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THE GRAPH OF GENERATING SETS OF AN ABELIAN GROUP

BY

PERSI D I A C O N I S (STANFORD, CALIFORNIA) AND

RONALD G R A H A M (FLORHAM PARK, NEW JERSEY)

1. Introduction. Let G be a finite abelian group. By the fundamental
theorem, G ∼= Zm1

×. . .×Zmn withmn |mn−1 | . . . |m1, mi ≥ 2, for uniquely
defined mi and n. In a combinatorial problem explained below, a graph
of ordered t-tuples of generating elements of G is introduced. Using the
notation 〈S〉 for the group generated by S, this has vertex set

(1.1) X = X (t, G) = {(g1, . . . , gt) : gi ∈ G, 〈g1, . . . , gt〉 = G}.
The edge set is determined by adding ± the jth component to the ith. Thus

(1.2) ((g1, . . . , gt), (g
′
1, . . . , g

′
t))

is an edge if for some i 6= j, g′i = gi ± gj and g′k = gk for all k 6= i.

Theorem. The graph of ordered generating t-tuples is connected for
t ≥ n + 1. For t = n the graph has ϕ(mn) components. If g1, . . . , gn
are written as gi = (ai1, . . . , ain), aij ∈ Zmj , the components have constant
values of det(aij) (mod mn). Any value with (det(aij),mn) = 1 is possible
and the ϕ(mn) components have equal size.

Motivation. The theorem solves a problem arising in two contexts. In
computational group theory, algorithms in systems like GAP and MAGMA
make use of random elements of a group G (now not necessarily abelian).
Often G is given by specifying a generating set G = 〈g1, . . . , gt〉. In appli-
cations, gi are permutations or matrices (e.g. in S52 or GL100(F2)) and t
is often small (e.g., all simple groups are generated by two elements). One
simple way to generate random elements is to do a random walk. That is,
start at the identity and repeatedly multiply by a generator uniformly chosen
with replacement. This generates a sequence x0, x1, . . . , xN and theory [5, 6]
shows that if N is suitably large, xN is close to uniformly distributed on G.

In practical trials, Holt and Rees [12] found that N had to be impracti-
cally large. They suggested working with ordered t-tuples of generators (the
set X of (1.1)) and moving at random from (g1, . . . , gt) to (g′1, . . . , g

′
t) as in
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(1.2). Spectacular speedups using this algorithm are reported by Celler et
al. [1].

Some rigorous analysis based on Markov chain theory has been given by
Diaconis and Saloff-Coste [7]–[9] and Chung and Graham [2]–[4]. One basic
question is: What is the state space of the underlying Markov chain? In
particular, what is |X | in (1.1)?

For a general group G, let m(G) be the size of a minimum set of gener-
ators. Let m(G) be the maximum size of a minimal generating set (thus for
Z6, m = 1, m = 2). In [8, Lemma 2.1] it is shown that the state space (1.1)
is connected by moves (1.2) provided t ≥ m+m. In applications, t is often
chosen fairly small (e.g., t = max(2m+ 1, 10) in the experiments of [1]). It
is of interest to determine the state space for general values of t.

The same problem was independently posed as a probability problem by
David Aldous (personal communication). Consider the graph (1.1), (1.2) for
G = Z2. Each coordinate can be interpreted as “infected” or not as it is one
or zero. A process proceeds on this graph by having a randomly infected
particle change a randomly chosen neighbor (mod 2). In the binary case
m = m = 1, so the state space is all non-zero t-tuples. Chung and Graham
[3]–[4] present good bounds on the rate of convergence for this problem for
the complete graph as in (1.2). Aldous was also interested in more general
graphs. See [7].

The general problem of counting the number of ordered t-tuples which
generate G was studied by Philip Hall [11] who introduced abstract Möbius
inversion for the purpose. His results are used to give formulae for |X | in
Remark 1 of Section 3 below.

The non-abelian case seems quite difficult. For example, consider the
symmetric group G = Sn. When is the graph (1.1), (1.2) connected? For
the symmetric group Sn, m = 2, m ≤ 3

2n. So the graph is connected for t ≥
3
2n+ 2. We conjecture that the graph is connected for all n, for t ≥ 3. This
has been verified for n = 4, n = 5 by John Laffrety and Dan Rockmore [13]
in an elaborate enumeration: |X (S4, 3)| = 10,080, |X (S5, 3)| = 1,401,120.

The abelian case seemed like a reasonable place to start a careful study.
We prove the theorem in Section 2. Some remarks are in Section 3.

2. Proof of the Theorem. For G = Zm1
× . . .× Zmn , mn |mn−1 | . . .

. . . |m1, and any t elements of G, write gi = (ai1, . . . , ain), aij ∈ Zmj , and
form the associated n×m matrix

A :=


a11 . . . a1n
a21 . . . a2n
...

...
at1 . . . atn

 .
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We assume throughout that 〈g1, . . . , gt〉 = G so that for all i, 1 ≤
i ≤ n, there are integers uij , 1 ≤ j ≤ t, such that

∑
uijgj = ei =

(0, . . . 0, 1, 0, . . . , 0). A move consists of an elementary row operation on the
matrix A, adding the ±jth row to the ith row. For present purposes any
number in the jth column can be reduced modulo mj .

