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PROJECTIVE EMBEDDINGS OF TORIC VARIETIES

BY

RICHARD A. SCOTT (SANTA CLARA, CALIFORNIA)

1. Introduction. The question of when a toric variety admits an equiv-
ariant embedding into projective space is well understood. A toric variety
Xk(Σ) defined over a field k is determined by a complex Σ of rational cones
in Rd and will have an algebraic embedding into projective space if there is
an integral convex polytope P which is dual to Σ in an appropriate sense.
Having chosen such a P , there is a natural map µP from Xk(Σ) to a certain
projective space Prk, and in the event that P is large enough, this map is an
algebraic embedding. In particular, if nP denotes the n-fold scaling of P ,
then for n sufficiently large, µnP is an algebraic embedding. In this paper,
we consider the weaker question of when µP is injective, giving necessary
and sufficient conditions on P which depend only on a certain arithmetic
property of the field k. When the field is R or C, injectivity implies that the
map will be a topological embedding (in the metric topology). We conclude
by giving an example µP : XC(Σ) → PrC which is a topological embedding
but not an algebraic embedding and an example µP : XC(Σ) → PrC which
is not a topological embedding, but whose restriction µP : XR(Σ) → PrR is
a topological embedding.

1. Definitions

1.1. Cones and affine toric varieties. Let N be a free Z-module of
rank d and let M be the dual module HomZ(N,Z). Denote by NR and MR
(respectively, NQ and MQ) the vector spaces N ⊗Z R and M ⊗Z R (resp.,
N ⊗ Q and M ⊗ Q). The natural pairing 〈 , 〉 : MR × NR → R restricts to
M ×N and to MQ ×NQ.

A cone c in NR is the convex hull of a finite set of rays passing through
nonzero points of NR. All cones in this paper will be rational , meaning that
they are the convex hulls of rays passing through points of the lattice N .
A rational cone c can also be written dually as the intersection of a finite
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number of rational halfspaces:

c =

r⋂
i=1

{q ∈ NR | 〈mi, q〉 ≥ 0}

where the mi are unique, primitive lattice points of M .
A cone c is strictly convex if it contains no line in NR. For an arbitrary

set S ⊂ N , we use the notation R≥0S for the convex hull of the rays passing
through points of S. For a strictly convex cone c in NR there is a unique
minimal set of primitive lattice points in N , called the extreme set for c and
written ext c, such that

c = R≥0 ext c.

Any hyperplane which does not intersect the interior of c is called a sup-
porting hyperplane, and a face b of c, written b < c, is the intersection of
c with a supporting hyperplane. The smallest R-subspace of NR containing
c will be denoted by Rc, and the dimension of the cone c is the dimension
of the vector space Rc. If c is strictly convex and the cardinality of ext c is
equal to the dimension of c, then c is called simplicial . A cone c is maximal
if Rc = NR. A maximal, simplicial cone for which ext c is a basis for N will
be called basic.

If c is a cone in NR, we denote by c⊥ the vector subspace

{p ∈MR | 〈p, q〉 = 0 for all q ∈ c}.
We define the dual cone č to be the rational cone in MR given by

č = {p ∈MR | 〈p, q〉 ≥ 0 for all q ∈ c}.
Notice that this duality has the following properties ([Oda]):

(i) (č)̌ = c.
(ii) If b is a face of c, č is contained in b̌.

(iii) If c is strictly convex, č is maximal.
(iv) c is simplicial and maximal if and only if č is simplicial and maximal.
(v) c is strictly convex and maximal if and only if č is strictly convex

and maximal.
(vi) c is basic if and only if č is basic.

Property (ii) has a much stronger formulation, the proof of which can
also be found in [Oda]. Namely, there is an inclusion reversing bijection
between k-faces of c and codimension-k faces of č given by

b 7→ b⊥ ∩ č.

The set-theoretical definition of a toric variety which we shall use holds
over an arbitrary field k. We refer the reader to any of a number of excellent
surveys for the general (algebraic) definition ([Dan, Ful, Oda]).
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If c is a cone in NR, then č∩M has the structure of a finitely generated
additive semigroup with unit 0. Likewise, any field k is a multiplicative
semigroup with unit 1.

Definition 1. The affine toric variety (over k) associated with c is the
set

Uk(c) = Hom(č ∩M,k)

where Hom denotes unitary semigroup homomorphisms.

