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Abstract. In this paper we show an asymptotic formula for the number of eigenvalues
of a pseudodifferential operator. As a corollary we obtain a generalization of the result by
Shubin and Tulovskĭı about the Weyl asymptotic formula. We also consider a version of
the Weyl formula for the quasi-classical asymptotics.

In [11] Shubin and Tulovskĭı discuss the class of pseudodifferential oper-
ators

Af(x) =
\\
e2πi(x−y)ξa

(

x+ y

2
, ξ

)

f(y) dy dξ

on R
N whose Weyl symbols are positive and satisfy

c|w|δ ≤ a(w) ≤ C|w|p,(i)

|∂αa(w)| ≤ Cαa(w)1−̺|α|,(ii)

|〈a′(w), w〉| ≥ Ca(w)1−κ,(iii)

where δ > 0, 0 < κ < ̺ ≤ 1, p ∈ N are fixed constants, α ∈ N
2N and

w ∈ R
2N . Such an operator A is selfadjoint on L2(RN ), bounded from

below, and has a discrete spectrum. Shubin and Tulovskĭı prove the Weyl
asymptotic formula

NA(λ) =
\\

a≤λ

dw +O(λ−σ), 0 < σ < ̺− κ,

for the number of eigenvalues of A smaller than or equal to λ.
This has been extended by Hörmander [5] to much more general classes

and with better estimates for the error term within the framework of his
general Weyl calculus. Then a similar question was considered by G lowacki
[4] for the class of positive symbols with the following properties:

|∂αa(w)| ≤ Cαa(w)1−̺, |α| > 0,(a)

|∂αa| ≤ Cα, |α| ≫ 1,(b)
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lim
‖w‖→∞

a(w) = ∞.(c)

This class is larger than that of Shubin–Tulovskĭı and is not included in any
of Hörmander’s classes. However, the Weyl formula still holds. The reader is
referred to the papers quoted above for comparison of the estimates of the
error term.

The first goal of this note is to show that a special case of G lowacki’s
theorem still holds even if the condition (b) is dropped. For this we will
use a version of Beals’ theorem on fractional powers of pseudodifferential
operators (see Beals [1]). This reduces the proof to the theorem obtained by
G lowacki.

The other part of the paper is devoted to the quasi-classical asymptotics

NA(h)
(λ) = h−N (V (λ) +O(h1/2)), h→ 0,

where A(h) = Op(a(h)), a(h)(z) = a(
√
hz), h > 0, for positive symbols

satisfying

|∂αa(w)| ≤ Cαa(w)(1−̺|α|)+ , with t+ = max(t, 0), t ∈ R,(a′)

lim
‖w‖→∞

a(w) = ∞.(c′)

We use G lowacki’s version of the Shubin–Tulovskĭı method of approximate
spectral projectors based on a lemma of Hörmander [5]. This improves
results of Rŏıtburd [9] (see also [10]).

We would like to express our thanks to Professor Pawe l G lowacki for the
inspiration and enormous help we received during work on this article.

1. Pseudodifferential operators. Let V be an N -dimensional vector
space and V ∗ its dual space. Fix a Euclidean norm on V and the dual norm
on V ∗. The space W = V × V ∗ with the product norm will be called the
phase space. Let {ej}Nj=1 be an orthonormal basis in V and {ej}2Nj=N+1 the

dual basis in V ∗. For a multindex α ∈ N
2N and a smooth function f on W

we define

∂αf = ∂α1
1 . . . ∂α2N

2N f, where ∂jf(w) =
1

2πi

d

dt

∣

∣

∣

∣

t=0

f(w + tej).

In the phase space W we define the following symplectic form:

σ(w, v) = yξ − xη,

where w = (x, ξ) and v = (y, η). Moreover, let 〈v〉 = (1+‖v‖2)1/2 for v ∈W.
Then we have Peetre’s inequality

(1) 〈v + w〉 ≤
√

2〈v〉〈w〉.
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A strictly positive, continuous function m on W is called a weight if

m(w + v) ≤ Cm(w)〈v〉n

for every w, v ∈ W and some constants C,n > 0. In particular, for every
weight m we have

1

C
〈w〉−n ≤ m(w) ≤ C〈w〉n.

