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Abstract. By an extension algebra of a finite-dimensional K-algebra A we mean a
Hochschild extension algebra of A by the dual A-bimodule HomK(A,K). We study the
problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra
A = KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a
2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field
of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of the
K-algebra LQ for an arbitrary finite quiver Q without oriented cycles. Then we show
a criterion on L for all those K-algebras LQ to have symmetric non-splittable extension
algebras defined by the 2-cocycles.

Introduction. Throughout the paper, an algebra means a finite-dimen-
sional K-algebra over a field K. Frobenius algebras, weakly symmetric alge-
bras and almost symmetric algebras are defined for rings with minimum con-
dition, but no structural characterization of symmetric algebras is known.
G. Azumaya and T. Nakayama suggested that the notion of symmetric al-
gebra depends on the base field [1]. The aim of the present paper is to show
sufficient conditions related to 2-cocycles for self-injective Hochschild exten-
sion algebras to be symmetric, and to present a construction of symmetric
algebras by using finite extension fields of the base field.

The trivial extension algebras of a K-algebra A by the standard duality
module Hom(A,K) are very important in the representation theory of self-
injective algebras. They are symmetric algebras and correspond to zero in
the second cohomology groupsH2(A,Hom(A,K)). For an algebraAwithout
oriented cycles in its ordinary quiver, any Hochschild extension algebra of
A by a duality module, say M , is stably equivalent to the split extension
algebra of A by M . Moreover, if there is a symmetric extension of A by
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M , the duality module M is isomorphic to the standard duality module
Hom(A,K) as A-bimodules [12]. Thus we restrict ourselves to Hochschild
extension algebras of a given algebra by its standard duality module. It
should be noted that the extension algebras by duality modules are always
self-injective [11].

LetA be aK-algebra andDA the standard duality module HomK(A,K).
The Hochschild extension algebras form the second cohomology groups
H2(A,DA), and an extension algebra is defined by a 2-cocycle α : A×A→
DA. Let L be a field in the centre of A which contains K as a sub-
field. Then DA ∼= HomL(A,L) as A-bimodules and hence the composite

A × A
α−→ DA

∼−→ HomL(A,L) is also a 2-cocycle of the K-algebra A
which defines an extension algebra isomorphic to the extension algebra de-
fined by α. Thus by a 2-cocycle α of A we understand a 2-cocycle of the
K-algebra A to the duality module HomL(A,L).

In the first section we recall some definitions and elementary facts about
Hochschild extensions, and in the second section we consider split alge-
bras A, i.e. factor algebras of path algebras KQ of finite quivers Q (cf. [3]).
We show a sufficient condition on a given 2-cocycle which yields the symme-
try of the extension algebra of A defined by the 2-cocycle, where we do not
assume that Q does not contain oriented cycles. A path is an element x of
A represented by a path of Q, and s(x), t(x) denote primitive idempotents
with x = t(x)xs(x). The main theorem in Section 2 is

Theorem 1. Let Q be a finite quiver and A = KQ/I for an admissible
ideal I. Let T be an extension algebra of A by DA = HomK(A,K), which
is defined by a 2-cocycle α : A×A→ DA. Then T is a symmetric algebra if

α(x, y)(s(y)) = α(y, x)(s(x))

for non-zero paths x, y with s(x) = t(y) and s(y) = t(x).

As an example we show that any proper factor algebra of the polynomial
ring K[X] has the property that all extension algebras are symmetric, which
is a special case of a fact proved as an application of Theorem 1.

In the third section, we consider algebras A whose quivers have no ori-
ented cycles. In this case, since H2(A,DA) = 0 if A is a split algebra, we
assume that for a finite extension field L of K the K-algebra A is a path
algebra LQ, where Q is a finite quiver without oriented cycles. By T (A, β)
we understand the extension algebra of A = LQ by DA = HomL(A,L),
whose multiplication is defined by a 2-cocycle β : A × A → DA. Now let
α : L × L → L be a 2-cocycle of the K-algebra L, and define a 2-cocycle
α̂ : A×A→ DA by

α̂(x, y) =
∑
i∈Q0

α(e(i)xe(i), e(i)ye(i))e(i)∗
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for x, y ∈ A and e(i) the idempotent corresponding to the vertex i ∈ Q0.
This 2-cocycle was first introduced in [9]. The following theorem is proved.

Theorem 2. The following conditions are equivalent :

(1) T (L,α) is symmetric.

(2) T (LQ, α̂) is symmetric for some quiver Q without oriented cycles.

(3) T (LQ, α̂) is symmetric for any quiver Q without oriented cycles.

In the final section, we exhibit some examples to clarify the theorems.
We show that, if L is a field generated by at most two elements over K,
then any extension algebra of the K-algebra L is symmetric.

The main results of Sections 3 and 4 were announced by the third named
author during the ICRTA 8.5 at Bielefeld (September 1998).

1. Hochschild extension algebras. In this section we recall from [2],
[13] some properties of Hochschild extensions of a K-algebra A by a duality
bimodule, and show some preliminary results about 2-cocycles.

Let D be a duality between A -mod and Aop -mod. Then, by the Morita
duality theorem, there is an A-bimodule M with D ∼= HomA(−,M) as
functors, and such a module M is characterized by the property that it
is an injective cogenerator as a left and a right A-module. Moreover, in
this case, M ∼= DA as A-bimodules. Such a module DA is called a duality
module. By extensions or extension algebras in this paper we understand
Hochschild extensions or Hochschild extension algebras by duality modules,
respectively.

Now let A be a K-algebra and DA a duality module. Then any extension
algebra T of A by DA is self-injective [11]. Let 0→ DA→ T → A→ 0 be
an extension of A by DA. The extension algebra T is defined by a 2-cocycle,
say α : A×A→ DA, which is a K-bilinear map with the 2-cocycle condition

(a, b, c)α := aα(b, c)− α(ab, c) + α(a, bc)− α(a, b)c = 0

for any triplet (a, b, c) from A. Then T is the K-vector space A⊕DA with
multiplication

(a, u)(b, v) = (ab, av + ub+ α(a, b))

for (a, u), (b, v) ∈ A ⊕DA. We denote by T (A,α) the extension K-algebra
T of A. Note that T (A, 0) is the trivial extension algebra of A by DA for
α = 0 (the zero map).

Lemma 1.1 [12]. There is a symmetric extension algebra of A by a du-
ality module DA if and only if DA is isomorphic to HomK(A,K) as an
A-bimodule.
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Here a K-algebra A is said to be symmetric if A ∼= HomK(A,K) as
A-bimodules, or equivalently, there is a symmetric regular K-linear map
λ : A→ K, which by definition is a K-linear map satisfying

(S1) Regularity : λ(Ax) 6= 0 for 0 6= x ∈ A,
(S2) Symmetry : λ(xy) = λ(yx) for x, y ∈ A.