The theorem will be proved by showing that

(2.1) for t ≥ n+ 1, A can be moved to the form

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0


,

(2.2) for t = n, A can be moved to the form
1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . b

 , b = detA (mod mn), 0 < b < mn.

The first step is to work with two numbers in a single column:

(2.3) Suppose (X,Y,M) = D. Then the two numbers X
Y appearing in a

single column can be moved to 0
D (mod M).

For this, write X = xD, Y = yD, M = mD so (x, y,m) = 1. Work with
x
y (mod m). Write δ = (x, y), so (δ,m) = 1, and

x
y

=
x′δ
y′δ

,

(x′, y′) = 1. By successive moves,

x
y
→ x+ uy

y
=

(x′ + uy′)δ
y′δ

for any u. By Dirichlet’s theorem, u can be chosen so that x′ + uy′ = p,
a prime, with p > m. (It is also possible to avoid appealing to Dirichlet’s
theorem here but using it takes us where we want to go somewhat more
quickly. In fact, the Euclidean algorithm is sufficient.) This results in pδ

y′δ

(mod m). From this, we may move to pδ
(y′+vp)δ for any v. Now (δ,m) = 1 and

(p,m) = 1 yield (δp,m) = 1. Thus for suitable v, (y′ + vp)δ ≡ 1 (mod m).
This gives moves to pδ

1 which may finally be moved to 0
1 (mod m). Putting

back the multiple D gives (2.3).



34 P. DIACONIS AND R. GRAHAM

Iterating this argument for t numbers in a single column modulo M
shows that if gcd(X1, . . . , Xt,M) = D, there is a sequence of moves taking

(2.4)

X1

X2
...
Xt

to

D
0
...
0

(mod M).

Note that 〈g1, . . . , gt〉 = G implies that for the jth column, D 6≡ 0
(mod mj). Indeed, (D,mj) = 1. Note also that the sequence of moves

x
y
→ x+ y

y
→ x+ y
−x → y

−x
shows that if a column has a single zero entry, then all permutations of that
column are possible by appropriate moves.

From (2.4) working left to right, A may be moved to the form

(2.5)

D1 X12 X13 . . . X1n

0 D2 X23 . . . X2n

0 0 D3 . . . X3n

. . .

0 0 0 . . . Dn

0 0 0 . . . 0
0 0 0 . . . 0

The next stage is to clean up the entries above the diagonal.
Consider the first row. By hypothesis, there are u1, . . . , un so that

u1(D1, X12, . . . , X1n) + u2(0, D2, X21, . . . , X2n) + . . .+ un(0, . . . , Dn) = e1.

Thus u1D1 = 1 (mod m1) so that adding u1 copies of the first row to the
second gives

(2.6)

D1 X12 . . . X1n

1 Y2 . . . Yn
...

→
0 X ′12 . . . X ′1n
1 Y ′2 . . . Y ′n

...

→
1 X ′′12 . . . X ′′1n
0 Y ′′2 . . . Y ′′n

...

Suppose successive moves have given the form

(2.7)

1 0 . . . 0 X1 . . .
0 1 . . . 0 X2 . . .

. . .
...

0 0 . . . 1 Xs−1 . . .

0 0 . . . 0 Ds . . .
0 0 . . . 0 0 . . .
...

...
...

...
0 0 . . . 0 0 . . .
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By hypothesis, there are v1, v2, . . . , vn such that

v1(1, 0, . . . , X1, . . .) + . . .+ vs−1(0, 1, . . . , Xs−1, . . .)

+ vs(0, 0, . . . , Dt, . . .) + . . . = es.

Thus v1 ≡ 0 (mod m1) and since ms |m1 | v1, we have v1 ≡ 0 (mod ms).
Similarly, vi≡0 (mod ms) for 1≤ i≤ s−1, and vsDs ≡ 1 (mod ms). Thus,
if s < t, the moves used for (2.6) give the form (2.7) with s replaced by s+1.

Continue with this process until s = t. If t > n, the form (2.1) has been
reached. If t = n, the form (2.2) has been reached.

Observe that when t = n, the number b of (2.2) can be chosen arbitrarily
with (b,mn) = 1 and a generating set results. Further, multiplying the last
column of any generating set with a fixed value of b by b−1 gives a 1-1
correspondence with generating sets having b = 1.

3. Remarks. 1. The size of the state space X of (1.1) can be determined
using results of P. Hall [11]. All the properties needed here appear in Section
6B of [8]. To begin, write the abelian group G as the direct product of its

Sylow p-groups: G =
∏
Sp. An abelian p-group is of form

∏B
i=1 Zpλi . Let

A =
∑
λi, and

F (Sp, t) = pt(A−B)
B∑
i=0

(−1)i
(
B

i

)
p

pt(B−i)+(i2),

(
B

i

)
p

=
(pB − 1) . . . (pB−i+1 − 1)

(pi − 1) . . . (p− 1)
.