The set of weights is a group under multiplication. Moreover, if α ∈ R and
m is a weight, then mα is also a weight. For a fixed weight m we define
S(m) to be the set of all functions a ∈ C∞(W ) such that

max
|α|≤k

‖m−1∂αa‖∞ <∞ for k = 0, 1, 2, . . .

Let S(V ) denote the space of Schwartz functions on V . Every function
a ∈ C∞(W ) having derivatives with a common polynomial growth (e.g.
a ∈ S(m)) defines a continuous endomorphism A = Op(a) : S(V ) → S(V )
given by the Weyl formula

Af(x) =
\\
e2πi(x−y)ξa

(

x+ y

2
, ξ

)

f(y) dy dξ.

Such an operator A is called a pseudodifferential operator and the function
a is the symbol of A. We denote by L(m) the class of operators Op(a) with
a ∈ S(m).

We will use the following propositions:

(1.1) Proposition (see [3]). If A ∈ L(m1) and B ∈ L(m2), then AB ∈
L(m1m2) and for k ∈ N large enough, we have

a ◦ b(w) = 4N
\\(1 +∆u)

k
a(w + u)

〈2u〉2k
(1 +∆v)k

[

b(w + v)

〈2v〉2k
]

e4πiσ(v,u) du dv,

where a ◦ b denotes the symbol of AB.

(1.2) Proposition (see [3]). If a ∈ S(m1), b ∈ S(m2) and ∂αa ∈ S(m′
1),

∂αb ∈ S(m′
2) then r(a, b) = a ◦ b− ab ∈ S(m′

1m
′
2). Moreover ,

r(a, b)(w) =
4N

2

N
∑

j=1

1\
0

dt
\\(1 + t2∆u)

k
∂ja(w + u)

〈2u〉2k

× (1 +∆v)k
[

∂j+Nb(w + v)

〈2v〉2k
]

e4πiσ(v,u) du dv

− 4N

2

N
∑

j=1

1\
0

dt
\\(1 + t2∆u)

k
∂j+Na(w + u)

〈2u〉2k

× (1 +∆v)
k

[

∂jb(w + v)

〈2v〉2k
]

e4πiσ(v,u) du dv.
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A symbol a ∈ S(m) is called elliptic if for some constants C,K > 0,

|a(w)| ≥ Cm(w) for |w| ≥ K and

∂αa ∈ S(m1−̺) for |α| > 0 and some ̺ > 0, independent of α.

(1.3) Proposition (see [3] and [4]). Suppose m ≥ c > 0 is a weight and
a is an elliptic symbol in S(m). Let Op(a) : S(V ) → L2(V ).

(i) If a is real-valued then Op(a) is essentially selfadjoint.
(ii) If a ≥ 0 then Op(a) is bounded from below.

(iii) If lim|w|→∞m(w) = ∞, then the spectrum of Op(a) is discrete.
(iv) If lim|w|→∞ a(w) = 0, then Op(a) is compact.

(1.4) Proposition (see [4]). If a ≥ 0 and max0<|α|≤2N+2 |∂αa| ≤ C,
then

Op(a) ≥ −LC,
where L is a constant independent of a.

(1.5) Proposition (see [10]). If a ∈ S(m) and a ≥ 0, then Op(H ⋆a) is

positive, where H(w) = e(−2π‖w‖2). (Here ⋆ denotes convolution.)

We will also need the following technical estimates:

(1.6) Proposition (see [4]). Let a and b be symbols. Then

‖∂αr(a, b)‖1 ≤ C max
0<|β|≤|α|+2k+1

‖∂βa‖1 max
0<|β|≤|α|+2k+1

‖∂βb‖∞.

Moreover , if ∂ja ∈ S(m1) and ∂jb ∈ S(m2) for j = 1, . . . , 2N , then

‖∂αr(a, b)‖∞ ≤ C max
0<|β|≤|α|+2k+1

‖m1∂
βb‖∞

and

‖∂αr(a, b)‖∞ ≤ C max
0<|β|≤|α|+2k+1

‖m2∂
βa‖∞.