Let α : A × A → M be a 2-cocycle of a K-algebra A with an A-
bimodule M . For an A-bimodule N isomorphic to M , the composite

β : A×A α−→M
∼−→ N

is also a 2-cocycle of the K-algebra A, and the extension K-algebras T and
T ′ of A defined by α and β respectively are canonically isomorphic.

Let L be a finite extension field of K, and let A be a finite-dimensional
L-algebra. We need the following well known fact.

The dual space HomL(A,L) is isomorphic to the space HomK(A,K) as
an A-bimodule.

We recall the corresponding isomorphism. Take any non-zero element u
of L∗ := HomK(L,K) and the K-linear map f1 : L→ L∗ with f1(x) = xu.
Then f1 is an L-bimodule isomorphism. Consider the maps f2 : HomL(A,L)
→ HomL(A,L∗) and f3 : HomL(A,L∗)→ HomK(A,K) defined by f2(v) =
f1v, f3(w)(a) = w(a)(1L) for v ∈ HomL(A,L), w ∈ HomL(A,L∗) and
a ∈ A. It is then easily seen that f2 and f3 are A-bimodule isomorphisms,
and the composite f3f2 is the required isomorphism.

Thus, for such an algebra A, by 2-cocycles we understand K-bilinear
maps A×A → HomL(A,L) satisfying the 2-cocycle condition.

For a 2-cocycle α : A×A→ DA = HomL(A,L), we define two K-bilinear
maps

[ , ] : A×A→ HomL(A,L), 〈 , 〉 : A×A→ L

such that [a, b] = α(a, b)− α(b, a) and 〈a, b〉 = [a, b](1A) for a, b ∈ A.

Lemma 1.2. For a, b, c ∈ A, we have

〈a, b〉+ 〈b, a〉 = 0, 〈a, bc〉+ 〈b, ca〉+ 〈c, ab〉 = 0.

P r o o f. The first property is trivial. For the second, note that

(zα(x, y))(1A) = (α(x, y)z)(1A)

for x, y, z ∈ A. Then

〈a, bc〉 = (α(a, bc)− α(bc, a))(1A)

= (α(ab, c) + α(a, b)c− α(b, ca)− bα(c, a))(1A)

= (α(ab, c) + cα(a, b)− α(b, ca)− α(c, a)b)(1A)

= (α(ab, c)− α(c, ab) + α(ca, b)− α(b, ca))(1A)

= −〈c, ab〉 − 〈b, ca〉.
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Since our concern in this paper is non-split extension algebras, the fol-
lowing lemma may be applicable to concrete examples.

Lemma 1.3. Let L be a commutative K-algebra and let α : L × L →
HomK(L,K) be a 2-cocycle. If α(a, b) 6= α(b, a) for some a, b ∈ L, then
T (L,α) is a non-split extension algebra.

P r o o f. Let DL = HomK(L,K) and 0 → DL → T (L,α)
f→ L → 0

be a Hochschild extension. To show that it is not splittable, suppose that
there is a K-algebra morphism g : L → T (L,α) such that fg = 1L. Let
g(x)=(x, x̃) for an element x ∈ L. Then, for any x, y∈L, we have g(xy)=
g(x)g(y) = (x, x̃)(y, ỹ) = (xy, xỹ + x̃y + α(x, y)), and similarly, g(yx) =
(yx, yx̃ + ỹx + α(y, x)). Since L is commutative by assumption, we have
g(xy) = g(yx) and so α(x, y) = α(y, x) for any x, y ∈ L, a contradiction.

2. Symmetric extension algebras of split algebras. In this section
we do not assume that the ordinary quiver of an algebra has no oriented
cycles, but consider a split algebra [3, 3.6]. Since we show a sufficient con-
dition for a given extension algebra to be symmetric, taking account of
Lemma 1.1 we may consider only extension algebras by the standard mod-
ules over the base field K. Thus, throughout this section, we assume that
DA = HomK(A,K). Let Q be a finite quiver and A = KQ/I, where I is an
admissible ideal. We denote by Q0, Q1 and Q+ the set of vertices (paths of
length zero), the set of arrows and the set of paths of positive length, respec-
tively, and put Q≥0 = Q+ t Q0 (disjoint union). Let Q0 = {1, . . . , n} and
e(i) be the primitive idempotent corresponding to i ∈ Q0. For a non-zero
element x of A with x = e(j)xe(i) for some i, j, we denote the e(i) and e(j)
by s(x) and t(x), and so x = t(x)xs(x). Two idempotents e and f are said
to be orthogonal if ef = 0 = fe.

Lemma 2.1. For x = t(x)xs(x), y = t(y)ys(y) ∈ A, we have

(1) 〈x, e〉 = 0 for an idempotent e with x = ex = xe. In particular ,
〈x, 1A〉 = 0, and 〈x, s(x) + t(x)〉 = 0.

(2) If s(x) = t(x), then 〈x, e〉 = 0 for any idempotent e.
(3) If s(y) 6= t(x), then 〈x, y〉 = 〈xy, s(y)〉.
(4) If s(y) = t(x); then α(x, y)(e) = α(xy, s(y))(e) for any idempotent e

orthogonal to s(y). In particular , α(x, y)(1− s(y)) = α(xy, s(y))(1− s(y)).

P r o o f. (1) By Lemma 1.2, we have

(∗) 〈x, e2〉+ 〈e, ex〉+ 〈e, xe〉 = 0

and so 〈x, e〉 = 0, which implies the result.
(2) Suppose that s(x) = t(x). Then, because of (1), it is enough to

show that 〈x, e〉 = 0 for e2 = e orthogonal to s(x); but this follows from (∗)
because xe = ex = 0.
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(3) This follows from Lemma 1.2 for the triplet (x, y, s(y)).

(4) Let f = s(y); then y = yf . Hence, for an idempotent e orthog-
onal to f , we have (α(x, y)f)(e) = α(x, y)(fe) = 0 and (xα(y, f))(e) =
α(y, f)(ex) = α(y, f)(et(x)x) = α(y, f)(efx) = 0 because t(x) = s(y) = f
by assumption. It then follows from the 2-cocycle condition (x, y, f)α that
α(x, y)(e) = (α(xy, f) + α(x, y)f − xα(y, f))(e) = α(xy, f)(e).

For a path p ∈ Q≥0, we denote by p again the image of p under the
canonical map KQ → A = KQ/I, if there is no confusion. Moreover, for
simplicity, x ∈ Q≥0 for an element x of A means that x is the image of a
path in Q≥0, and so x = t(x)xs(x) for some primitive idempotents s(x) and
t(x). The path algebra KQ has a K-basis {e(i), p | i ∈ Q0, p ∈ Q+} and
HomK(KQ,K) has the dual basis {e(i)∗, p∗ | i ∈ Q0, p ∈ Q+}. The aim of
this section is to prove the following theorem.

Theorem 2.2. Let Q be a finite quiver and A = KQ/I for an admissible
ideal I. Let T be an extension algebra of A by DA = HomK(A,K), which
is defined by a 2-cocycle α : A×A→ DA. Then T is a symmetric algebra if

α(x, y)(s(y)) = α(y, x)(s(x))

for any non-zero paths x, y ∈ Q+ with s(x) = t(y) and s(y) = t(x).