Choosing, say n, generators for the semigroup č ∩ M and finding all
additive relations among these generators gives a presentation for the algebra
k[č ∩ M ] as a quotient of the polynomial ring with n indeterminates by
some ideal I. We can then identify Uk(c) with the zero locus in kn of a
set of polynomials generating I. If k is R or C, the toric variety inherits a
(Hausdorff) topology from the product topology on kn which is independent
of the choice of generators for č ∩M .

1.2. Cone complexes and toric varieties. The following fact motivates
the construction of a general toric variety: if b is a face of c, then the affine
variety Uk(b) is a subset of Uk(c). Therefore, if two cones in NR share a
face, there is a natural way to glue the associated affine varieties together
along a subset of each variety. To obtain this natural inclusion, notice that
if b < c, then č ∩M is a subsemigroup of b̌ ∩M , and that this induces a
map

Uk(b) = Hom(̌b ∩M,k)→ Uk(c) = Hom(č ∩M,k).

A point x ∈ Uk(c) is in the image of this map if and only if x(p) 6= 0 for all
p ∈ (b⊥ ∩ č) ∩M . Because any p ∈ b̌ ∩M can be written as p = p1 − p2
where p1 ∈ č ∩M and p2 ∈ (b⊥ ∩ č) ∩M , any x ∈ Uk(c) in the image of
this map is the image of the unique semigroup homomorphism x′ ∈ Uk(b)
defined by

x′(p) = x(p1)/x(p2).

Notice, in particular, that the variety Uk(0) corresponding to the zero
cone is the “algebraic torus”

Hom(M,k) = (k∗)d

(k∗ denotes the nonzero elements of k). This torus sits inside every affine
toric variety.

A rational cone complex (also called a fan) Σ in NR is a collection of
strictly convex rational cones satisfying the following two conditions:

(i) every face of a cone in Σ is also in Σ, and
(ii) the intersection of two cones in Σ is a face of both.

A cone complex is complete if the union of all of its cones is NR.
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Definition 2. LetΣ be a rational cone complex inNR. The toric variety
(over k) associated with Σ is the set Xk(Σ) obtained by gluing together the
affine toric varieties {Uk(c) | c ∈ Σ} along the natural inclusions described
above.

When k is R or C, each inclusion of affine toric varieties described above
is continuous and the image is dense and open. In the category of spaces,
Xk(Σ) is the topological union or pushout of the directed system {Uk(c) |
c ∈ Σ}. We leave it to the reader to verify that Xk(Σ) is Hausdorff and
compact if Σ is complete.

1.3. Convex polytopes and maps to projective space. Let P be an integral
convex polytope in MR (i.e., P is the convex hull of a finite subset of M).
Assume that P is d-dimensional. We can always translate P so that 0 is in the
interior and the vertices of P are in MQ. Hence, we can write this translate
of P as the intersection of affine halfspaces (one for each codimension 1
face):

P =
k⋂
i=1

{p ∈MR | 〈ni, p〉 ≥ −1}

where each ni ∈ NQ is uniquely determined by the chosen translation of P .
We now let Σ be the collection of cones in NR of the form

c = R≥0S
where S ⊂ {n1, . . . , nk} is such that⋂

n∈S
{p ∈MR | 〈n, p〉 = −1}

is an affine subspace of MR containing a face of P .
From the above remarks it follows that Σ is a complete rational cone

complex and does not depend on the choice of 0 (i.e., the translation) or on
the scaling of P . The collection Σ is called the cone complex dual to P and
the variety Xk(Σ) is called the toric variety associated with P .

In general, there are many different polytopes giving rise to the same cone
complex and, hence, to the same toric variety. It turns out that different
polytopes dual to the same cone complex Σ parametrize different maps from
the toric variety Xk(Σ) to projective spaces. For a convex polytope P , let
{m0,m1, . . . ,mr} be the set of lattice points in P . Then there is a natural
algebraic map µP from the toric variety associated with P to the projective
space Prk defined as follows. A maximal cone c ∈ Σ corresponds to a vertex,
say mi ∈ P ∩ M . If P − mi is the translation of P which moves mi to
the origin, then the R≥0-span of P −mi is the dual cone č. In particular,
m−mi ∈ č ∩M for all m ∈ P . The map µP is then defined on Uk(c) by

µP (x) = [x(m0 −mi), x(m1 −mi), . . . , x(mi −mi), . . . , x(mr −mi)]
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where x(mi − mi) = x(0) = 1. The definition of µP is similar for each
maximal cone, and one can check that these maps agree on the overlaps.