(1.7) Proposition (see [4]). Let e, f ∈ S(1), a ∈ S(m) and ∂ja ∈ S(n),
for j = 1, . . . , 2N . Then for all α and k sufficiently large

‖∂αr(e, a, f)‖∞ ≤ C( max
0<|β|≤|α|+k

‖n ∂βe‖∞‖f‖∞

+ max
0<|β|≤|α|+k

‖∂β(ea)‖∞ max
0<|β|≤|α|+k

‖∂βf‖∞

+ max
0<|β|≤|α|+k

‖∂βe‖∞ max
0<|β|≤|α|+k

‖n ∂βf‖∞).

Let H be a Hilbert space with an inner product 〈·, ·〉. An operator T ∈
L(H) is called a trace operator if there is an orthonormal basis {eα} such
that

∑

α

|〈Teα, eα〉| <∞.
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Then the number

TrT =
∑

α

〈Teα, eα〉

does not depend on the choice of basis and is called the trace of T . We let
‖T‖Tr = Tr |T |.

(1.8) Proposition (see [4]). If a ∈ L1(W ) and Op(a) is a trace operator
then

Tr Op(a) =
\\
a(x, ξ) dx dξ.

(1.9) Proposition (see [4]). Let a∈C∞(W ). If ∂αa ∈ L1(W ) for |α| ≤
2N + 1, then Op(a) extends uniquely to a trace operator A on L2(V ) and

‖A‖Tr ≤ C max
|α|≤2N+1

‖∂αa‖L1 .

Let us also state a lemma which connects the condition (a′) with the
definition of weight (the proof of the lemma relies only on Taylor’s formula).

(1.10) Lemma. If a ≥ C > 0 and there exists ̺ > 0 such that |∂αa| ≤
Cαa

(1−|α|̺)+ for all α, then 1 + a is a weight.

2. Classical asymptotics. Let A be a selfadjoint operator bounded
from below with a discrete spectrum. We denote by NA(λ) the number of
eigenvalues of A less than or equal to λ (counting with multiplicities). For
a positive function a ∈ C∞(W ) we define

Va(λ) =
\

a≤λ

dw and ψa(t) = inf
a(w)=t

|〈a′(w), w〉|.

For λ,m > 0, we also define

ν(λ,m) =

λ+m\
λ

ψa(t)−1 dt.

(2.1) Proposition. If for t ≥ λ we have ψa(t) > 0 and ν(λ,m) ≤ log 2,
then

Va(λ+m) − Va(λ) ≤ 2ν(λ,m)Va(λ).

P r o o f. Note that V is increasing, hence differentiable almost every-
where on R

+. By formula (28.41) of Shubin [10] for t ≥ λ we have

V ′
a(t)/Va(t) ≤ ψa(t)−1.
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Using a simple estimate ex − 1 ≤ xex valid for x ∈ R we obtain

Va(λ+m) − Va(λ)

Va(λ)
= exp

(λ+m\
λ

V ′
a(t)

Va(t)
dt

)

− 1

≤
λ+m\
λ

V ′
a(t)

Va(t)
dt · exp

(λ+m\
λ

V ′
a(t)

Va(t)
dt

)

≤ 2ν(λ,m).

The following theorem is a particular case of the theorem due to G lowacki
(Theorem (2.3) of [4]).

(2.2) Theorem. Let m be a weight such that lim‖w‖→∞m(w) = ∞ and
let b be a positive elliptic symbol in S(m). If

|∂αb(w)| ≤ Cα for |α| > 0,

and

ψb(t) ≥ Ctr, where 0 < r ≤ 1, t > 0,

then for λ large enough
∣

∣

∣

∣

NOp(b)(λ)

Vb(λ)
− 1

∣

∣

∣

∣

≤ Cλ−r.

We will show that a similar theorem is true with a weaker assumption

|∂αb(w)| ≤ Cαb
1−̺(w) for |α| > 0,

where 0 < ̺ < 1. For this purpose we will use results due to Beals [1]. In
his paper Beals defines pseudodifferential operators by the Kohn–Nirenberg
formula, but his method is so general that one can easily apply it to operators
defined by the Weyl formula. The next theorem is a special case of Theorem
(4.2) of [1].

(2.3) Theorem. Let m ≥ c > 0 be a weight , A > 0 have an elliptic
symbol and A ∈ L(m). Then As ∈ L(ms) for s ∈ R.