As a special case of the theorem, for a finite quiver Q without oriented
cycles we know that all extension algebras of A = KQ/I are symmetric.
But this also follows from the fact that H2(A,HomK(A,K)) = 0, i.e. any
extension algebra of A is splittable [6], [9].

To prove the theorem, we define a K-linear map T → K with the prop-
erties (S1), (S2) in Section 1, and we need some lemmas.

Definition. A K-linear map λ : KQ⊕HomK(KQ,K)→ K is defined
in the following way:

λ(e(i), 0) = 0 for i ∈ Q0,

λ(x, 0) =

{
〈s(x), x〉 if s(x) 6= t(x) for x ∈ Q+,
−α(x, s(x))(1A − s(x)) if s(x) = t(x) for x ∈ Q+,

λ(0, x∗) = x∗(1A) for x ∈ Q≥0.

Note that λ(0, e(i)∗) = 1K and λ(0, x∗) = 0 for i ∈ Q0 and x ∈ Q+.

Let p = c1x1 + . . .+ cnxn (ci ∈ K, xi ∈ Q+) be a minimal relation in I.
Then, by definition, e := s(x1) = . . . = s(xn) and f := t(x1) = . . . = t(xn).
In the case when e 6= f , λ(p, 0) =

∑
i ciλ(xi, 0) =

∑
i ci〈e, xi〉 by definition

and hence λ(p, 0) = 〈e,
∑
i cixi〉 = 〈e, p〉 = 0, because p ∈ I and so p
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represents the zero in A. In the other case, i.e. e = f ,

λ(p, 0) = −
∑
i

ciα(xi, e)(1− e)

= −α
(∑

i

cixi, e
)

(1− e) = −α(p, e)(1− e) = 0,

because p is zero in A. Moreover, for u = c1x
∗
1 + . . . + cnx

∗
n ∈ DA, we

have λ(0, u) =
∑
i ciλ(0, x∗) = 0. Thus λ naturally induces a K-linear map

T → K, which will be denoted by λ again. We note that λ(0, u) = u(1A)
for any u ∈ DA.

Lemma 2.3. λ(T (a, x)) 6= 0 for any 0 6= (a, x) ∈ T .

P r o o f. Suppose that λ(T (a, x))=0; we show that a=0 and x=0. For
any y ∈ DA, λ((0, y)(a, x)) = λ(0, ya) = y(a) by the definition of λ, which
implies that (DA)(a) = 0 and so a = 0. Moreover, for b∈A, λ((b, 0)(0, x)) =
λ(0, bx) = x(b), hence x(A) = 0 and so x = 0.

Lemma 2.4. For x = (a, 0), y = (b, 0), a, b ∈ Q≥0, we have

(1) λ(xy)− λ(yx) = α(a, b)(s(b))− α(b, a)(s(a)) if s(a) = t(b) and t(a)
= s(b).

(2) λ(xy) = λ(yx) if s(a) 6= t(b) or t(a) 6= s(b).

P r o o f. Let ϕ(x, y) = λ(xy)−λ(yx). Then ϕ(x, y) = λ(ab, 0)−λ(ba, 0)+
〈a, b〉, because λ(0, α(a, b)) = α(a, b)(1A) and λ(0, α(b, a)) = α(b, a)(1A).

(1) Assume that s(a) = t(b) and t(a) = s(b). It follows from the def-
inition of λ and Lemma 2.1(4) that λ(ab, 0) = −α(ab, s(b))(1 − s(b)) =
−α(a, b)(1− s(b)), and λ(ba, 0) = −α(b, a)(1 − s(a)) similarly. Hence, by
Lemma 1.2,

ϕ(x, y) = 〈b, a〉+ α(a, b)(s(b))− α(b, a)(s(a)) + 〈a, b〉
= α(a, b)(s(b))− α(b, a)(s(a)).

(2) In the case when s(a) 6= t(b), we have ab = 0 and so ϕ(x, y) =
−λ(ba, 0) + 〈a, b〉, where 〈a, b〉 = −〈b, a〉 = −〈ba, s(a)〉 = 〈s(a), ba〉 by Lem-
ma 2.1(3). Thus ϕ(x, y) = −λ(ba, 0) + 〈s(a), ba〉. To show that ϕ(x, y) = 0,
it is obviously enough to consider the case when ba 6= 0. If a or b ∈ Q+, and
so ba ∈ Q+, then λ(ba, 0) = 〈s(a), ba〉 by definition and hence ϕ(x, y) = 0. If
a, b ∈ Q0, then a = b = e(i) for some i ∈ Q0. Hence λ(ba, 0) = λ(e(i), 0) = 0
by definition, and clearly 〈s(a), ba〉 = 〈e(i), e(i)〉 = 0. Thus in any case
ϕ(x, y) = 0.

(2.5) Proof of Theorem 2.2. The algebra A is spanned by {x | x ∈ Q≥0}
over K, and DA is spanned by {x∗ | x ∈ Q≥0}. Since the K-linear map
λ : T → K defined in 2.2 satisfies the regularity condition (S1) in Section 1
by Lemma 2.3, we only have to show the symmetry condition (S2). This
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follows for x = (a, 0), y = (b, 0) with a, b ∈ Q≥0 from Lemma 2.4 and the
assumption on α. For x = (a, 0) and y = (0, b∗) with a, b ∈ Q≥0, this follows
from λ(xy) = λ(0, ab∗) = b∗(a) and λ(yx) = λ(0, b∗a) = b∗(a). Thus we
have proved the theorem.

Let Q be a finite quiver without oriented cycles, and let Q[X1, . . . , Xm]
be the finite quiver whose vertices are the vertices of Q0. The set of arrows
is the disjoint union of Q1 and additional arrows X1, . . . , Xm, where each Xi

is an arrow vi → vi for some different vertices v1, . . . , vm of Q. Let A be a
K-algebra KQ[X1, . . . , Xm]/I where I is an admissible ideal. Observe that
the admissible ideal is nothing else than an ideal containing non-constant
polynomials fi(Xi) over K for all i.

Proposition 2.6. Any extension algebra of A by HomK(A,K) is sym-
metric.

P r o o f. Let α be a 2-cocycle A × A → HomK(A,K), and Q(A) the
quiver of the algebra A. Only the pairs (Xs

i , X
t
i ) for 1 ≤ i ≤ m and s, t > 0

are pairs of paths p, q ∈ Q+ with s(p) = t(q) and s(q) = t(p). Hence, by
Theorem 2.2, it is enough to show that α(xsi , x

t
i)(e(vi)) = α(xti, x

s
i )(e(vi))

for any i and s, t > 0, where xi is the residue class of Xi. We fix any one of
{x1, . . . , xm}, denote it by x, and more generally we show

(∗∗) α(xi, xj)(xk) = α(xj , xi)(xk)

for any integers i, j, k ≥ 0. (This implies the proposition in case k = 0.)
Let e = s(x) = t(x). If one of i and j is zero, say i = 0, then (∗∗) follows

from the 2-cocycle condition (e, e, xj)α = 0, because eα(e, xj) = α(e, e)xj

and so α(e, xj)(xk) = α(e, e)(xj+k). Similarly, from (xj , e, e)α = 0 we get
α(xj , e)(xk) = α(e, e)(xj+k). Next, we consider the case when i > 0 and
j > 0, and we show (∗∗) by induction on i.

