salomon’s Theorem. Let F ∈ K[Λ,X]. The
main result of the paper will be preceded by

Theorem 1. Let Fj ∈ K(Λ)
sep

[X], j = 1, . . . , k, be all the conjugates of
F1 over K(Λ) and let f ∈ K(Λ), f 6= 0, be such that

F = fF1 . . . Fk ∈ K[Λ,X].

Then the number of linearly independent coefficients (over K) of any Fj does
not exceed γΛ(F ).

P r o o f. Let Fj , j = 1, . . . , k, be of the form (6). Let d be the dimension
of the following linear space over K:{ ∑

‖I‖≤v

ξIα1,I : ξI ∈ K for ‖I‖ ≤ v
}
,

and α̊1,1, . . . , α̊1,d be its basis. Then there exist P1, . . . , Pd ∈ K[X] such that

F1 = α̊1,1P1 + . . .+ α̊1,dPd.

Since F1, . . . , Fk are conjugate over K(Λ), we have

Fj = α̊j,1P1 + . . .+ α̊j,dPd

for j = 2, . . . , k (and α̊1,i, . . . , α̊k,i are all the conjugates of α̊1,i over K(Λ)
for i = 1, . . . , d). Let

Ej = α̊j,1Z1 + . . .+ α̊j,dZd ∈ K(Λ)
sep

[Z], j = 1, . . . , k,

where Z=(Z1, . . . , Zd). By Proposition 1 we have E=fE1 . . . Ek∈K[Λ,Z]
and ∆Λ(E) ⊂ ∆Λ(F ). Thus γΛ(E) ≤ γΛ(F ). In consequence there exist ho-
mogeneous forms Hi ∈ K[Z] and polynomials Bi ∈ K[Λ], i = 1, . . . , γΛ(F ),
such that

E =

γΛ(F )∑
i=1

BiHi.



112 M. FRONTCZAK ET AL.

Assume, contrary to our claim, that γΛ(F ) < d. Then the forms H1, . . .
. . . , HγΛ(F ) have a common non-trivial zero (ξ1, . . . , ξd) ∈ Kd and so

0 = f
k∏
j=1

(α̊j,1ξ1 + . . .+ α̊j,dξd).

In consequence, at least one factor of the right-hand side is zero. This contra-
dicts the definition of d (since for any j = 1, . . . , k the elements α̊j,1, . . . , α̊j,d
are linearly independent over K). This ends the proof.

For F irreducible, the above theorem immediately yields the following
generalization of Salomon’s Theorem to the case of several parameters.

Theorem 2. If F ∈ K[Λ,X] is irreducible over K(Λ) then all monic

factors in K(Λ)
sep

[X] of F irreducible over K(Λ)
sep

are conjugate over K(Λ)
and the number of linearly independent coefficients (over K) of any such
factor does not exceed γΛ(F ).

P r o o f. Let F1 be a monic factor of F irreducible over K(Λ)
sep

and

F2, . . . , Fk be all its conjugates over K(Λ). Since K(Λ)
sep

is Galois over
K(Λ), Fj are all irreducible over K(Λ) and since they are monic, they are
pairwise relatively prime. Hence Fj is a divisor of F , j = 1, . . . , k. It follows

that
∏k
j=1 Fj is a divisor of F . However,

∏k
j=1 Fj is invariant with respect

to any automorphism ϕ of K(Λ)
sep

over K(Λ), hence
∏k
j=1 Fj ∈ K(Λ)[X]

and, by the irreducibility of F over K(Λ), there is an f ∈ K(Λ) such that

(12) F = f

k∏
j=1

Fj .

Hence, by Theorem 1, we have the assertion.

The upper bound given by Theorem 2 can be attained, as shown by the
following

Example 1. Let X = (X0, . . . , Xn) be a system of variables and
P (t1, t2, X) =

∑
r+s=n t

r
1t
s
2Xr. Let ε be a primitive root of unity of degree

n. Then the polynomials

Fj = P ( n
√
Λ2 . . . Λm, ε

j n
√
Λ1, X) ∈ K(Λ)

sep
[X], j = 1, . . . , n,

are all the conjugates of F1 over K(Λ). Hence F =
∏n
j=1 Fj ∈ K[Λ,X] is

irreducible over K(Λ). Moreover, γΛ(F ) = n+ 1 and the Fj have each n+ 1
coefficients linearly independent over K.

