TWO REMARKS ABOUT SPECTRAL ASYMPTOTICS OF PSEUDODIFFERENTIAL OPERATORS

BY
WOJCIECH CZAJA and
ZIEMOWIT RZESZOTNIK (ST. LOUIS, MISSOURI, and WROCEAW)

Abstract

In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.

In [11] Shubin and Tulovskiĭ discuss the class of pseudodifferential operators

$$
A f(x)=\iint e^{2 \pi i(x-y) \xi} a\left(\frac{x+y}{2}, \xi\right) f(y) d y d \xi
$$

on \mathbb{R}^{N} whose Weyl symbols are positive and satisfy
(iii)

$$
\begin{gather*}
c|w|^{\delta} \leq a(w) \leq C|w|^{p} \tag{i}\\
\left|\partial^{\alpha} a(w)\right| \leq C_{\alpha} a(w)^{1-\varrho|\alpha|} \tag{ii}\\
\left|\left\langle a^{\prime}(w), w\right\rangle\right| \geq C a(w)^{1-\kappa}
\end{gather*}
$$

where $\delta>0,0<\kappa<\varrho \leq 1, p \in \mathbb{N}$ are fixed constants, $\alpha \in \mathbb{N}^{2 N}$ and $w \in \mathbb{R}^{2 N}$. Such an operator A is selfadjoint on $L^{2}\left(\mathbb{R}^{N}\right)$, bounded from below, and has a discrete spectrum. Shubin and Tulovskiǐ prove the Weyl asymptotic formula

$$
N_{A}(\lambda)=\iint_{a \leq \lambda} d w+O\left(\lambda^{-\sigma}\right), \quad 0<\sigma<\varrho-\kappa
$$

for the number of eigenvalues of A smaller than or equal to λ.
This has been extended by Hörmander [5] to much more general classes and with better estimates for the error term within the framework of his general Weyl calculus. Then a similar question was considered by Głowacki [4] for the class of positive symbols with the following properties:
(a)
(b)

$$
\begin{gathered}
\left|\partial^{\alpha} a(w)\right| \leq C_{\alpha} a(w)^{1-\varrho}, \quad|\alpha|>0 \\
\left|\partial^{\alpha} a\right| \leq C_{\alpha}, \quad|\alpha| \gg 1
\end{gathered}
$$

1991 Mathematics Subject Classification: Primary 47G30.
(c)

$$
\lim _{\|w\| \rightarrow \infty} a(w)=\infty
$$

This class is larger than that of Shubin-Tulovskiĭ and is not included in any of Hörmander's classes. However, the Weyl formula still holds. The reader is referred to the papers quoted above for comparison of the estimates of the error term.

The first goal of this note is to show that a special case of Głowacki's theorem still holds even if the condition (b) is dropped. For this we will use a version of Beals' theorem on fractional powers of pseudodifferential operators (see Beals [1]). This reduces the proof to the theorem obtained by Głowacki.

The other part of the paper is devoted to the quasi-classical asymptotics

$$
N_{A_{(h)}}(\lambda)=h^{-N}\left(V(\lambda)+O\left(h^{1 / 2}\right)\right), \quad h \rightarrow 0
$$

where $A_{(h)}=\operatorname{Op}\left(a^{(h)}\right), a^{(h)}(z)=a(\sqrt{h} z), h>0$, for positive symbols satisfying
($\left.\mathrm{a}^{\prime}\right) \quad\left|\partial^{\alpha} a(w)\right| \leq C_{\alpha} a(w)^{(1-\varrho|\alpha|)_{+}}, \quad$ with $t_{+}=\max (t, 0), t \in \mathbb{R}$,

$$
\lim _{\|w\| \rightarrow \infty} a(w)=\infty
$$

We use Głowacki's version of the Shubin-Tulovskiĭ method of approximate spectral projectors based on a lemma of Hörmander [5]. This improves results of Roĭtburd [9] (see also [10]).

We would like to express our thanks to Professor Paweł Głowacki for the inspiration and enormous help we received during work on this article.

1. Pseudodifferential operators. Let V be an N-dimensional vector space and V^{*} its dual space. Fix a Euclidean norm on V and the dual norm on V^{*}. The space $W=V \times V^{*}$ with the product norm will be called the phase space. Let $\left\{e_{j}\right\}_{j=1}^{N}$ be an orthonormal basis in V and $\left\{e_{j}\right\}_{j=N+1}^{2 N}$ the dual basis in V^{*}. For a multindex $\alpha \in \mathbb{N}^{2 N}$ and a smooth function f on W we define

$$
\partial^{\alpha} f=\partial_{1}^{\alpha_{1}} \ldots \partial_{2 N}^{\alpha_{2 N}} f, \quad \text { where } \quad \partial_{j} f(w)=\left.\frac{1}{2 \pi i} \frac{d}{d t}\right|_{t=0} f\left(w+t e_{j}\right)
$$

In the phase space W we define the following symplectic form:

$$
\sigma(w, v)=y \xi-x \eta
$$

where $w=(x, \xi)$ and $v=(y, \eta)$. Moreover, let $\langle v\rangle=\left(1+\|v\|^{2}\right)^{1 / 2}$ for $v \in W$. Then we have Peetre's inequality

$$
\begin{equation*}
\langle v+w\rangle \leq \sqrt{2}\langle v\rangle\langle w\rangle \tag{1}
\end{equation*}
$$

A strictly positive, continuous function m on W is called a weight if

$$
m(w+v) \leq C m(w)\langle v\rangle^{n}
$$

for every $w, v \in W$ and some constants $C, n>0$. In particular, for every weight m we have

$$
\frac{1}{C}\langle w\rangle^{-n} \leq m(w) \leq C\langle w\rangle^{n}
$$

The set of weights is a group under multiplication. Moreover, if $\alpha \in \mathbb{R}$ and m is a weight, then m^{α} is also a weight. For a fixed weight m we define $S(m)$ to be the set of all functions $a \in \mathcal{C}^{\infty}(W)$ such that

$$
\max _{|\alpha| \leq k}\left\|m^{-1} \partial^{\alpha} a\right\|_{\infty}<\infty \quad \text { for } k=0,1,2, \ldots
$$

Let $\mathcal{S}(V)$ denote the space of Schwartz functions on V. Every function $a \in \mathcal{C}^{\infty}(W)$ having derivatives with a common polynomial growth (e.g. $a \in S(m)$) defines a continuous endomorphism $A=\operatorname{Op}(a): \mathcal{S}(V) \rightarrow \mathcal{S}(V)$ given by the Weyl formula

$$
A f(x)=\iint e^{2 \pi i(x-y) \xi} a\left(\frac{x+y}{2}, \xi\right) f(y) d y d \xi
$$

Such an operator A is called a pseudodifferential operator and the function a is the symbol of A. We denote by $\mathcal{L}(m)$ the class of operators $\operatorname{Op}(a)$ with $a \in S(m)$.