For i = 1, from the 2-cocycle condition (x, xj−1, x)α = 0, it follows that
(α(x, xj)−α(xj , x))(xk) = (α(x, xj−1)−α(xj−1, x))(xk+1). Hence, for i = 1,
(∗∗) follows by induction on j, because it is trivial for j = 1.

For i > 1, from the 2-cocycle conditions (x, xi−1, xj)α = 0 and
(xj , xi−1, x)α = 0, we have

(α(xi, xj)− α(xj , xi))(xk)

= (α(xxi−1, xj)− α(xj , xi−1x))(xk)

= (α(x, xi+j−1) + xα(xi−1, xj)− α(x, xi−1)xj)(xk)

− (α(xi+j−1, x) + α(xj , xi−1)x− xjα(xi−1, x))(xk)

= [x, xi+j−1](xk) + [xi−1, xj ](xk+1) + [xi−1, x](xk+j) = 0.

Hence it follows that [xi, xj ](xk) = 0 by the induction hypothesis on i.
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As a corollary of the proof of Proposition 2.6 we have

Corollary 2.7. Let K[X] be the polynomial ring with indeterminate X ,
and f a non-constant polynomial in K[X]. Let A = K[X]/(f) be the factor
algebra by the ideal generated by f. Then any extension algebra of A by
HomK(A,K) is commutative, and hence symmetric.

P r o o f. The polynomial ring K[X] is a special case of 2.6, K[X] =
K(A1[X1]). The K-space A=K[X]/(f) is spanned by the set {xl | 0≤ l <
deg f} and hence (∗∗) in 2.6 implies that α(xi, xj) = α(xj , xi) for all i, j ≥ 0
and a 2-cocycle α. It therefore follows that α(a, b) = α(b, a), i.e. [a, b] = 0,
for any a, b ∈ A. Let T be an extension algebra of A and α the corresponding
2-cocycle. Then, for (a, u∗), (b, v∗) ∈ T = A⊕HomK(A,K), (a, u∗)(b, v∗) =
(ab, av∗ + u∗b + α(a, b)). Since A is commutative, we have (a, u∗)(b, v∗) −
(b, v∗)(a, u∗) = (0, [a, b]), which is zero for a, b ∈ {xi | i ≥ 0} from the above
observation. Thus we know that T is commutative. Symmetry of T is now
trivial.

The algebras considered in 2.6 have quivers whose vertices have at most
one circle. The following algebra shows that the assertion in 2.6 is not true
in general for algebras with a vertex having two circles.

Let A = K[X,Y ]/(X2, Y 2) be the factor algebra of the polynomial ring
with two indeterminates. Let α(a, b) = a1b2xy for a, b ∈ A, where x, y are
the residue classes of X,Y respectively and a = a0 + a1x+ a2y + a3xy, b =
b0 + b1x+ b2y + b3xy for ai, bi ∈ K (0 ≤ i ≤ 3). Then it is easy to see that
α : A × A → A is a 2-cocycle and A is a symmetric algebra. Let T be the
extension algebra of A by A defined by α.

Proposition 2.8. T is a local non-symmetric self-injective K-algebra.

P r o o f. Suppose on the contrary that T is symmetric and λ : T → K is
a symmetric regular K-linear map. Since λ((x, 0)(y, 0)) = λ((y, 0)(x, 0)) by
symmetry of λ, we have 0 = λ(xy− yx, α(x, y)−α(y, x)) = λ(0, xy). Hence
λ(0,Kxy) = 0, which implies that λ(T (0, xy)) = 0 because T (0, xy) =
(0,Kxy). Therefore, by regularity of λ, we conclude that xy = 0, a contra-
diction.

We now exhibit a symmetric extension algebra which does not satisfy
the condition in Theorem 2.2.

Let K[X,Y, Z] be the polynomial ring with three indeterminates, and
I = (X,Y, Z)2 an ideal of K[X,Y, Z]. Let A = K[X,Y, Z]/I, and let x = X,
y = Y and z = Z, where f denotes the residue class of a polynomial f .
Each element a ∈ A is a linear combination a = a0 + a1x + a2y + a3z,
ai ∈ K (0 ≤ i ≤ 3).
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For a, b ∈ A, we put

α(a, b) = (a1b2 + a2b3 + a3b1)1∗ − (a2b3x
∗ + a3b1y

∗ + a1b2z
∗),

where {1∗, x∗, y∗, z∗} is the dual basis of DA = HomK(A,K) corresponding
to the basis {1, x, y, z}. Then α : A×A→ DA is a K-bilinear map, and we
claim that α is a 2-cocycle. For a, b, c ∈ A, first observe that

aα(b, c) = λ01∗ + λ1x
∗ + λ2y

∗ + λ3z
∗,

where λ0 = a0(b1c2 + b2c3 + b3c1) − (a1b2c3 + a2b3c1 + a3b1c2), λ1 =
−a0b2c3, λ2 = −a0b3c1 and λ3 = −a0b1c2. Similarly, in the K-dual ba-
sis {1∗, x∗, y∗, z∗}, we have the K-linear combinations corresponding to
α(ab, c), α(a, bc) and α(a, b)c, which implies that α is a 2-cocycle.

Now let T be an extension K-algebra of A by DA defined by α.

Proposition 2.9. T is a local symmetric algebra, and α(x, y)(1A) 6=
α(y, x)(1A).

P r o o f. Let λ(a, f) = f(1 + x+ y + z) for (a, f) ∈ T = A⊕DA. Then
λ((a, f)(b, g)− (b, g)(a, f)) = λ(0, [a, b]) = [a, b](1 + x+ y + z) = 0, because
α(a, b)(1 + x+ y + z) = (a1b2 + a2b3 + a3b1)− (a2b3 + a3b1 + a1b2) = 0 by
definition and so α(−,−)(1+x+y+z) = 0. This implies the symmetry of λ.
It is also easy to show the regularity of λ. Moreover, (α(x, y) − α(y, x))(1A)
= 1K 6= 0, because α(x, y) = 1∗ − z∗ and α(y, x) = 0 by definition.

Nakayama [7] considered a class of self-injectiveK-algebras A(λ) (λ ∈ K)
of dimension 4, where A(λ) is defined as the K-algebra which has only one
vertex and two arrows α, β with α2 = β2 = αβ − λβα = 0. He proved
that A(λ) is symmetric if and only if λ = 1. We recall these algebras A(λ)
from [13].