(2.4) Corollary. Let m ≥ c > 0 be a weight and a be a positive elliptic
symbol in S(m) such that Op(a) > 0 and ∂αa ∈ S(m1−̺) for |α| > 0. Let
a◦s denote the symbol of Op(a)s. Then

a◦s = as + rs,

where rs ∈ S(ms−̺).

P r o o f. Let us consider the case when −1 < s < 0. Then for A = Op(a),

As = − sinπs

π

∞\
0

ts(t +A)−1 dt
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(see [7]). Hence

a◦s = − sinπs

π

∞\
0

tsat dt,

where at denotes the symbol of the operator (t+A)−1. In this way we obtain

rs = − sinπs

π

∞\
0

ts(at − (a+ t)−1) dt.

We claim that

at − (a+ t)−1 ∈ S((m+ t)−1−̺)

uniformly with respect to t. In fact we have

at − (a+ t)−1 = (a+ t)−1(at(a+ t) − 1) = −r(at, a)(a+ t)−1,

but ∂βa ∈ S(m1−̺) for |β| > 0 and at ∈ S((m+t)−1) uniformly with respect
to t, so also r(at, a) ∈ S((m+ t)−̺) uniformly with respect to t (Proposition
(1.2)). Hence our claim is true.

In this way we obtain

|∂βrs| ≤ − sinπs

π

∞\
0

tsCs(m + t)−1−̺ dt ≤ Csm
s−̺,

so that rs ∈ S(ms−̺). To prove the corollary for s ∈ R we only have to
remark that rs ∈ S(ms−̺) implies r2s ∈ S(m2s−̺) and r−s ∈ S(m−s−̺).

(2.5) Corollary. Let m ≥ c > 0 be a weight , B > 0 have an elliptic
symbol and B ∈ L(m). Then for all s ∈ R and R ∈ L(ms) there exists a
constant L such that

‖Rf‖ ≤ L‖Bsf‖ for f ∈ S(V ).

P r o o f. By Theorem (2.3) we have B−s ∈ L(m−s), so the Calderón–
Vaillancourt theorem [2] shows that the operator RB−s is bounded. Hence
‖RB−sf‖ ≤ L‖f‖, which implies that ‖Rf‖ ≤ L‖Bsf‖.

(2.6) Corollary. Let m ≥ c > 0 be a weight , B > 0 have an elliptic
symbol and B ∈ L(m). Then for all s ∈ R and R ∈ L(ms) there exists a
constant L such that

|〈Rf, f〉| ≤ L〈Bsf, f〉 for f ∈ S(V ).

P r o o f. We have R = Bs/2B−s/2R, so

〈Rf, f〉 = 〈Bs/2B−s/2Rf, f〉 = 〈B−s/2Rf,Bs/2f〉 ≤ ‖B−s/2Rf‖‖Bs/2f‖.
Note that by Theorem (2.3) the operator B−s/2 is in L(m−s/2), there-

fore B−s/2R ∈ L(ms/2); so by Corollary (2.5) we obtain ‖B−s/2Rf‖ ≤
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L‖Bs/2f‖. In this way

〈Rf, f〉 ≤ L‖Bs/2f‖2 = L〈Bsf, f〉.
(2.7) Lemma. Let m be a weight such that lim‖w‖→∞m(w) = ∞ and

let b be a positive elliptic symbol in S(m). If

|∂αb(w)| ≤ Cα for |α| > 0

and

ψb(t) ≥ Ctr, where 0 < r ≤ 1,

then for s ≥ 1 and λ large enough
∣

∣

∣

∣

NOp(bs)(λ)

Vbs(λ)
− 1

∣

∣

∣

∣

≤ Cλ−r/s.

P r o o f. First let us study the functions Vbs and NOp(bs) (our assump-
tions imply that Op(bs) is bounded from below and has a discrete spectrum
(Proposition (1.3))). Denoting the symbol bs by a we obtain

Va(λ) = Vb(λ
1/s).

Note that by Corollary (2.4) we have bs = b◦s + r, where r ∈ S(ms−1).
Let A denote Op(a) and B denote Op(b). We know that b > 0 so there
is a constant M such that B + M > 0 (Proposition (1.3)). We also have
r ∈ S(ms−1) ⊂ S((m+M)s−1), so by Corollary (2.6),

−L(B +M)s−1 ≤ Op(r) ≤ L(B +M)s−1.