We will use the following propositions:
(1.1) Proposition (see [3]). If $A \in \mathcal{L}\left(m_{1}\right)$ and $B \in \mathcal{L}\left(m_{2}\right)$, then $A B \in$ $\mathcal{L}\left(m_{1} m_{2}\right)$ and for $k \in \mathbb{N}$ large enough, we have

$$
a \circ b(w)=4^{N} \iint \frac{\left(1+\Delta_{u}\right)^{k} a(w+u)}{\langle 2 u\rangle^{2 k}}\left(1+\Delta_{v}\right)^{k}\left[\frac{b(w+v)}{\langle 2 v\rangle^{2 k}}\right] e^{4 \pi i \sigma(v, u)} d u d v
$$

where $a \circ b$ denotes the symbol of $A B$.
(1.2) Proposition (see [3]). If $a \in S\left(m_{1}\right), b \in S\left(m_{2}\right)$ and $\partial^{\alpha} a \in S\left(m_{1}^{\prime}\right)$, $\partial^{\alpha} b \in S\left(m_{2}^{\prime}\right)$ then $r(a, b)=a \circ b-a b \in S\left(m_{1}^{\prime} m_{2}^{\prime}\right)$. Moreover,

$$
\begin{aligned}
r(a, b)(w)= & \frac{4^{N}}{2} \sum_{j=1}^{N} \int_{0}^{1} d t \iint \frac{\left(1+t^{2} \Delta_{u}\right)^{k} \partial_{j} a(w+u)}{\langle 2 u\rangle^{2 k}} \\
& \times\left(1+\Delta_{v}\right)^{k}\left[\frac{\partial_{j+N} b(w+v)}{\langle 2 v\rangle^{2 k}}\right] e^{4 \pi i \sigma(v, u)} d u d v \\
& -\frac{4^{N}}{2} \sum_{j=1}^{N} \int_{0}^{1} d t \iint \frac{\left(1+t^{2} \Delta_{u}\right)^{k} \partial_{j+N} a(w+u)}{\langle 2 u\rangle^{2 k}} \\
& \times\left(1+\Delta_{v}\right)^{k}\left[\frac{\partial_{j} b(w+v)}{\langle 2 v\rangle^{2 k}}\right] e^{4 \pi i \sigma(v, u)} d u d v
\end{aligned}
$$

A symbol $a \in S(m)$ is called elliptic if for some constants $C, K>0$,

$$
|a(w)| \geq C m(w) \quad \text { for }|w| \geq K \text { and }
$$

$\partial^{\alpha} a \in S\left(m^{1-\varrho}\right) \quad$ for $|\alpha|>0$ and some $\varrho>0$, independent of α.
(1.3) Proposition (see [3] and [4]). Suppose $m \geq c>0$ is a weight and a is an elliptic symbol in $S(m)$. Let $\mathrm{Op}(a): \mathcal{S}(V) \rightarrow L^{2}(V)$.
(i) If a is real-valued then $\operatorname{Op}(a)$ is essentially selfadjoint.
(ii) If $a \geq 0$ then $\operatorname{Op}(a)$ is bounded from below.
(iii) If $\lim _{|w| \rightarrow \infty} m(w)=\infty$, then the spectrum of $\mathrm{Op}(a)$ is discrete.
(iv) If $\lim _{|w| \rightarrow \infty} a(w)=0$, then $\mathrm{Op}(a)$ is compact.
(1.4) Proposition (see [4]). If $a \geq 0$ and $\max _{0<|\alpha| \leq 2 N+2}\left|\partial^{\alpha} a\right| \leq C$, then

$$
\mathrm{Op}(a) \geq-L C
$$

where L is a constant independent of a.
(1.5) Proposition (see [10]). If $a \in S(m)$ and $a \geq 0$, then $\mathrm{Op}(H \star a)$ is positive, where $H(w)=e^{\left(-2 \pi\|w\|^{2}\right)}$. (Here \star denotes convolution.)

We will also need the following technical estimates:
(1.6) Proposition (see [4]). Let a and b be symbols. Then

$$
\left\|\partial^{\alpha} r(a, b)\right\|_{1} \leq C \max _{0<|\beta| \leq|\alpha|+2 k+1}\left\|\partial^{\beta} a\right\|_{1} \max _{0<|\beta| \leq|\alpha|+2 k+1}\left\|\partial^{\beta} b\right\|_{\infty} .
$$

Moreover, if $\partial_{j} a \in S\left(m_{1}\right)$ and $\partial_{j} b \in S\left(m_{2}\right)$ for $j=1, \ldots, 2 N$, then

$$
\left\|\partial^{\alpha} r(a, b)\right\|_{\infty} \leq C \max _{0<|\beta| \leq|\alpha|+2 k+1}\left\|m_{1} \partial^{\beta} b\right\|_{\infty}
$$

and

$$
\left\|\partial^{\alpha} r(a, b)\right\|_{\infty} \leq C_{0<|\beta| \leq|\alpha|+2 k+1}\left\|m_{2} \partial^{\beta} a\right\|_{\infty} .
$$

(1.7) Proposition (see [4]). Let $e, f \in S(1), a \in S(m)$ and $\partial_{j} a \in S(n)$, for $j=1, \ldots, 2 N$. Then for all α and k sufficiently large

$$
\begin{aligned}
\left\|\partial^{\alpha} r(e, a, f)\right\|_{\infty} \leq & C\left(\max _{0<|\beta| \leq|\alpha|+k}\left\|n \partial^{\beta} e\right\|_{\infty}\|f\|_{\infty}\right. \\
& +\max _{0<|\beta| \leq|\alpha|+k}\left\|\partial^{\beta}(e a)\right\|_{\infty} \max _{0<|\beta| \leq|\alpha|+k}\left\|\partial^{\beta} f\right\|_{\infty} \\
& \left.+\max _{0<|\beta| \leq|\alpha|+k}\left\|\partial^{\beta} e\right\|_{\infty} \max _{0<|\beta| \leq|\alpha|+k}\left\|n \partial^{\beta} f\right\|_{\infty}\right) .
\end{aligned}
$$