Let Λ be the factorK-algebraK[X]/(X2), and letD(λ)= (K[X]/(X2))σ,
where σ is an automorphism of Λ with σ(x) = λ−1x for x being the residue
class of X. Then D(λ) is a duality Λ-bimodule, A(λ) is a split extension
algebra of Λ by D(λ), and D(λ) ∼= HomK(Λ,K)σ. Moreover, D(λ) ∼=
HomK(Λ,K) if and only if λ = 1, and then it follows from Lemma 1.1 that
A(λ) is symmetric if and only if λ = 1, as proved by Nakayama. In these
algebras, the Nakayama automorphism ν is an automorphism for A(λ) sat-
isfying ν(α) = λ−1α and ν(β) = λβ, that is, there is an A(λ)-bimodule
isomorphism A(λ) ∼= HomK(A(λ),K)ν . By Corollary 2.7 we also know
that A(λ), λ 6= 1, is not isomorphic to any extension algebra of Λ by
HomK(Λ,K).

3. Symmetric extension algebras of non-split algebras. In this
section we consider extension algebras of K-algebras which are not neces-
sarily split algebras, but whose ordinary quivers do not contain oriented
cycles.
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Let L be a finite extension field of K, and Q a finite quiver without
oriented cycles. Let A be the path algebra LQ considered as a K-algebra. In
this section, by DA we mean the L-dual space HomL(A,L). Take an L-basis
{e(i), p | i ∈ Q0, p ∈ Q+} of A and the dual basis {e(i)∗, p∗ | i ∈ Q0, p ∈
Q+} of the L-space DA = HomL(A,L). For a ∈ A and u ∈ DA, we write
the corresponding L-linear combinations as follows:

(3.1) a =
∑
i∈Q0

aie(i) +
∑
p∈Q+

app, u =
∑
i∈Q0

uie(i)
∗ +

∑
p∈Q+

upp
∗

where ai, ap, ui = u(e(i)) and up = u(p) belong to L.

A K-bilinear map β : L × L → L is a 2-cocycle if and only if so is
the composite γβ : L × L → HomK(L,K), where γ : L

∼−→ HomK(L,K)
is an L-bimodule isomorphism. The K-algebras T (L, β) and T (L, γβ) are
isomorphic. For this reason, by a 2-cocycle of the K-algebra L we understand
a K-bilinear 2-cocycle L× L→ L.

With a 2-cocycle β : L× L → L there is associated the K-bilinear map
[−,−] : L× L→ L with [a, b] = β(a, b)− β(b, a). (See Section 1.)

Criterion Lemma 3.2. Let E be an extension K-algebra defined by a
2-cocycle β : L × L → L of the K-algebra L. Then E is symmetric if and
only if [L,L] is a proper subset of L.

P r o o f. Assume that E = L⊕L is symmetric, and let λ be a symmetric
regular K-linear map. Then, for any (a, 0), (b, 0) ∈ E,

0 = λ((a, 0)(b, 0))− λ((b, 0)(a, 0)) = λ(ab, β(a, b))− λ(ba, β(b, a))

= λ((ab, β(a, b))− (ba, β(b, a))) = λ(0, [a, b]).

Hence λ(0, [L,L]) = 0. On the other hand, λ(0, L) = λ(E(0, 1)) 6= 0 by
(S1). Thus [L,L] is properly contained in L.

Conversely, assume that [L,L] is a proper subset. Take an element c0 ∈
L \ [L,L] and a K-subspace L′ such that [L,L] ⊆ L′ and L = Kc0 ⊕ L′,
a direct sum. Now let λ : E → K be a K-linear map with λ(a, 0) = 0,
λ(0, c) = 0 and λ(0, c0) = 1K for a ∈ L and c ∈ L′. We show that λ satisfies
the conditions (S1), (S2).

To show (S1), take a non-zero x = (a, b) ∈ E. If a 6= 0, then we
have λ((0, c0a

−1)(a, b)) = λ(0, c0) = 1 6= 0, and if a = 0, then b 6= 0 and
λ((c0b

−1, 0)(a, b)) = λ(0, c0) = 1 6= 0. Thus λ(Ex) 6= 0. Next, to show
(S2), take any (a, a′), (b, b′) ∈ E. Then λ((a, a′)(b, b′)) − λ((b, b′)(a, a′)) =
λ(0, [a, b]) = 0 by the convention that λ(0, L′) = 0. Hence (S2) follows.

Let αi : L× L→ L be the K-bilinear map defined by

αi(x, y) = α(xe(i), ye(i))(e(i)),
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where α : A × A → DA = HomL(A,L) is a given 2-cocycle of the K-
algebra A. It is easily seen that αi is a 2-cocycle of the K-algebra L. We
denote by T (L,αi) the extension K-algebra of L by αi, and by [ , ]i the
K-bilinear map L× L→ L associated with αi.

Lemma 3.3. For any i, j, k ∈Q0, [Le(i), Le(j)](e(k)) = 0 unless i= j = k.

P r o o f. Assume that some two of {i, j, k} are different. Consider the
2-cocycle conditions (e(i), ae(i), be(j))α = 0 and (e(j), be(j), ae(i))α = 0.
(See Section1.) Then, if i = j (and so i 6= k), we have α(ae(i), be(i))(e(k)) =
α(e(i), abe(i))(e(k)) and α(be(i), ae(i))(e(k)) = α(e(i), bae(i))(e(k)). Hence
[ae(i), be(j)](e(k)) = 0 for i = j 6= k. For i 6= j, we consider two cases:

(1) i 6= k and j 6= k, and
(2) i 6= k and j = k; or i = k and j 6= k.

In the case (1), α(ae(i), be(j))(e(k)) = 0 and α(be(j), ae(i))(e(k)) = 0,
which obviously implies [ae(i), be(j)](e(k))=0. In the case (2), assume that
i = k and j 6= k. Then α(ae(i), be(j))(e(k)) = α(ae(i), be(j))(e(i)) and
α(be(j), ae(i))(e(k)) = −α(e(j), be(j))(ae(i)). On the other hand, α(ae(i),
be(j))(e(i)) + α(e(j), be(j))(ae(i)) = 0, because of the 2-cocycle condition
(ae(i), e(j), be(j))α = 0.

Lemma 3.4. 〈radA,−〉 = 0 if 〈radA,Le(i)〉 = 0 for all i.

P r o o f. Since A is spanned by {e(i), p | i ∈ Q0, p ∈ Q+} over L, it is
enough to show that 〈radA, ap〉 = 0 for any a ∈ L and p ∈ Q+. For this,
we only have to show that 〈ap, bq〉 = 0 for a, b ∈ L and p, q ∈ Q+. First,
observe that

〈ap, bq〉 = 〈abpt(q), q〉 for any a, b ∈ L and p, q ∈ Q+.