In the above example the polyhedron of F is a segment and one can
reduce this example to the case of one parameter Λ1 (puting Λ2 = . . . = Λm
= 1). The authors do not know such examples with ∆Λ(F ) m-dimensional.

From Theorem 2 we obtain the following
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Theorem 3. Let F ∈ K[Λ,X]. Then the number of linearly independent

coefficients (over K) of any factor of F irreducible over K(Λ)
sep

does not
exceed γΛ(F ).

P r o o f. Let F1 ∈ K(Λ)
sep

[X] be any factor of F irreducible over K(Λ)
sep

.
Without loss of generality we may assume that F1 is monic. Let F =
R1 . . . Rk be the decomposition of F into irreducible factors in K[Λ,X].
From Ostrowski’s Theorem ([O, Theorem VI]) we have

∆Λ(R1) + . . .+∆Λ(Rk) = ∆Λ(F ).

So, γΛ(Rj) ≤ γΛ(F ), j = 1, . . . , k. Since F1 is a divisor of at least one Rj ,
Theorem 2 yields the assertion.

The above theorem is not true for arbitrary factors, as is shown by the
following

Example 2. For F = Xs
1 − Λ1 we have γΛ(F ) = 2 and

F = (X1 − s
√
Λ1)(Xs−1

1 +Xs−1
1

s
√
Λ1 + . . .+ ( s

√
Λ1)s−1).

It is easy to see that the last factor has s coefficients linearly independent
over K.

Remark 1. The above results hold for arbitrary Galois extensions of
K(Λ) in place of K(Λ)

sep
, with no change in the proofs.

4. A corollary. In this section we give a particular version of Theorem 2.
Assume that K is an algebraically closed field of characteristic zero. Then

K(Λ)
sep

is the algebraic closure of K(Λ).

In Theorems 1–3 the reducibility of the polynomial F in K(Λ)
sep

[X],
by Emma Noether’s Theorem ([N], [Sc, Theorem 15]), is equivalent to the
reducibility of F (λ,X) in K[X] for all λ ∈ Km such that degF (λ,X) =
degX F . We now give a version of Theorem 2 in the case when F (λ,X)−z is
reducible in K[X] for all z ∈ K and λ ∈ Km such that degF (λ,X) = degX F .

Corollary 1. Let F ∈K[Λ,X] be an irreducible polynomial monic with
respect to X1. If F (λ,X) − z is reducible for all z ∈ K and λ ∈ Km such
that degF (λ,X) = degX F , then there exists a representation

F = F1 . . . Fk,

where Fj ∈ K(Λ)
sep

[X] are all the conjugates of F1 over K(Λ), degFj <
degX F and the number of linearly independent coefficients (over K) of any
Fj does not exceed 2−m(degΛ1

F + 2) . . . (degΛm F + 2).

P r o o f. By [FS, Corollary 6] there exist R ∈ K[Λ,X], degX R < degX F ,
ai ∈ K[Λ], i = 0, . . . , s, s ≥ 2, such that

F = a0R
s + a1R

s−1 + . . .+ as.

Moreover, one can assume that R(Λ, 0) = 0. Hence
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degΛj F ≥ degΛj (F − as−1R− as)
≥ degΛj (a0R

s−2 + a1R
s−3 + . . .+ as−2) + 2 degΛj R,

and so

(15) degΛj R ≤
degΛj F

2
for j = 1, . . . ,m.

Since F is monic with respect to X1, we may assume that R is monic
with respect to X1 and a0 = 1. From the irreducibility of F we see that
h = a0Z

s + a1Z
s−1 + . . .+ as is irreducible in K[Λ,Z], hence,

h = (Z − f1) . . . (Z − fs)
where Z−fj ∈ K(Λ)

sep
[Z] are conjugate over K(Λ). Taking Fj = R−fj we

see that Fj are conjugate over K(Λ) and, by (15), the number of linearly in-
dependent coefficients (over K) of any Fj does not exceed 2−m(degΛ1

F + 2)
. . . (degΛm F + 2). This gives the assertion.
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