Let \mathcal{H} be a Hilbert space with an inner product $\langle\cdot, \cdot\rangle$. An operator $T \in$ $L(\mathcal{H})$ is called a trace operator if there is an orthonormal basis $\left\{e_{\alpha}\right\}$ such that

$$
\sum_{\alpha}\left|\left\langle T e_{\alpha}, e_{\alpha}\right\rangle\right|<\infty
$$

Then the number

$$
\operatorname{Tr} T=\sum_{\alpha}\left\langle T e_{\alpha}, e_{\alpha}\right\rangle
$$

does not depend on the choice of basis and is called the trace of T. We let $\|T\|_{\operatorname{Tr}}=\operatorname{Tr}|T|$.
(1.8) Proposition (see [4]). If $a \in L^{1}(W)$ and $\mathrm{Op}(a)$ is a trace operator then

$$
\operatorname{Tr} \operatorname{Op}(a)=\iint a(x, \xi) d x d \xi
$$

(1.9) Proposition (see [4]). Let $a \in \mathcal{C}^{\infty}(W)$. If $\partial^{\alpha} a \in L^{1}(W)$ for $|\alpha| \leq$ $2 N+1$, then $\operatorname{Op}(a)$ extends uniquely to a trace operator A on $L^{2}(V)$ and

$$
\|A\|_{\operatorname{Tr}} \leq C \max _{|\alpha| \leq 2 N+1}\left\|\partial^{\alpha} a\right\|_{L^{1}}
$$

Let us also state a lemma which connects the condition (a^{\prime}) with the definition of weight (the proof of the lemma relies only on Taylor's formula).
(1.10) Lemma. If $a \geq C>0$ and there exists $\varrho>0$ such that $\left|\partial^{\alpha} a\right| \leq$ $C_{\alpha} a^{(1-|\alpha| \varrho)_{+}}$for all α, then $1+a$ is a weight.
2. Classical asymptotics. Let A be a selfadjoint operator bounded from below with a discrete spectrum. We denote by $N_{A}(\lambda)$ the number of eigenvalues of A less than or equal to λ (counting with multiplicities). For a positive function $a \in \mathcal{C}^{\infty}(W)$ we define

$$
V_{a}(\lambda)=\int_{a \leq \lambda} d w \quad \text { and } \quad \psi_{a}(t)=\inf _{a(w)=t}\left|\left\langle a^{\prime}(w), w\right\rangle\right|
$$

For $\lambda, m>0$, we also define

$$
\nu(\lambda, m)=\int_{\lambda}^{\lambda+m} \psi_{a}(t)^{-1} d t
$$

(2.1) Proposition. If for $t \geq \lambda$ we have $\psi_{a}(t)>0$ and $\nu(\lambda, m) \leq \log 2$, then

$$
V_{a}(\lambda+m)-V_{a}(\lambda) \leq 2 \nu(\lambda, m) V_{a}(\lambda)
$$

Proof. Note that V is increasing, hence differentiable almost everywhere on \mathbb{R}^{+}. By formula (28.41) of Shubin [10] for $t \geq \lambda$ we have

$$
V_{a}^{\prime}(t) / V_{a}(t) \leq \psi_{a}(t)^{-1}
$$

Using a simple estimate $e^{x}-1 \leq x e^{x}$ valid for $x \in \mathbb{R}$ we obtain

$$
\begin{aligned}
\frac{V_{a}(\lambda+m)-V_{a}(\lambda)}{V_{a}(\lambda)} & =\exp \left(\int_{\lambda}^{\lambda+m} \frac{V_{a}^{\prime}(t)}{V_{a}(t)} d t\right)-1 \\
& \leq \int_{\lambda}^{\lambda+m} \frac{V_{a}^{\prime}(t)}{V_{a}(t)} d t \cdot \exp \left(\int_{\lambda}^{\lambda+m} \frac{V_{a}^{\prime}(t)}{V_{a}(t)} d t\right) \\
& \leq 2 \nu(\lambda, m) .
\end{aligned}
$$

The following theorem is a particular case of the theorem due to Głowacki (Theorem (2.3) of [4]).
(2.2) Theorem. Let m be a weight such that $\lim _{\|w\| \rightarrow \infty} m(w)=\infty$ and let b be a positive elliptic symbol in $S(m)$. If

$$
\left|\partial^{\alpha} b(w)\right| \leq C_{\alpha} \quad \text { for }|\alpha|>0,
$$

and

$$
\psi_{b}(t) \geq C t^{r}, \quad \text { where } 0<r \leq 1, t>0
$$

then for λ large enough

$$
\left|\frac{N_{\mathrm{Op}(b)}(\lambda)}{V_{b}(\lambda)}-1\right| \leq C \lambda^{-r} .
$$

We will show that a similar theorem is true with a weaker assumption

$$
\left|\partial^{\alpha} b(w)\right| \leq C_{\alpha} b^{1-\varrho}(w) \quad \text { for }|\alpha|>0,
$$

where $0<\varrho<1$. For this purpose we will use results due to Beals [1]. In his paper Beals defines pseudodifferential operators by the Kohn-Nirenberg formula, but his method is so general that one can easily apply it to operators defined by the Weyl formula. The next theorem is a special case of Theorem (4.2) of [1].
(2.3) Theorem. Let $m \geq c>0$ be a weight, $A>0$ have an elliptic symbol and $A \in \mathcal{L}(m)$. Then $A^{s} \in \mathcal{L}\left(m^{s}\right)$ for $s \in \mathbb{R}$.
(2.4) Corollary. Let $m \geq c>0$ be a weight and a be a positive elliptic symbol in $S(m)$ such that $\operatorname{Op}(a)>0$ and $\partial^{\alpha} a \in S\left(m^{1-\varrho}\right)$ for $|\alpha|>0$. Let $a^{\circ s}$ denote the symbol of $\operatorname{Op}(a)^{s}$. Then

$$
a^{0 s}=a^{s}+r_{s},
$$

where $r_{s} \in S\left(m^{s-\varrho}\right)$.
Proof. Let us consider the case when $-1<s<0$. Then for $A=\mathrm{Op}(a)$,

$$
A^{s}=-\frac{\sin \pi s}{\pi} \int_{0}^{\infty} t^{s}(t+A)^{-1} d t
$$

(see [7]). Hence

$$
a^{\circ s}=-\frac{\sin \pi s}{\pi} \int_{0}^{\infty} t^{s} a_{t} d t
$$

where a_{t} denotes the symbol of the operator $(t+A)^{-1}$. In this way we obtain

$$
r_{s}=-\frac{\sin \pi s}{\pi} \int_{0}^{\infty} t^{s}\left(a_{t}-(a+t)^{-1}\right) d t
$$