In fact, it follows from Lemma 1.2 that for the triplet (ap, bt(q), q),

〈ap, bq〉+ 〈bt(q), aqp〉+ 〈q, abpt(q)〉 = 0,

where 〈bt(q), aqp〉 = 0 by assumption. There is nothing to prove in the
case when s(p) 6= t(q) because then pt(q) = 0. So assume that s(p) = t(q).
Then it follows from the above observation that 〈q, abp〉 = 〈abqt(p), p〉. On
the other hand, s(q) 6= t(p) because s(p) = t(q) by assumption and there
are no oriented cycles in Q. Therefore qt(p) = 0, and we have 〈ap, bq〉 =
−〈q, abpt(q)〉 = −〈abqt(p), p〉 = 0, as desired.

Lemma 3.5. Assume that T (A,α) is symmetric and λ : T (A,α)→ K is
a symmetric regular K-linear map. Then:

(a) λ(0, xe(i)∗) = λ(0, xe(j)∗) for all i, j ∈ Q0 and x ∈ L.
(b) λ(0, Lp∗) = 0 for all p ∈ Q+.
(c) λ(0, u) = λ(0, u(1A)e(i)∗) for all i ∈ Q0 and u ∈ DA.
(d) λ(0, (

∑
i[L,L]i)e(j)

∗) = 0 for all j ∈ Q0.
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(e)
∑
i[L,L]i 6= L.

(f) The K-algebra T (L,αi) is symmetric for all i ∈ Q0.

P r o o f. (a) and (b) follow from the fact that, for any i 6= j and a path
p from i to j and x ∈ L,

0 = λ((xp, 0)(0, p∗)− (0, p∗)(xp, 0)) = λ(0, xe(j)∗ − xe(i)∗)
and

0 = λ((xe(i), 0)(0, p∗)− (0, p∗)(xe(i), 0)) = λ(0, xp∗).

(c) Since u =
∑
i u(e(i))e(i)∗+

∑
p u(p)p∗, this follows from (a) and (b).

(d) Since [Le(i), Le(i)](1A) = [Le(i), Le(i)](e(i)) = [L,L]i by Lemma 3.3,
we have λ(0,

∑
i[L,L]ie(j)

∗) = 0 because

λ
(

0,
∑
i

[Le(i), Le(i)](1A)e(j)∗
)

= 0

by the symmetry of λ and (c).
(e) If

∑
i[L,L]i = L, we have λ(0, Le(k)∗) = λ(0,

∑
i[L,L]ie(k)∗) = 0

by (d). Then λ(T (0, e(k)∗)) = λ(0, Le(k)∗) = 0, a contradiction to the
regularity of λ, where T = T (A,α).

(f) This is an immediate consequence of (e) and the Criterion Lemma
because [L,L]i 6= L for any i.

Lemma 3.6. Let T (A,α) be an extension K-algebra. Then, if
∑
i[L,L]i

6= L, there exist symmetric regular K-linear maps λi : T (L,αi) → K satis-
fying λi = λj for any i, j.

P r o o f. Take an element z0 ∈ L \
∑
i[L,L]i and a K-subspace L′ such

that
∑
i[L,L]i ⊆ L′ and L = Kz0⊕L′, a direct sum. Let λi : T (L,αi)→ K

be a K-linear map with λi(x, 0) = λi(0, y) = 0 and λi(0, z0) = 1K for x ∈ L
and y ∈ L′. Then λi = λj , and every λi is regular and symmetric as in the
proof of Lemma 3.2, because [L,L]i ⊆

∑
i[L,L]i ⊂ L.

Proposition 3.7. Consider the following three conditions for an exten-
sion algebra T (A,α):

(1)
∑
i∈Q0

[L,L]i 6= L.
(2) There are symmetric regular K-linear maps λi : T (L,αi) → K sat-

isfying λi(0,−) = λj(0,−) for all i, j ∈ Q0.
(3) T (A,α) is symmetric.

Then the implications (3)⇒(1)⇒(2) hold. Moreover , (2) implies (3) if
[radA, e(i)](1A) = 0.

P r o o f. The implications (3)⇒(1) and (1)⇒(2) are proved in Lemmas 3.5
and 3.6, respectively. Now assume that [radA, e(i)](1A)=0, and that there
are symmetric regular K-linear maps λi : T (L,αi)→ K such that λi(0,−) =
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λj(0,−) for any i, j∈Q0. Fix k∈Q0 and take a K-linear map λ : T (A,α)→
K with

λ(a, u) = λk(0, u(1A))

for any a ∈ A and u ∈ DA; we show that λ is regular and symmetric.
Let a =

∑
i∈Q0

aie(i) + a′, where ai ∈ L and a′ ∈ radA, and let T =
T (A,α) and Ti = T (L,αi). Then, for (a, u), (b, v) ∈ T ,

[a, b] =
∑
i,j

[aie(i), bje(j)] +
∑
i

([aie(i), b
′] + [a′, bie(i)]) + [a′, b′].

Hence, [a, b](1A) =
∑
i,j,s∈Q0

[aie(i), bje(j)](e(s)) =
∑
i[aie(i), bie(i)](e(i))

by Lemmas 3.3 and 3.4 and the assumption. It follows that

λ((a, u)(b, v)− (b, v)(a, u)) = λk(0, [a, b](1A))

=
∑
i

λk(0, [aie(i), bie(i)](e(i)))

=
∑
i

λi(0, [aie(i), bie(i)](e(i)))

by the assumption on λi’s. Since λi’s are symmetric, this implies that λ
is symmetric. Also, the regularity of λi’s implies the regularity of λ. In
fact, λ(T (a, u)) ⊇ λk(0, L) = λk(Ti(0, 1L)) 6= 0 for (a, u) 6= 0, because
HomL(A,L)(a) = L for 0 6= a ∈ A.

We have considered the symmetry of an extension algebra T (A,α) by
making use of local data, namely, symmetry of T (L,αi). Conversely, we now
consider a construction of symmetric extension algebras by using given local
data. We use an idea from [9].

Let L be a finite extension field of the field K, and β : L × L → L be
a 2-cocycle of the K-algebra L. For any finite quiver Q without oriented
cycles, we define a K-bilinear map β̂ : LQ× LQ→ HomL(LQ,L) by

β̂(a, b) =
∑
i∈Q0

β(e(i)ae(i), e(i)be(i))e(i)∗

for a, b ∈ LQ. Then it is easy to see that β̂ is a 2-cocycle of the K-algebra
LQ.

Proposition 3.8. The extension algebra T (LQ, β̂) is non-splittable for
any finite quiver Q without oriented cycles if so is T (L, β).

P r o o f. This is proved as in [9, 6.1].

Theorem 3.9. The following conditions are equivalent :

(1) The extension K-algebra T (L, β) is symmetric.

(2) The extension K-algebra T (LQ, β̂) is symmetric for some finite quiver
Q without oriented cycles.
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(3) The extension K-algebra T (LQ, β̂) is symmetric for any finite quiver
Q without oriented cycles.

P r o o f. Consider an extension K-algebra T (LQ, β̂), and let β̂i : Le(i)×
Le(i)→ HomL(Le(i), L) be the restriction of β̂. Then β̂i(e(i)ae(i), e(i)be(i))

= β(a, b)e(i)∗, so that T (L, β̂i) = T (L, β) for any i, which implies the the-

orem because the 2-cocycle β̂ obviously satisfies the condition in Proposi-
tion 3.7.