2. Projective embeddings

2.1. Algebraic embeddings. Our main result concerns the question of
when the map µP : Xk(Σ)→ Prk, defined in the previous section, is injective.
We first state the known theorem on algebraic projective embeddings. For
the proof, the reader is referred to [Oda]. Recall that a polynomial map
f : X → Prk is an algebraic embedding if there is a projective variety Y ⊂ Prk
such that f(X) = Y and f : X → Y is an isomorphism.

Theorem 1. The map µP : Xk(Σ) → Prk is an algebraic embedding if
and only if for each vertex m0 ∈ P the set {m ∈ M | m + m0 ∈ P ∩M}
generates the semigroup č ∩M where č is the cone dual to m0.

Remark 1. For nonsingular toric varieties, this theorem implies that any
µP will be an algebraic embedding. This follows from the fact that Xk(Σ) is
nonsingular if and only if every maximal cone ofΣ (and its dual cone) is basic
(see [Oda]). This means that the extreme set of the dual of every maximal
cone c is a lattice basis for M and, hence, generates the semigroup č∩M . If
P is a lattice polytope P dual to such a Σ, then {m ∈M | m+m0 ∈ P ∩M}
contains the extreme set for the cone č dual to m0 for all vertices m0 ∈ P
and, therefore, satisfies the hypotheses of Theorem 1.

2.2. Injectivity of µP . Since an algebraic embedding is injective, the con-
ditions on P in Theorem 1 are sufficient for µP to be injective; however, one
can give weaker conditions which depend on a certain arithmetic property
of the field. Let R(k) denote the set of primes p in Z such that the power
map x 7→ xp does not define an automorphism of the group k∗. For example,
R(R) is {2}, R(C) is the set of all primes, and R(Fq) is the set of prime
divisors of q − 1.

For each l-face σ of a convex integral polytope P , we denote by Rσ the
unique l-dimensional subspace of MR which is parallel to σ (i.e., the R-linear
extension of σ−p for some p ∈ σ). We let Zσ, then, be the rank-l unimodular
sublattice Rσ ∩M of M . We now state our main result.

Theorem 2. Let P be an integral convex polytope, and let µP : Xk(Σ)→
Prk be the corresponding map to projective space. If for every pair (v, σ),
where σ is a face of P and v is a vertex of σ, the image of {m ∈ M |
m + v ∈ σ ∩M} generates Zσ ⊗ Zp as a Zp-vector space for all p ∈ R(k),
then µP is injective. The converse holds if k contains a nontrivial pth root
of 1 for every p ∈ R(k).

Just as we defined the sublattice Zσ for a face σ of P , for any convex
l-dimensional cone c ∈ M , we let Zc denote the rank-l unimodular sub-
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lattice Rc ∩M . In particular, Zc = M for every maximal cone c. For any
finite subset S of M , we denote by Z≥0S the subsemigroup of M generated
by S (including 0), and for x ∈ Hom(Z≥0S,k) we define the support of
x in S, written suppx, to be the set {m ∈ S | x(m) 6= 0}. Theorem 2 is a
straightforward consequence of the following affine version.

Theorem 3. Let c be a maximal , strictly convex cone in NR with dual
cone č. Let S be a subset of č ∩M which contains ext č. If for every face
b < č, the image of S ∩ b generates Zb ⊗ Zp for all p ∈ R(k), then the
natural map

φ : Uk(c) = Hom(č ∩M,k)→ Hom(Z≥0S,k)

is injective. The converse holds if k contains a nontrivial pth root of 1 for
every p ∈ R(k).

Lemma 1. Let c be a strictly convex , l-dimensional cone in MR, let p be
a point of M in the relative interior (denoted by int) of c, and let m0 be an
element of ext c. Then there is a map a : ext c→ Q≥0 such that a(m0) > 0
and

p =
∑

m∈ext c
a(m) ·m.