We claim that

$$
a_{t}-(a+t)^{-1} \in S\left((m+t)^{-1-\varrho}\right)
$$

uniformly with respect to t. In fact we have

$$
a_{t}-(a+t)^{-1}=(a+t)^{-1}\left(a_{t}(a+t)-1\right)=-r\left(a_{t}, a\right)(a+t)^{-1},
$$

but $\partial^{\beta} a \in S\left(m^{1-\varrho}\right)$ for $|\beta|>0$ and $a_{t} \in S\left((m+t)^{-1}\right)$ uniformly with respect to t, so also $r\left(a_{t}, a\right) \in S\left((m+t)^{-\varrho}\right)$ uniformly with respect to t (Proposition (1.2)). Hence our claim is true.

In this way we obtain

$$
\left|\partial^{\beta} r_{s}\right| \leq-\frac{\sin \pi s}{\pi} \int_{0}^{\infty} t^{s} C_{s}(m+t)^{-1-\varrho} d t \leq C_{s} m^{s-\varrho}
$$

so that $r_{s} \in S\left(m^{s-\varrho}\right)$. To prove the corollary for $s \in \mathbb{R}$ we only have to remark that $r_{s} \in S\left(m^{s-\varrho}\right)$ implies $r_{2 s} \in S\left(m^{2 s-\varrho}\right)$ and $r_{-s} \in S\left(m^{-s-\varrho}\right)$.
(2.5) Corollary. Let $m \geq c>0$ be a weight, $B>0$ have an elliptic symbol and $B \in \mathcal{L}(m)$. Then for all $s \in \mathbb{R}$ and $R \in \mathcal{L}\left(m^{s}\right)$ there exists a constant L such that

$$
\|R f\| \leq L\left\|B^{s} f\right\| \quad \text { for } f \in \mathcal{S}(V)
$$

Proof. By Theorem (2.3) we have $B^{-s} \in \mathcal{L}\left(m^{-s}\right)$, so the CalderónVaillancourt theorem [2] shows that the operator $R B^{-s}$ is bounded. Hence $\left\|R B^{-s} f\right\| \leq L\|f\|$, which implies that $\|R f\| \leq L\left\|B^{s} f\right\|$.
(2.6) Corollary. Let $m \geq c>0$ be a weight, $B>0$ have an elliptic symbol and $B \in \mathcal{L}(m)$. Then for all $s \in \mathbb{R}$ and $R \in \mathcal{L}\left(m^{s}\right)$ there exists a constant L such that

$$
|\langle R f, f\rangle| \leq L\left\langle B^{s} f, f\right\rangle \quad \text { for } f \in \mathcal{S}(V) .
$$

Proof. We have $R=B^{s / 2} B^{-s / 2} R$, so

$$
\langle R f, f\rangle=\left\langle B^{s / 2} B^{-s / 2} R f, f\right\rangle=\left\langle B^{-s / 2} R f, B^{s / 2} f\right\rangle \leq\left\|B^{-s / 2} R f\right\|\left\|B^{s / 2} f\right\| .
$$

Note that by Theorem (2.3) the operator $B^{-s / 2}$ is in $\mathcal{L}\left(m^{-s / 2}\right)$, therefore $B^{-s / 2} R \in \mathcal{L}\left(m^{s / 2}\right)$; so by Corollary (2.5) we obtain $\left\|B^{-s / 2} R f\right\| \leq$
$L\left\|B^{s / 2} f\right\|$. In this way

$$
\langle R f, f\rangle \leq L\left\|B^{s / 2} f\right\|^{2}=L\left\langle B^{s} f, f\right\rangle
$$

(2.7) Lemma. Let m be a weight such that $\lim _{\|w\| \rightarrow \infty} m(w)=\infty$ and let b be a positive elliptic symbol in $S(m)$. If

$$
\left|\partial^{\alpha} b(w)\right| \leq C_{\alpha} \quad \text { for }|\alpha|>0
$$

and

$$
\psi_{b}(t) \geq C t^{r}, \quad \text { where } 0<r \leq 1
$$

then for $s \geq 1$ and λ large enough

$$
\left|\frac{N_{\mathrm{Op}\left(b^{s}\right)}(\lambda)}{V_{b^{s}}(\lambda)}-1\right| \leq C \lambda^{-r / s} .
$$

Proof. First let us study the functions $V_{b^{s}}$ and $N_{\mathrm{Op}\left(b^{s}\right)}$ (our assumptions imply that $\operatorname{Op}\left(b^{s}\right)$ is bounded from below and has a discrete spectrum (Proposition (1.3))). Denoting the symbol b^{s} by a we obtain

$$
V_{a}(\lambda)=V_{b}\left(\lambda^{1 / s}\right)
$$

Note that by Corollary (2.4) we have $b^{s}=b^{\circ s}+r$, where $r \in S\left(m^{s-1}\right)$. Let A denote $\mathrm{Op}(a)$ and B denote $\mathrm{Op}(b)$. We know that $b>0$ so there is a constant M such that $B+M>0$ (Proposition (1.3)). We also have $r \in S\left(m^{s-1}\right) \subset S\left((m+M)^{s-1}\right)$, so by Corollary (2.6),

$$
-L(B+M)^{s-1} \leq \mathrm{Op}(r) \leq L(B+M)^{s-1}
$$

Hence

$$
B^{s}-L(B+M)^{s-1} \leq A \leq B^{s}+L(B+M)^{s-1}
$$

and therefore, using the "mini-max principle" [8], we obtain

$$
b_{n}^{s}-L\left(b_{n}+M\right)^{s-1} \leq a_{n} \leq b_{n}^{s}+L\left(b_{n}+M\right)^{s-1}
$$

where a_{n} and b_{n} denote the nth eigenvalues of the operators A and B, respectively. In this way increasing the constants L and M if necessary, we obtain

$$
b_{n}^{s}-L b_{n}^{s-1}-M \leq a_{n} \leq b_{n}^{s}+L b_{n}^{s-1}+M
$$

so

$$
\begin{aligned}
\left\{n \in \mathbb{N}: b_{n}^{s}+L b_{n}^{s-1}+M \leq \lambda\right\} & \subset\left\{n \in \mathbb{N}: a_{n} \leq \lambda\right\} \\
& \subset\left\{n \in \mathbb{N}: b_{n}^{s}-L b_{n}^{s-1}-M \leq \lambda\right\}
\end{aligned}
$$