Finally we exhibit an algebra which shows that the implication (2)⇒(3)
in Proposition 3.7 is not true without any additional condition in general.

Example 3.10. Let K = Z2(x, y) be a rational function field with
two invariants over the prime field Z2 of characteristic 2, and consider
the factor ring L = K[X,Y ]/(X2 − x, Y 2 − y). Define 2-cocycles α1, α2 :
L× L→ L by

α1(X lY m, X l′Y m
′
) = lm′X l+l′Y m+m′

,

α2(X lY m, X l′Y m
′
) = lm′X l+l′−1Y m+m′

,

where X,Y denote the residue classes of X,Y respectively. Now let Q
be a quiver of Dynkin type A2 and let α : A = LQ → HomL(A,L) be
a 2-cocycle defined by α(a, b) =

∑
i αi(ai, bi)e(i)

∗, where ai and bi are as
in (3.1). Then it is easy to see that [L,L]1 = KX ⊕ KY ⊕ KXY and
[L,L]2 = K1L ⊕ KY ⊕ KXY , which implies that

∑
i[L,L]i = L. It then

follows from Proposition 3.7 that T = T (A,α) is not symmetric, but Ti =
T (L,αi) is symmetric by Criterion Lemma 3.2. Moreover, we know that Ti
is non-splittable by Lemma 1.3, because α1(X,Y ) = XY , α1(Y ,X) = 0,
and α2(X,Y ) = Y , α2(Y ,X) = 0.

4. Examples. In the preceding section we considered extension algebras
of a K-algebra L which is a finite extension field of K. In this section we
exhibit some extension algebras of a specified extension field L of K.

Throughout this section, L is a finite extension field of a fixed field K,
and a K-bilinear map [−,−] : L×L→ L is associated with a fixed 2-cocycle
α : L× L→ L of the K-algebra L (see Section 1). By definition, obviously
[a, a] = 0 and [a, b] = −[b, a] for any a, b ∈ L.

Lemma 4.1. (1) For a, b, c ∈ L, we have

[a, bc] = [a, b]c+ [a, c]b and [ab, c] = a[b, c] + b[a, c].

(2) For 0 6= a, 0 6= b ∈ L and l, l′,m,m′ ∈ Z, we have

(i) [al, bm] = lmal−1bm−1[a, b] and [al, am] = 0.

(ii) [albm, al
′
bm

′
] = (lm′ −ml′)al+l′−1bm+m′−1[a, b].
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P r o o f. (1) By the definition of 2-cocycle,

[a, bc] = α(a, bc)− α(bc, a)

= (α(ab, c) + α(a, b)c− aα(b, c))− (bα(c, a) + α(b, ca)− α(b, c)a)

= (α(ab, c) + α(a, b)c− bα(c, a))− α(b, ca)

= (α(ab, c) + α(a, b)c− bα(c, a))− (α(ab, c) + α(b, a)c− bα(a, c))

= [a, b]c+ [a, c]b.

(2) (i) First, we show the case m = 1 by induction on l. It is obviously
true for l = 0, because [1, x] = 0 for any x ∈ L by (1) where a = x and
b = c = 1. Assume that l > 0; then [al, b] = a[al−1, b]+ al−1[a, b] by (1). It
follows from the induction hypothesis that

[al, b] = (l − 1)al−1[a, b] + al−1[a, b] = lal−1[a, b].

Next, assume that l < 0. Then [al, b] = [(a−1)−l, b] = (−l)(a−1)−l−1[a−1, b]
= (−l)al+1[a−1, b]. Moreover, by (1), [a−1, b] = a−1a[a−1, b] = a−1([1, b] −
a−1[a, b]) = −a−2[a, b]. Hence [al, b] = lal−1[a, b].

Now consider m ∈ Z. By the result just proved above, [al, bm] =
lal−1[a, bm] = −lal−1[bm, a] and [bm, a] = mbm−1[b, a] = −mbm−1[a, b].
Thus [al, bm] = lmal−1bm−1[a, b] and so [al, am] = 0 because [a, a] = 0.

(ii) By (1) we have

[albm, al
′
bm

′
] = al[bm, al

′
bm

′
] + bm[al, al

′
bm

′
]

= al+l
′
[bm, bm

′
] + albm

′
[bm, al

′
]

+ al
′
bm[al, bm

′
] + bm+m′

[al, al
′
],

where [bm, bm
′
] = 0 = [al, al

′
] by (i). Hence, by (i) again,

[albm, al
′
bm

′
] = albm

′
[bm, al

′
] + al

′
bm[al, bm

′
]

= ml′al+l
′−1bm+m′−1[b, a] + lm′al+l

′−1bm+m′−1[a, b]

= (lm′ −ml′)al+l
′−1bm+m′−1[a, b].

Theorem 4.2. If the field L is generated by at most two elements over K ,
then any extension algebra of the K-algebra L by the L-bimodule L is sym-
metric.

P r o o f. Let α : L × L → L be a K-bilinear 2-cocycle of L. In the case
when L is a simple extension field of K, we obviously have [L,L] = 0 by
Lemma 4.1(2), and so [L,L] is properly contained in L. Hence our assertion
follows from Lemma 3.2.

Next, let L = K(a, b) for some a, b, and d1 = [K(a) : K], d2 = [K(a, b) :
K(a)]. Assume that L/K is not a simple extension field. Then the charac-
teristic of K is a non-zero prime, say p; take a K-basis {albm | 0 ≤ l < d1,
0 ≤ m < d2} of L. Since [albm, al

′
bm

′
] = (lm′ −ml′)al+l′−1bm+m′−1[a, b]
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by Lemma 4.1(2), we have [L,L] = I[a, b], where I is the K-subspace of L
spanned by the set

{(lm′ −ml′)al+l
′−1bm+m′−1 | 0 ≤ l, l′ < d1, 0 ≤ m,m′ < d2}.

Thus, by Lemma 3.2, it is enough to show that I[a, b] is properly contained
in L for [a, b] 6= 0.

Assume that [a, b] 6= 0; we use the following lemma, where r(n) denotes
the remainder of an integer n divided by p.

Lemma 4.3. The following conditions hold for any non-negative integers
l and m:

(1) p is a common divisor of d1 and d2.

(2) al =
∑

0≤pi<d1−r(l) λia
pi+r(l) for λi ∈ K.

(3) albm =
∑

0≤pi<d1−r(l)
0≤pj<d2−r(m)

λi,ja
pi+r(l)bpj+r(m) for some λi,j ∈ K.

P r o o f. (1) will be shown in the proofs of (2) and (3).

(2) For an integer l with 0 ≤ l < d1, let l = pi + r(l). Then obviously
al = api+r(l) is of the required form. Now let ad1 =

∑
0≤i<d1 λia

i for some
λi ∈ K. It follows from Lemma 4.1 that

d1a
d1−1[a, b] = [ad1 , b] =

[∑
i

λia
i, b
]

=
∑
i

iλia
i−1[a, b].