Hence

Bs − L(B +M)s−1 ≤ A ≤ Bs + L(B +M)s−1

and therefore, using the “mini-max principle” [8], we obtain

bsn − L(bn +M)s−1 ≤ an ≤ bsn + L(bn +M)s−1

where an and bn denote the nth eigenvalues of the operators A and B,
respectively. In this way increasing the constants L and M if necessary, we
obtain

bsn − Lbs−1
n −M ≤ an ≤ bsn + Lbs−1

n +M,

so

{n ∈ N : bsn + Lbs−1
n +M ≤ λ} ⊂ {n ∈ N : an ≤ λ}

⊂ {n ∈ N : bsn − Lbs−1
n −M ≤ λ}.

But it is easy to see that for λ large enough bsn−Lbs−1
n −M ≤ λ implies

bn ≤ λ1/s+L. In fact we can consider the function f(x) = xs−Lxs−1−M−λ
defined for x>0. It has only one zero with positive derivative and for large λ,

f(λ1/s + L) = λ1/s((λ1/s + L)s−1 − λ(s−1)/s) −M ≥ 0.
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Similarly bn ≤ λ1/s − L implies bsn + Lbs−1
n +M ≤ λ. Therefore

{n ∈ N : bn ≤ λ1/s − L} ⊂ {n ∈ N : an ≤ λ} ⊂ {n ∈ N : bn ≤ λ1/s + L}
so

NB(λ1/s − L) ≤ NA(λ) ≤ NB(λ1/s + L).

Denote λ1/s − L by µ1 and λ1/s + L by µ2. Then

NB(µ1)

Vb(µ1 + L)
≤ NA(λ)

Va(λ)
≤ NB(µ2)

Vb(µ2 − L)
.

So using Proposition (2.1) we obtain

NB(µ1)

Vb(µ1)(2ν(µ1, L) + 1)
≤ NA(λ)

Va(λ)
≤ NB(µ2)

Vb(µ2)
(2ν(λ1/s, L) + 1).

Note that
∣

∣

∣

∣

NB(µ1)

Vb(µ1)(2ν(µ1, L) + 1)
− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

NB(µ1)

Vb(µ1)
− 1

∣

∣

∣

∣

+ 2ν(µ1, L)

and
∣

∣

∣

∣

NB(µ2)

Vb(µ2)
(2ν(λ1/s, L) + 1) − 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

NB(µ2)

Vb(µ2)
− 1

∣

∣

∣

∣

+ 3ν(λ1/s, L).

Obviously the symbol b satisfies the assumptions of Theorem (2.2), therefore
∣

∣

∣

∣

NB(µi)

Vb(µi)
− 1

∣

∣

∣

∣

≤ Cµ−r
i for i = 1, 2.

Now we only need to note that µ−r
1 , µ−r

2 , ν(µ1, L) and ν(λ1/s, L) are esti-
mated by Mλ−r/s, where M is a constant. Finally, we conclude that there
is a constant C such that for λ large enough

∣

∣

∣

∣

NA(λ)

Va(λ)
− 1

∣

∣

∣

∣

≤ Cλ−r/s.

(2.8) Theorem. Let m be a weight such that lim‖w‖→∞m(w) = ∞ and
let a be a positive elliptic symbol in S(m). If

|∂αa(w)| ≤ Cαa
1−̺(w) for |α| > 0,

and

ψa(t) ≥ Ctr,

where 0 < ̺ ≤ 1, 0 < r ≤ 1 and r + ̺ > 1, then for λ large enough
∣

∣

∣

∣

NOp(a)(λ)

Va(λ)
− 1

∣

∣

∣

∣

≤ Cλ−(r+̺−1).

P r o o f. Note that the symbol a̺ satisfies the assumptions of Lemma
(2.7). In fact, denoting a̺ by b, we obtain

|∂αb(w)| ≤ Cα and ψb(t) ≥ Ctr/̺+1−1/̺.
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So from Lemma (2.7) it follows that
∣

∣

∣

∣

NOp(a)(λ)

Va(λ)
− 1

∣

∣

∣

∣

≤ Cλ−σ,

where σ = (r/̺+ 1 − 1/̺)̺ = r + ̺− 1.