But it is easy to see that for λ large enough $b_{n}^{s}-L b_{n}^{s-1}-M \leq \lambda$ implies $b_{n} \leq \lambda^{1 / s}+L$. In fact we can consider the function $f(x)=x^{s}-L x^{s-1}-M-\lambda$ defined for $x>0$. It has only one zero with positive derivative and for large λ,

$$
f\left(\lambda^{1 / s}+L\right)=\lambda^{1 / s}\left(\left(\lambda^{1 / s}+L\right)^{s-1}-\lambda^{(s-1) / s}\right)-M \geq 0
$$

Similarly $b_{n} \leq \lambda^{1 / s}-L$ implies $b_{n}^{s}+L b_{n}^{s-1}+M \leq \lambda$. Therefore

$$
\left\{n \in \mathbb{N}: b_{n} \leq \lambda^{1 / s}-L\right\} \subset\left\{n \in \mathbb{N}: a_{n} \leq \lambda\right\} \subset\left\{n \in \mathbb{N}: b_{n} \leq \lambda^{1 / s}+L\right\}
$$

so

$$
N_{B}\left(\lambda^{1 / s}-L\right) \leq N_{A}(\lambda) \leq N_{B}\left(\lambda^{1 / s}+L\right)
$$

Denote $\lambda^{1 / s}-L$ by μ_{1} and $\lambda^{1 / s}+L$ by μ_{2}. Then

$$
\frac{N_{B}\left(\mu_{1}\right)}{V_{b}\left(\mu_{1}+L\right)} \leq \frac{N_{A}(\lambda)}{V_{a}(\lambda)} \leq \frac{N_{B}\left(\mu_{2}\right)}{V_{b}\left(\mu_{2}-L\right)}
$$

So using Proposition (2.1) we obtain

$$
\frac{N_{B}\left(\mu_{1}\right)}{V_{b}\left(\mu_{1}\right)\left(2 \nu\left(\mu_{1}, L\right)+1\right)} \leq \frac{N_{A}(\lambda)}{V_{a}(\lambda)} \leq \frac{N_{B}\left(\mu_{2}\right)}{V_{b}\left(\mu_{2}\right)}\left(2 \nu\left(\lambda^{1 / s}, L\right)+1\right)
$$

Note that

$$
\left|\frac{N_{B}\left(\mu_{1}\right)}{V_{b}\left(\mu_{1}\right)\left(2 \nu\left(\mu_{1}, L\right)+1\right)}-1\right| \leq\left|\frac{N_{B}\left(\mu_{1}\right)}{V_{b}\left(\mu_{1}\right)}-1\right|+2 \nu\left(\mu_{1}, L\right)
$$

and

$$
\left|\frac{N_{B}\left(\mu_{2}\right)}{V_{b}\left(\mu_{2}\right)}\left(2 \nu\left(\lambda^{1 / s}, L\right)+1\right)-1\right| \leq\left|\frac{N_{B}\left(\mu_{2}\right)}{V_{b}\left(\mu_{2}\right)}-1\right|+3 \nu\left(\lambda^{1 / s}, L\right)
$$

Obviously the symbol b satisfies the assumptions of Theorem (2.2), therefore

$$
\left|\frac{N_{B}\left(\mu_{i}\right)}{V_{b}\left(\mu_{i}\right)}-1\right| \leq C \mu_{i}^{-r} \quad \text { for } i=1,2
$$

Now we only need to note that $\mu_{1}^{-r}, \mu_{2}^{-r}, \nu\left(\mu_{1}, L\right)$ and $\nu\left(\lambda^{1 / s}, L\right)$ are estimated by $M \lambda^{-r / s}$, where M is a constant. Finally, we conclude that there is a constant C such that for λ large enough

$$
\left|\frac{N_{A}(\lambda)}{V_{a}(\lambda)}-1\right| \leq C \lambda^{-r / s}
$$

(2.8) Theorem. Let m be a weight such that $\lim _{\|w\| \rightarrow \infty} m(w)=\infty$ and let a be a positive elliptic symbol in $S(m)$. If

$$
\left|\partial^{\alpha} a(w)\right| \leq C_{\alpha} a^{1-\varrho}(w) \quad \text { for }|\alpha|>0
$$

and

$$
\psi_{a}(t) \geq C t^{r}
$$

where $0<\varrho \leq 1,0<r \leq 1$ and $r+\varrho>1$, then for λ large enough

$$
\left|\frac{N_{\mathrm{Op}(a)}(\lambda)}{V_{a}(\lambda)}-1\right| \leq C \lambda^{-(r+\varrho-1)}
$$

Proof. Note that the symbol a^{ϱ} satisfies the assumptions of Lemma (2.7). In fact, denoting a^{ϱ} by b, we obtain

$$
\left|\partial^{\alpha} b(w)\right| \leq C_{\alpha} \quad \text { and } \quad \psi_{b}(t) \geq C t^{r / \varrho+1-1 / \varrho}
$$

So from Lemma (2.7) it follows that

$$
\left|\frac{N_{\mathrm{Op}(a)}(\lambda)}{V_{a}(\lambda)}-1\right| \leq C \lambda^{-\sigma},
$$

where $\sigma=(r / \varrho+1-1 / \varrho) \varrho=r+\varrho-1$.
(2.9) Example. Let us assume that a symbol a satisfies conditions analogous to those of Tulovskiĭ and Shubin:
(i') $\quad 0 \leq a(w) \in S(m), \quad a$ elliptic and $\lim _{\|w\| \rightarrow \infty} m(w)=\infty$,

$$
\begin{gather*}
\left|\partial^{\alpha} a(w)\right| \leq C_{\alpha} a(w)^{1-\varrho} \quad \text { for }|\alpha|>0 \tag{ii'}\\
\left|\left\langle a^{\prime}(w), w\right\rangle\right| \geq C a(w)^{1-\kappa}
\end{gather*}
$$

(iii)