Hence d1a
d1−1 =

∑
i iλia

i−1, which implies that d11K = 0 and iλi = 0 for
0 ≤ i < d1. Hence p divides d1 and λi = 0 for any i not divided by p. Thus
we have

ad1 =
∑

0≤pi<d1

λpia
pi,

which is also a required form because r(d1) = 0.

Next, for l > d1, let l = d1 + l′. Then al = ad1al
′

=
∑

0≤pi<d1 λia
pi+l′ ,

where r(pi + l′) = r(l′), r(l′) = r(d1 + l′) = r(l) because p | d1, and so
r(pi+l′) = r(l). Since pi+l′ < l, the statement (2) then follows by induction
on l.

(3) For a non-negative integer m < d2, let m = pj + r(m) and bm =
bpj+r(m). Then clearly the required statement follows from (2). Next, we
show that d2 is divisible by p and that

(∗∗∗ ) bd2 =
∑

0≤pi<d1
0≤pj<d2

λi,ja
pibpj .

Let bd2 =
∑

0≤j<d2 ξj(a)bj with some ξj(a) ∈ K(a). Then, by a similar
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argument to the proof of (2), we have

d2b
d2−1[b, a] =

∑
j

jξj(a)bj−1[b, a],

and hence it follows from the assumption [b, a] 6= 0 that

bd2 =
∑

p|j, 0≤j<d2

ξj(a)bj .

Let ξj(a) =
∑

0≤i<d1 ξjia
i for some ξji ∈ K. Then, by Lemma 4.1, we have

0 = [bd2 , b] =
∑

p|j, 0≤j<d2

( ∑
0≤i<d1

ξji[a
ibj , b]

)
=
∑
p | j

∑
i

iξjia
i−1bj [a, b].

Thus ξj(a) =
∑
p|i, 0≤i<d1 ξjia

i, because iξji = 0 for i, j with p | j, which

implies (∗∗∗ ).
Finally, assume that m > d2 and let m = d2 +m′. It then follows from

(∗∗∗ ) and (2) that

albm = albd2bm
′

=
∑

0≤pi<d1
0≤pj<d2

λi,ja
pi+r(l)bpj+m

′
,

where pj + m′ < m. Thus, by (2) and induction on m, we deduce the
statement (3).

(4.4) Proof of Theorem 4.2. Since lm′ − ml′ ≡ 0 (mod p) for l + l′,
m+m′ ∈ pZ, we have

(lm′ −ml′)al+l
′−1bm+m′−1 = 0.

If l + l′ or m+m′ does not belong to pZ, then 0 ≤ r(l + l′ − 1) ≤ p− 2 or

0 ≤ r(m+m′ − 1) ≤ p− 2. Hence I ⊆ Ĩ, where Ĩ is a K-subspace spanned
by the set {api+rbpj+r′ | i, j ∈ Z, 0 ≤ r ≤ p − 2 or 0 ≤ r′ ≤ p − 2}. This

implies that api−1bpj−1 does not belong to Ĩ, because r(pi− 1) = p− 1 and

r(pj − 1) = p− 1. Therefore Ĩ ⊂ L and so I ⊂ L.

Let L = K(a1, . . . , am) be generated by m elements ai over K. Theo-
rem 4.2 shows that any extension algebra of the K-algebra L is symmetric if
m ≤ 2. We show below that Theorem 4.2, in general, is not true for m ≥ 3.

Let K = Z2(a, b, c) be the rational function field with three invariants
a, b, c over the prime field Z2, and let L be the factor ringK[X,Y, Z]/(X2−a,
Y 2 − b, Z2 − c). Let x = X, y = Y and z = Z, where f denotes the residue
class of f in L. We define a K-bilinear form α : L× L→ L by

α(xlymzn, xl
′
ym

′
zn

′
) = xl+l

′−1ym+m′−1zn+n
′−1(lm′z +mn′xy)

where the numbers l,m, n, l′,m′, n′ are 0 or 1.

Lemma 4.5. α is a 2-cocycle.
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P r o o f. It is enough to show the relation

fα(g, h)− α(fg, h) = α(f, g)h− α(f, gh)

for f, g, h from the K-basis {xlymzn | l,m, n = 0 or 1} of L, and this is a
direct consequence of the definition of α.

Proposition 4.6. The extension algebra T (L,α) of the K-algebra L is
not symmetric.

P r o o f. From the definition of α we have the following data for the
K-basis {1, x, y, z, yz, zx, xy, xyz} of L: [x, y] = 1, [x, xy] = x, [y, z] =
y, [x, yz] = z, [xy, z] = xy, [yz, z] = yz, [x, xyz] = zx, [xyz, z] = xyz.
Thus [L,L] = L, which implies that T (L,α) is not symmetric by Criterion
Lemma 3.2.

The above construction of the extension algebra T (L,α) also applies to
the case of the field K of arbitrary non-zero characteristic p.

LetK = Zp(a, b, c) with invariants a, b, c, and let L=K[X,Y, Z]/(Xp−a,
Y p − b, Zp − c) as before. A 2-cocycle α : L× L→ L of the K-algebra L is
defined as in Lemma 4.5. Then, for the K-basis {xlymzn | 0 ≤ l,m, n < p}
of L, for 0 ≤ n < p we have

xlymzn

=



1

l(m+ 1)
[xl, xym+1zn] for 1 ≤ l ≤ p− 1, 0 ≤ m ≤ p− 2,

1

(l + 1)(m+ 1)
[xl+1, ym+1zn] for 0 ≤ l,m ≤ p− 2,

1

m
[xlymzn, z] for 0 ≤ l ≤ p− 1, 1 ≤ m ≤ p− 1.

This implies that [L,L] contains all xlymzn, so that [L,L] = L. Hence
T (L,α) is not symmetric by Criterion Lemma 3.2.

Finally we mention some questions related to extension algebras.

(1) For a simple K-algebra A, it is known that the cohomology group
Hn(A,A) is not zero for any integer n > 0 (cf. [5]). Since A is a symmetric
algebra, A ∼= HomK(A,K) as A-bimodules; the above non-split extension
algebras of K-algebras L show the fact for n = 2, i.e. H2(A,A) 6= 0.

(2) Let L be a finite extension field K with a 2-cocycle α : L×L→ L of
the K-algebra L such that T (L,α) is not symmetric (Proposition 4.6), and
let Q be an arbitrary finite quiver without oriented cycles. Then T (LQ,α)
is stably equivalent to T (LQ, 0) (see [12], [13]). But, by a theorem of
Rickard [8], T (LQ,α) and T (LQ, 0) are not derived equivalent, because
T (LQ, 0) is symmetric. Thus in general a self-injective algebra being sta-
bly equivalent to a self-injective algebra of tilted type in the sense of [4]
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does not imply a derived equivalence between them (cf. [10]). Moreover, it
also shows that a self-injective algebra is not necessarily symmetric even if
it is stably equivalent to a symmetric algebra.
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