Then for any t, the total number of generating t-tuples is
∏
p | |G| F (Sp, t). It

follows that this is |X | for t≥n+1. For t=n, following the theorem, the gen-
erating n-tuples split into ϕ(mn) equal classes so |X |=ϕ(mn)−1

∏
p F (Sp, t).

An abelian p-group with factors Zpλ1 × . . . × Zpλj is specified by the

partition λ1 ≥ . . . ≥ λj . For a general abelian group, if mi =
∏
p p

a(p,i), 1 ≤
i ≤ n, the partition associated to Sp(G) is a(p, 1), a(p, 2), . . . To recover the
mi from these partitions, let j∗ be the largest index so that

∑
p a(p, j) > 0.

Then

mn =
∏
p

pa(p,j
∗), mn−1 =

∏
p

pa(p,j
∗−1), . . . , mn−i =

∏
p

pa(p,j
∗−i).

When n = t, we may show directly that ϕ(mn) divides
∏
p F (Sp, t).

Then j∗ = n = t. We show ϕ(pa(p,n)) |
∏
p F (Sp, n). First, ϕ(pa(p,n)) =

pa(p,n)−1(p− 1) and a(p, n)− 1 ≤ n(A−B) as defined above. So divisibility
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follows from

(p− 1) |
n∑
i=0

(−1)ipn(n−i)+(1
2)
(
n

i

)
p

= p(
n
2)

n∏
i=1

(pi − 1).

The displayed sum is the number of generating n-tuples for the group Znp .
This equals the order of GLn(p), which is the displayed product.

As an example, let G = Z6×Z2
∼= Z2×Z2×Z3. Then S2(G) = Z2×Z2,

S3(G) = Z3. When t = 2, we have F (S2, 2) = 24 − 3 · 22 + 2 = 6 and
F (S3, 2) = 32 − 1 = 8. So there are 6 · 8 = 48 pairs of generators. These
are shown below with entries as in the theorem. For example, g1 = (3, 0),
g2 = (4, 1) generate Z6 × Z2.

3 0 3 0 1 0 1 0 1 0 5 0 5 0 5 0
4 1 2 1 0 1 4 1 2 1 0 1 4 1 2 1

3 0 3 0 1 0 1 0 1 0 5 0 5 0 5 0
1 1 5 1 3 1 1 1 5 1 3 1 1 1 5 1

0 1 0 1 4 1 4 1 4 1 2 1 2 1 2 1
1 0 5 0 3 0 1 0 5 0 3 0 1 0 5 0

0 1 0 1 4 1 4 1 4 1 2 1 2 1 2 1
1 1 5 1 3 1 1 1 5 1 3 1 1 1 5 1

3 1 3 1 1 1 1 1 1 1 5 1 5 1 5 1
1 0 5 0 3 0 1 0 5 0 3 0 1 0 5 0

3 1 3 1 1 1 1 1 1 1 5 1 5 1 5 1
4 1 2 1 0 1 4 1 2 1 0 1 4 1 2 1

Here mn = 2, so all determinants are 1 (mod 2).

2. It is natural to consider also the case with t < n. Then g1, . . . , gt
generate a proper subgroup of G, which in turn can be written as Zm′1 ×
. . . × Zm′

k
for m′k |m′k−1 | . . . |m′1 with k ≥ t. Now the theorem as stated

determines the connectedness properties of the graph.

3. The diameters of the graphs (1.1), (1.2) are not easy to understand.
Consider the simple case when G = Zp, p prime and t = 2. Then X consists
of pairs

(
x
y

)
(mod p),

(
x
y

)
6=
(
0
0

)
, with connections to

(
x±y
y

)
,
(
x
y±x
)
. This is

one of the basic expander graphs introduced by Margulis (see, e.g., [2] for
references). It is known that this graph has diameter of order log p.

4. If R is a ring with identity, GLn(R) is the set of invertible linear maps
from Rn to itself. Let En(R) be the subgroup of GLn generated by the ele-
mentary matrices. Then En(R) is a normal subgroup of GLn(A) containing
the commutator subgroup. The abelian group K1(R) = GLn/En is a basic
object of study in K-theory. In the special case t=n, G=Znm, the theorem
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is the well-known result that K1(Zm) = Z∗m (see, e.g., Rosenberg [16, 2.2.7]).
For closely related work see Dennis and Geller [5].

5. The basic reduction theorem leading to the canonical forms (2.1),
(2.2) is similar to the Smith normal form (Schrijver [17, p. 50]). The Smith
form allows both row and column operations and the additional freedom of
transposing pairs of rows or columns.

6. There is related work in the language of T -systems [10], [14], [15].
These induce a finer orbit structure on Xt, the set of generating t-tuples, by
allowing permutations by automorphisms of G as well as automorphisms of
the free group on t generators. Results of Neumann and Neumann [15] show
that the group A5 with t = 2 has at least two orbits in our sense. Results of
Dunwoody [10] show there are p-groups with t generators, nilpotent of class
2, such that the set of generating t-tuples has many orbits.
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