Then (iii) implies that

$$
\psi_{a}(t) \geq C t^{1-\kappa}
$$

so by Theorem (2.8),

$$
N_{\mathrm{Op}(a)}(\lambda)=V_{a}(\lambda)+O\left(\lambda^{-(\varrho-\kappa)}\right),
$$

which is stronger than the result of Tulovskiǐ and Shubin. Moreover, by Lemma (1.10) the conditions (i) and (ii) imply that $a+1$ is a weight and also that a is an elliptic symbol in $S(a+1)$. This means that the condition (i^{\prime}) is satisfied with $m=a+1$. An easy observation that (ii) implies (ii') proves that the conditions (i^{\prime}), (ii'), (iii) are more general than (i)-(iii).
3. Quasiclassical asymptotics. As before let A be a selfadjoint operator defined on a dense subspace of a Hilbert space, with spectrum $\operatorname{Sp} A$ discrete and bounded from below. Let $N_{A}(\lambda)$ be the spectral function of A. The following result is due to L. Hörmander [5].
(3.1) Lemma. Let E be a selfadjoint trace operator such that $A E$ is bounded. If $(I-E)(A-\lambda)(I-E) \geq-l$, then

$$
N_{A}(\lambda-4 l) \leq \operatorname{Tr} E+2\left\|E-E^{2}\right\|_{\operatorname{Tr}}
$$

If $E(\lambda-A) E \geq-k$, then

$$
N_{A}(\lambda+4 k) \geq \operatorname{Tr} E-2\left\|E-E^{2}\right\|_{\operatorname{Tr}} .
$$

For $\delta>0$ let $\chi(t, \lambda, \delta)$ be a smooth function with the following properties:

$$
\begin{gathered}
\chi(t, \lambda, \delta)= \begin{cases}1 & \text { if } t \leq \lambda \\
0 & \text { if } t \geq \lambda+2 \delta\end{cases} \\
\left|(\partial / \partial t)^{k} \chi(t, \lambda, \delta)\right| \leq C_{k} \delta^{-k}
\end{gathered}
$$

For any $h>0$ and any λ we can define a smooth function

$$
e_{h}(z)=\chi\left(a(z), \lambda, h^{1 / 2}\right)
$$

where $a \geq 0$ is the symbol of some pseudodifferential operator A with the property that $\lim _{|w| \rightarrow \infty} a(w)=\infty$. Let $a^{(h)}(w)=a\left(h^{1 / 2} w\right)$. Define E_{h} to be the operator with symbol $e_{h}^{(h)}$. The function $e_{h}^{(h)}$ satisfies

$$
e_{h}^{(h)}(z)= \begin{cases}1 & \text { if } a\left(h^{1 / 2} z\right) \leq \lambda \\ 0 & \text { if } a\left(h^{1 / 2} z\right) \geq \lambda+2 h^{1 / 2}\end{cases}
$$

and
$\partial^{\gamma} e_{h}^{(h)}(z)=$

$$
\sum_{\substack{k=0 \\ m_{1}+\ldots+m_{k}=|\gamma|}}^{|\gamma|} C_{m, k} h^{|\gamma| / 2} \frac{\partial^{k} \chi}{\partial z^{k}}\left(a\left(h^{1 / 2} z\right), \lambda, h^{1 / 2}\right) \partial_{1}^{m_{1}} a\left(h^{1 / 2} z\right) \ldots \partial_{k}^{m_{k}} a\left(h^{1 / 2} z\right)
$$

If there is a $\varrho>0$ such that for every γ we have C_{γ} satisfying

$$
\left|\partial^{\gamma} a(z)\right| \leq C_{\gamma} a^{(1-|\gamma| \varrho)_{+}}(z)
$$

then we can summarize all the above results to get

$$
\begin{equation*}
\left|\partial^{\gamma} e_{h}^{(h)}(z)\right| \leq C_{\gamma, \lambda} . \tag{2}
\end{equation*}
$$

With the above assumptions we have the following lemma:
(3.2) Lemma. E_{h} is a trace operator and

$$
\left\|E_{h}^{2}-E_{h}\right\|_{\operatorname{Tr}} \leq C h^{-N+1 / 2}
$$

Proof. The symbol of the operator $E_{h}-E_{h}^{2}$ can be written as $e_{h}^{(h)}(z)-$ $e_{h}^{(h)} \circ e_{h}^{(h)}(z)=e_{h}^{(h)}(z)-e_{h}^{(h)} e_{h}^{(h)}(z)-r\left(e_{h}^{(h)}, e_{h}^{(h)}\right)(z)$. By definition, Proposition (1.6) and (2), for h small enough, we get

$$
\begin{aligned}
&\left\|\partial^{\gamma}\left(e_{h}^{(h)}-\left(e_{h}^{(h)}\right)^{2}\right)\right\|_{1} \leq C h^{-N}\left(V\left(\lambda+2 h^{1 / 2}\right)-V(\lambda)\right) \\
&\left\|\partial^{\gamma}\left(r\left(e_{h}^{(h)}, e_{h}^{(h)}\right)\right)\right\|_{1} \leq C h^{-N}\left(V\left(\lambda+2 h^{1 / 2}\right)-V(\lambda)\right)
\end{aligned}
$$

By Proposition (1.9) and Lebesgue's differentiation theorem ([8], Theorem 9.2, p. 226), for almost every λ we have

$$
\begin{aligned}
\left\|E_{h}-E_{h}^{2}\right\|_{\operatorname{Tr}} & \leq C \max _{|\alpha| \leq 2 N+2}\left\|\partial^{\alpha}\left(e_{h}^{(h)}(z)-e_{h}^{(h)} \circ e_{h}^{(h)}(z)\right)\right\|_{1} \\
& \leq C h^{-N}\left(V\left(\lambda+2 h^{1 / 2}\right)-V(\lambda)\right) \leq C h^{-N} h^{1 / 2}
\end{aligned}
$$

The main purpose of this section is to prove the following theorem.
(3.3) Theorem. Let m be a weight such that $\lim _{|z| \rightarrow \infty} m(z)=\infty$. Let $a \geq C>0$ be an elliptic symbol in the class $S(m)$ such that

$$
\begin{equation*}
\left|\partial^{\gamma} a(z)\right| \leq C_{\gamma} a^{(1-|\gamma| \varrho)_{+}}(z) \quad \text { for some } \varrho>0 \tag{3}
\end{equation*}
$$