(2.9) Example. Let us assume that a symbol a satisfies conditions anal-
ogous to those of Tulovskĭı and Shubin:

0 ≤ a(w) ∈ S(m), a elliptic and lim
‖w‖→∞

m(w) = ∞,(i′)

|∂αa(w)| ≤ Cαa(w)1−̺ for |α| > 0,(ii′)

|〈a′(w), w〉| ≥ Ca(w)1−κ.(iii)

Then (iii) implies that

ψa(t) ≥ Ct1−κ,

so by Theorem (2.8),

NOp(a)(λ) = Va(λ) +O(λ−(̺−κ)),

which is stronger than the result of Tulovskĭı and Shubin. Moreover, by
Lemma (1.10) the conditions (i) and (ii) imply that a + 1 is a weight and
also that a is an elliptic symbol in S(a+ 1). This means that the condition
(i′) is satisfied with m = a + 1. An easy observation that (ii) implies (ii′)
proves that the conditions (i′), (ii′), (iii) are more general than (i)–(iii).

3. Quasiclassical asymptotics. As before let A be a selfadjoint op-
erator defined on a dense subspace of a Hilbert space, with spectrum SpA
discrete and bounded from below. Let NA(λ) be the spectral function of A.
The following result is due to L. Hörmander [5].

(3.1) Lemma. Let E be a selfadjoint trace operator such that AE is
bounded. If (I − E)(A − λ)(I − E) ≥ −l, then

NA(λ− 4l) ≤ TrE + 2‖E − E2‖Tr.
If E(λ−A)E ≥ −k, then

NA(λ+ 4k) ≥ TrE − 2‖E − E2‖Tr.
For δ > 0 let χ(t, λ, δ) be a smooth function with the following properties:

χ(t, λ, δ) =

{

1 if t ≤ λ,
0 if t ≥ λ+ 2δ,

|(∂/∂t)kχ(t, λ, δ)| ≤ Ckδ
−k.

For any h > 0 and any λ we can define a smooth function

eh(z) = χ(a(z), λ, h1/2),
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where a ≥ 0 is the symbol of some pseudodifferential operator A with the
property that lim|w|→∞ a(w) = ∞. Let a(h)(w) = a(h1/2w). Define Eh to

be the operator with symbol e
(h)
h . The function e

(h)
h satisfies

e
(h)
h (z) =

{

1 if a(h1/2z) ≤ λ,
0 if a(h1/2z) ≥ λ+ 2h1/2,

and

∂γe
(h)
h (z) =

|γ|
∑

k=0
m1+...+mk=|γ|

Cm,k h
|γ|/2 ∂

kχ

∂zk
(a(h1/2z), λ, h1/2)∂m1

1 a(h1/2z) . . . ∂mk

k a(h1/2z).

If there is a ̺ > 0 such that for every γ we have Cγ satisfying

|∂γa(z)| ≤ Cγa
(1−|γ|̺)+(z),

then we can summarize all the above results to get

(2) |∂γe(h)h (z)| ≤ Cγ,λ.

With the above assumptions we have the following lemma:

(3.2) Lemma. Eh is a trace operator and

‖E2
h − Eh‖Tr ≤ Ch−N+1/2.

P r o o f. The symbol of the operator Eh−E2
h can be written as e

(h)
h (z)−

e
(h)
h ◦ e(h)h (z) = e

(h)
h (z) − e

(h)
h e

(h)
h (z) − r(e

(h)
h , e

(h)
h )(z). By definition, Propo-

sition (1.6) and (2), for h small enough, we get

‖∂γ(e
(h)
h − (e

(h)
h )

2
)‖

1
≤ Ch−N(V (λ+ 2h1/2) − V (λ)),

‖∂γ(r(e
(h)
h , e

(h)
h ))‖

1
≤ Ch−N(V (λ+ 2h1/2) − V (λ)).