Let $A_{(h)}$ be the operator with symbol $a^{(h)}$. Then for almost all λ,

$$
N_{A_{(h)}}(\lambda)=h^{-N}\left(V(\lambda)+O\left(h^{1 / 2}\right)\right)
$$

Moreover, to obtain the above asymptotics it is enough to assume only that $a \geq C>0$ is a smooth function satisfying the inequality (3) and such that $\lim _{|z| \rightarrow \infty} a(z)=\infty$.
(3.4) Lemma. For h small enough we have the estimate

$$
\left\|E_{h}\left(\lambda-A_{(h)}\right)\left(I-E_{h}\right)\right\| \leq C h^{1 / 2}
$$

Proof. The symbol of the operator $E_{h}\left(\lambda-A_{(h)}\right)\left(I-E_{h}\right)$ is

$$
e_{h}^{(h)} \circ\left(\lambda-a^{(h)}\right) \circ\left(1-e_{h}^{(h)}\right)(z)=a_{\lambda, h}(z)+r_{\lambda, h}(z),
$$

where

$$
\begin{aligned}
& a_{\lambda, h}(z)=e_{h}^{(h)}\left(\lambda-a^{(h)}\right)\left(1-e_{h}^{(h)}\right)(z) \\
& r_{\lambda, h}(z)=r\left(e_{h}^{(h)}, \lambda-a^{(h)}, 1-e_{h}^{(h)}\right)(z)
\end{aligned}
$$

By (2) and Proposition (1.7),

$$
\max _{|\alpha| \leq 2 N+2}\left\|\partial^{\alpha} a_{\lambda, h}\right\|_{\infty} \leq C h^{1 / 2}, \quad \max _{|\alpha| \leq 2 n+2}\left\|\partial^{\alpha} r_{\lambda, h}\right\|_{\infty} \leq C h^{1 / 2}
$$

The proof can now be completed by using the Calderón-Vaillancourt theorem (for references see [2]).
(3.5) Proposition. For h small enough

$$
E_{h}\left(\lambda-A_{(h)}\right) E_{h} \geq-C h^{1 / 2}
$$

Proof. We can write

$$
E_{h}\left(\lambda-A_{(h)}\right) E_{h}=E_{h}\left(\lambda-A_{(h)}\right)-E_{h}\left(\lambda-A_{(h)}\right)\left(I-E_{h}\right)
$$

The symbol of the first operator on the right hand side is $a_{\lambda, h}(z)-r_{\lambda, h}(z)$, where now $a_{\lambda, h}(z)=e_{h}^{(h)}\left(\lambda-a^{(h)}\right)(z)$ and $r_{\lambda, h}(z)=r\left(e_{h}^{(h)}, a_{h}^{(h)}\right)(z)$. Moreover, $a_{\lambda, h}(z) \geq-2 h^{1 / 2}$. By (2), for $|\alpha|>0$ we have $\left|\partial^{\alpha} a_{\lambda, h}\right| \leq C h^{1 / 2}$. Therefore Proposition (1.4) gives us

$$
\operatorname{Op}\left(a_{\lambda, h}\right) \geq-L h^{1 / 2}
$$

Now by Proposition (1.6) we get $\left\|\partial^{\alpha} r_{\lambda, h}\right\|_{\infty} \leq C h^{1 / 2}$, so by the CalderónVaillancourt theorem

$$
\left\|\mathrm{Op}\left(r_{\lambda, h}\right)\right\| \leq C h^{1 / 2}
$$

Finally, we can prove the proposition by combining all the above with Lemma (3.4).
(3.6) Proposition. For $h>0$ small enough

$$
\left(I-E_{h}\right)\left(A_{(h)}-\lambda\right)\left(I-E_{h}\right) \geq-C h^{1 / 2}
$$

Proof. We have a similar decomposition to the one before:

$$
\left(I-E_{h}\right)\left(A_{(h)}-\lambda\right)\left(I-E_{h}\right)=\left(A_{(h)}-\lambda\right)\left(I-E_{h}\right)+E_{h}\left(\lambda-A_{(h)}\right)\left(I-E_{h}\right) .
$$

The symbol of the operator $(A(h)-\lambda)\left(I-E_{h}\right)$ is $a_{\lambda, h}(z)-r_{\lambda, h}(z)$, where now $a_{\lambda, h}(z)=\left(a^{(h)}-\lambda\right)\left(1-e_{h}^{(h)}\right)(z) \geq 0$ and $r_{\lambda, h}(z)=r\left(a^{(h)}, e_{h}^{(h)}\right)(z)$. Notice, therefore, that we only need to estimate $\operatorname{Op}\left(a_{\lambda, h}\right)$. It is easy to see that

$$
\left|\partial^{\alpha} a_{\lambda, h}\right| \leq C_{\alpha, h} h^{1 / 2} a_{\lambda, h}
$$

for $|\alpha|>0$. Moreover, for every $b \in S(m)$ and $k \in \mathbb{N}$,

$$
\begin{aligned}
&(\delta-H)^{\star k} \star b(w) \\
&=\int_{[0,1]^{k}} \int_{W^{k}} b^{(k)}\left(w-\sum_{j=1}^{k} t_{j} v_{j}\right)\left(v_{1}, \ldots, v_{k}\right) H\left(v_{1}\right) \ldots H\left(v_{k}\right) d v d t
\end{aligned}
$$

therefore

$$
\left|\partial^{\alpha}(\delta-H)^{\star k} \star a_{\lambda, h}\right| \leq C_{\lambda, h, k} h^{1 / 2} a_{\lambda, h}
$$

Notice also that for $k+|\alpha|>\left[\varrho^{-1}\right]$, where [] denotes the greatest integer function, we get

$$
\left|\partial^{\alpha}(\delta-H)^{\star k} \star a_{\lambda, h}\right| \leq C_{\lambda, \alpha, k} h^{1 / 2}
$$

Since we can decompose $a_{\lambda, h}$ as

$$
a_{\lambda, h}=H \star \sum_{k=0}^{n}(\delta-H)^{\star k} \star a_{\lambda, h}+(\delta-H)^{\star(n+1)} \star a_{\lambda, h},
$$

where $n=\left[\varrho^{-1}\right]$, the above calculations and Propositions (1.4) and (1.5) give us $\operatorname{Op}\left(a_{\lambda, h}\right) \geq-C h^{1 / 2}$.
(3.7) FACT. $\operatorname{Tr} E_{h}=h^{-N} V(\lambda)\left(1+O\left(h^{1 / 2}\right)\right)$.

Proof. By Proposition (1.9), E_{h} is a trace operator. Moreover, by Proposition (1.8),

$$
\operatorname{Tr} E_{h}=\int e_{h}^{(h)}(z) d z
$$

So according to the definition of e_{h},

$$
h^{-N} V(\lambda) \leq \operatorname{Tr} E_{h} \leq C h^{-N+1 / 2}+h^{-N} V(\lambda)
$$

which is equivalent to

$$
\frac{\operatorname{Tr} E_{h}}{h^{-N} V(\lambda)}-1=O\left(h^{1 / 2}\right)
$$

(3.8) Remark. The operator $A_{(h)} E_{h}$ is bounded.

Proof. The symbol of this operator is $a^{(h)}(z) e_{h}^{(h)}(z)+r\left(a^{(h)}, e_{h}^{(h)}\right)(z)$. The derivatives of the first summand are bounded because it is a smooth, compactly supported function, and of the other one by Proposition (1.6). Thus our claim follows from the Calderón-Vaillancourt theorem (see Proposition (1.15) of [4]).

Proof of Theorem (3.3). By Proposition (1.3) the operator $A_{(h)}$ is essentially selfadjoint and bounded from below. Therefore we can apply Lemma (3.1) to its closure, which we will also denote by $A_{(h)}$. By Lemma (3.1) and Propositions (3.5) and (3.6) we have

$$
N_{A_{(h)}}\left(\lambda-C h^{1 / 2}\right) \leq \operatorname{Tr} E_{h}+2\left\|E_{h}^{2}-E_{h}\right\|_{\operatorname{Tr}}
$$

and

$$
N_{A_{(h)}}\left(\lambda+C h^{1 / 2}\right) \geq \operatorname{Tr} E_{h}-2\left\|E_{h}^{2}-E_{h}\right\|_{\operatorname{Tr}}
$$

for any $h>0$ and λ, parameters of the symbol $e_{h}^{(h)}$. So

$$
N_{A_{(h)}}(\lambda) \leq \operatorname{Tr} E_{h, \lambda_{h}^{+}}+2\left\|E_{h, \lambda_{h}^{+}}^{2}-E_{h, \lambda_{h}^{+}}\right\|_{\operatorname{Tr}}
$$

and

$$
N_{A_{(h)}}(\lambda) \geq \operatorname{Tr} E_{h, \lambda_{h}^{-}}-2\left\|E_{h, \lambda_{h}^{-}}^{2}-E_{h, \lambda_{h}^{-}}\right\|_{\operatorname{Tr}}
$$

where $E_{h, \lambda_{h}^{+}}$is the operator with symbol $e_{h, \lambda+C h^{1 / 2}}^{(h)}$ and $E_{h, \lambda_{h}^{-}}$has symbol $e_{h, \lambda-C h^{1 / 2}}^{(h)}$. By the proofs of Lemma (3.2) and Fact (3.7) it is easy to see that

$$
\left\|E_{h, \lambda_{h}}^{2}-E_{h, \lambda_{h}}\right\|_{\operatorname{Tr}} \leq C h^{-N+1 / 2}
$$

and

$$
\left|\operatorname{Tr} E_{h, \lambda_{h}}-h^{-N} V(\lambda)\right| \leq C h^{-N+1 / 2}
$$

Therefore the first part of our theorem is established. To prove the second part it is enough to notice by Lemma (1.10) that $a+1$ is a weight and a is an elliptic symbol in the class $S(a+1)$.
(3.9) Example. Let $p\left(w_{1}, \ldots, w_{2 N}\right) \geq c>0$ be a hypoelliptic polynomial (i.e. $\left|\partial^{\alpha} p(\xi) / p(\xi)\right| \leq C|\xi|^{-c|\alpha|},|\alpha|>0$, see [6], Theorem 11.1.3). In particular $\lim _{|w| \rightarrow \infty} p(w)=\infty$. By the hypoellipticity of p, condition (3) is satisfied. Therefore Theorem (3.3) gives us the spectral asymptotics for $\operatorname{Op}\left(p^{(h)}\right)$.
(3.10) Example. Let $l(t)=\ln (1+t)$ and $l^{n}(t)=l \circ \ldots \circ l(t)$ for $n \in \mathbb{N}$. Let $c_{n}\left(w_{1}, \ldots, w_{2 N}\right)=l^{n}\left(\left\langle w_{1}, \ldots, w_{2 N}\right\rangle\right)$. Since $\left|\partial^{\gamma}\left(\langle x\rangle^{b}\right)\right| \leq C_{\gamma}\langle x\rangle^{b-|\gamma|}$, we have, for $|\alpha|>0$,

$$
\left|\partial^{\alpha} c_{n}(w)\right| \leq C_{\alpha}\langle w\rangle^{-|\alpha|} \leq C_{\alpha}
$$

Since $\lim _{|w| \rightarrow \infty} c_{n}(w)=\infty$, we can apply Theorem (3.3) to $\operatorname{Op}\left(c_{n}^{(h)}\right)$.
(3.11) Example. Finally, we mention that in our theory we can also consider Schrödinger operators with potential of logarithmic growth. Thus, as before, we can obtain our spectral asymptotics for the operator with symbol $\langle x\rangle^{-1} \xi^{2}+\log (\langle x\rangle)$.

REFERENCES

[1] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45-57.
[2] G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, N.J., 1989.
[3] P. Głowacki, Stable semi-groups of measures on the Heisenberg group, Studia Math. 79 (1984), 105-138.
[4] -, The Weyl asymptotic formula for a class of pseudodifferential operators, ibid. 127 (1998), 169-170.
[5] L. Hörmander, On the asymptotic distribution of the pseudodifferential operators in \mathbb{R}^{n}, Ark. Mat. 17 (1979), 297-313.
[6] -, The Analysis of Linear Partial Differential Operators, Springer, Berlin, 1983.
[7] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York, 1978.
[9] V. L. Roŭtburd, The quasiclassical asymptotic behavior of the spectrum of a pseudodifferential operator, Uspekhi Mat. Nauk 31 (1976), no. 4, 275-276 (in Russian).
[10] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Nauka, Moscow, 1978 (in Russian).
[11] M. A. Shubin and V. N. Tulovskiĭ, On the asymptotic distribution of the eigenvalues of pseudodifferential operators in \mathbb{R}^{n}, Mat. Sb. 92 (134) (1973), 571-588 (in Russian).

Department of Mathematics
Mathematical Institute
Washington University
Campus Box 1146
St. Louis, Missouri 63130
U.S.A.

E-mail: wczaja@artsci.wustl.edu
zrzeszot@artsci.wustl.edu