By Proposition (1.9) and Lebesgue’s differentiation theorem ([8], Theo-
rem 9.2, p. 226), for almost every λ we have

‖Eh − E2
h‖Tr ≤ C max

|α|≤2N+2
‖∂α(e

(h)
h (z) − e

(h)
h ◦ e(h)h (z))‖

1

≤ Ch−N (V (λ+ 2h1/2) − V (λ)) ≤ Ch−Nh1/2.

The main purpose of this section is to prove the following theorem.

(3.3) Theorem. Let m be a weight such that lim|z|→∞m(z) = ∞. Let
a ≥ C > 0 be an elliptic symbol in the class S(m) such that

(3) |∂γa(z)| ≤ Cγa
(1−|γ|̺)+(z) for some ̺ > 0.

Let A(h) be the operator with symbol a(h). Then for almost all λ,

NA(h)
(λ) = h−N (V (λ) +O(h1/2)).
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Moreover , to obtain the above asymptotics it is enough to assume only that
a ≥ C > 0 is a smooth function satisfying the inequality (3) and such that
lim|z|→∞ a(z) = ∞.

(3.4) Lemma. For h small enough we have the estimate

‖Eh(λ−A(h))(I − Eh)‖ ≤ Ch1/2.

P r o o f. The symbol of the operator Eh(λ−A(h))(I −Eh) is

e
(h)
h ◦ (λ− a(h)) ◦ (1 − e

(h)
h )(z) = aλ,h(z) + rλ,h(z),

where

aλ,h(z) = e
(h)
h (λ− a(h))(1 − e

(h)
h )(z),

rλ,h(z) = r(e
(h)
h , λ− a(h), 1 − e

(h)
h )(z).

By (2) and Proposition (1.7),

max
|α|≤2N+2

‖∂αaλ,h‖∞ ≤ Ch1/2, max
|α|≤2n+2

‖∂αrλ,h‖∞ ≤ Ch1/2.

The proof can now be completed by using the Calderón–Vaillancourt theo-
rem (for references see [2]).

(3.5) Proposition. For h small enough

Eh(λ−A(h))Eh ≥ −Ch1/2.
P r o o f. We can write

Eh(λ−A(h))Eh = Eh(λ−A(h)) − Eh(λ−A(h))(I − Eh).

The symbol of the first operator on the right hand side is aλ,h(z) − rλ,h(z),

where now aλ,h(z) = e
(h)
h (λ− a(h))(z) and rλ,h(z) = r(e

(h)
h , a

(h)
h )(z). More-

over, aλ,h(z) ≥ −2h1/2. By (2), for |α| > 0 we have |∂αaλ,h| ≤ Ch1/2.
Therefore Proposition (1.4) gives us

Op(aλ,h) ≥ −Lh1/2.
Now by Proposition (1.6) we get ‖∂αrλ,h‖∞ ≤ Ch1/2, so by the Calderón–
Vaillancourt theorem

‖Op(rλ,h)‖ ≤ Ch1/2.

Finally, we can prove the proposition by combining all the above with
Lemma (3.4).

(3.6) Proposition. For h > 0 small enough

(I − Eh)(A(h) − λ)(I − Eh) ≥ −Ch1/2.
P r o o f. We have a similar decomposition to the one before:

(I − Eh)(A(h) − λ)(I −Eh) = (A(h) − λ)(I − Eh) +Eh(λ−A(h))(I − Eh).
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The symbol of the operator (A(h) − λ)(I − Eh) is aλ,h(z) − rλ,h(z), where

now aλ,h(z) = (a(h) − λ)(1 − e
(h)
h )(z) ≥ 0 and rλ,h(z) = r(a(h), e

(h)
h )(z).

Notice, therefore, that we only need to estimate Op(aλ,h). It is easy to see
that

|∂αaλ,h| ≤ Cα,hh
1/2aλ,h

for |α| > 0. Moreover, for every b ∈ S(m) and k ∈ N,

(δ −H)⋆k ⋆ b(w)

=
\

[0,1]k

\
Wk

b(k)
(

w −
k

∑

j=1

tjvj

)

(v1, . . . , vk)H(v1) . . . H(vk) dv dt,

therefore

|∂α(δ −H)⋆k ⋆ aλ,h| ≤ Cλ,h,kh
1/2aλ,h.

Notice also that for k + |α| > [̺−1], where [ ] denotes the greatest integer
function, we get

|∂α(δ −H)⋆k ⋆ aλ,h| ≤ Cλ,α,kh
1/2.

Since we can decompose aλ,h as

aλ,h = H ⋆

n
∑

k=0

(δ −H)
⋆k
⋆ aλ,h + (δ −H)

⋆(n+1)
⋆ aλ,h,

where n = [̺−1], the above calculations and Propositions (1.4) and (1.5)
give us Op(aλ,h) ≥ −Ch1/2.

(3.7) Fact. TrEh = h−NV (λ)(1 +O(h1/2)).

P r o o f. By Proposition (1.9), Eh is a trace operator. Moreover, by
Proposition (1.8),

TrEh =
\
e
(h)
h (z) dz.

So according to the definition of eh,

h−NV (λ) ≤ TrEh ≤ Ch−N+1/2 + h−NV (λ),

which is equivalent to

TrEh

h−NV (λ)
− 1 = O(h1/2).

(3.8) Remark. The operator A(h)Eh is bounded.

P r o o f. The symbol of this operator is a(h)(z)e
(h)
h (z) + r(a(h), e

(h)
h )(z).

The derivatives of the first summand are bounded because it is a smooth,
compactly supported function, and of the other one by Proposition (1.6).
Thus our claim follows from the Calderón–Vaillancourt theorem (see Propo-
sition (1.15) of [4]).
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Proof of Theorem (3.3). By Proposition (1.3) the operator A(h) is essen-
tially selfadjoint and bounded from below. Therefore we can apply Lemma
(3.1) to its closure, which we will also denote by A(h). By Lemma (3.1) and
Propositions (3.5) and (3.6) we have

NA(h)
(λ− Ch1/2) ≤ TrEh + 2‖E2

h − Eh‖Tr
and

NA(h)
(λ+ Ch1/2) ≥ TrEh − 2‖E2

h − Eh‖Tr,

for any h > 0 and λ, parameters of the symbol e
(h)
h . So

NA(h)
(λ) ≤ TrEh,λ+

h
+ 2‖E2

h,λ+
h

− Eh,λ+
h
‖Tr

and

NA(h)
(λ) ≥ TrEh,λ−

h
− 2‖E2

h,λ−

h

− Eh,λ−

h
‖Tr,

where Eh,λ+
h

is the operator with symbol e
(h)

h,λ+Ch1/2 and Eh,λ−

h
has symbol

e
(h)

h,λ−Ch1/2 . By the proofs of Lemma (3.2) and Fact (3.7) it is easy to see

that

‖E2
h,λh

− Eh,λh
‖Tr ≤ Ch−N+1/2

and

|TrEh,λh
− h−NV (λ)| ≤ Ch−N+1/2.

Therefore the first part of our theorem is established. To prove the second
part it is enough to notice by Lemma (1.10) that a + 1 is a weight and a
is an elliptic symbol in the class S(a+ 1).

(3.9) Example. Let p(w1, . . . , w2N ) ≥ c > 0 be a hypoelliptic polyno-

mial (i.e. |∂αp(ξ)/p(ξ)| ≤ C|ξ|−c|α|, |α| > 0, see [6], Theorem 11.1.3). In
particular lim|w|→∞ p(w) = ∞. By the hypoellipticity of p, condition (3)
is satisfied. Therefore Theorem (3.3) gives us the spectral asymptotics for
Op(p(h)).

(3.10) Example. Let l(t) = ln(1 + t) and ln(t) = l ◦ . . . ◦ l(t) for n ∈ N.

Let cn(w1, . . . , w2N ) = ln(〈w1, . . . , w2N 〉). Since |∂γ(〈x〉b)| ≤ Cγ〈x〉b−|γ|
, we

have, for |α| > 0,

|∂αcn(w)| ≤ Cα〈w〉−|α| ≤ Cα.

Since lim|w|→∞ cn(w) = ∞, we can apply Theorem (3.3) to Op(c
(h)
n ).

(3.11) Example. Finally, we mention that in our theory we can also
consider Schrödinger operators with potential of logarithmic growth. Thus,
as before, we can obtain our spectral asymptotics for the operator with
symbol 〈x〉−1

ξ2 + log(〈x〉).
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