P r o o f. The proof is by induction on l = dim c. If l = 0, then p is
a positive integral multiple of m0. Hence, ext c = {m0} and we can take
a(m0) to be this integral multiple. More generally, the ray starting at m0

and passing through p will intersect int b for a unique proper face b of c.
Let p′ be this intersection point and notice that there are positive rational
constants α and β such that

p = αm0 + βp′.

Next choose m′0 ∈ ext b. By induction, there is a map a′ : ext b → Q≥0
such that a′(m′0) > 0 and

p′ =
∑

m∈extb

a′(m) ·m.

Finally, define a(m0) = α, a(m) = β · a′(m) for m ∈ ext b, and a(m) = 0
otherwise.

Lemma 2. Let č be a maximal , strictly convex cone in MR. If S is
any finite subset of č ∩M containing ext č and x ∈ Hom(Z≥0S,k), then
suppx = S ∩ b for some face b of č.

P r o o f. Each p ∈ S is in the relative interior of exactly one face of č. If
p ∈ suppx and p ∈ int b then b∩ S is contained in suppx. Indeed, suppose
that p ∈ int b for some l-face b and p ∈ suppx. For each m0 ∈ ext b, we
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can write

p =
∑

m∈extb

a(m) ·m

with a as in Lemma 1. But x(p) 6= 0 implies, then, that x(m0) 6= 0 since all
coefficients a(m) are nonnegative and a(m0) is strictly positive. It follows
that ext b is contained in the support of x, and since any other point in
b∩S is a nonnegative rational combination of these extreme points, it must
also be an element of suppx.

Let B be the collection of all faces b such that b ∩ S ⊂ suppx. It will
suffice, then, to show that B has a unique maximal element. We will show
that if b1 ∩ S and b2 ∩ S are both in suppx, then so is b3 ∩ S where b3 is
the smallest face of č containing b1 and b2. If

(1) p1 =
∑

m∈extb1

m and p2 =
∑

m∈extb2

m

then p1 ∈ int b1, p2 ∈ int b2, and p1 + p2 ∈ int b3. For any m0 ∈ ext b3, we
can find (by Lemma 1) a : ext b3 → Q≥0 with a(m0) > 0 such that

p1 + p2 =
∑

m∈extb3

a(m) ·m.

Substituting the expressions (1) for p1 and p2, we have

(2)
∑

m∈extb1

m+
∑

m∈extb2

m =
∑

m∈extb3

a(m) ·m.

Multiplying both sides by a suitable positive integer D to clear denominators
(so that all terms of equation (2) are in the semigroup Z≥0S) and applying
x to the result gives the equation∏
m∈extb1

x(m)D
∏

m∈extb2

x(m)D = x(m0)a(m0)D
∏

m∈extb3\{m0}

x(m)a(m)D.

Since the left hand side of this equation is nonzero, x(m0) is nonzero. Re-
peating the argument for all extreme points of b3 gives ext b3 ⊂ suppx, and
using the argument of the previous paragraph, we have b3 ∩ S ⊂ suppx. It
follows that there is a unique maximal element of B.

Lemma 3. Let b be a convex cone in MR, and let R be any collection of
prime numbers. If S is any finite subset of b ∩M whose image generates
Zb⊗Zp for all p ∈ R, then for any m ∈ b∩M there exist integers b and as
(for all s ∈ S) such that

bm =
∑
s∈S

ass,

and b 6≡ 0 mod p for all p ∈ R.
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P r o o f. Let p ∈ R. Since S generates Zb ⊗ Zp, S contains a rational
basis for Zb ⊗ Q whose image is a Zp-basis for Zb ⊗ Zp. This means we
can find relatively prime integers b(p) and as(p) (with all but dim b of the
as(p)’s equal to zero) such that

(3) b(p)m =
∑

as(p)s.

Moreover, we know b(p) 6≡ 0 mod p since reducing (3) mod p would give
a nontrivial linear dependence for our Zp-basis. Do this for every p ∈ R,
and let b be the greatest common divisor of {b(p) | p ∈ R}. Then b can
be written as a Z-linear combination of the b(p)’s (finitely many since the
gcd of any set of integers is the gcd of a finite subset). Taking the same
Z-linear combination of the equations (3) gives the desired integers b and
as, for s ∈ S.

Proof of Theorem 3. Let x ∈ Hom(Z≥0S,R) and find (by Lemma 2)
an l-face b of č such that suppx = S ∩ b. We will define a unique element
y∈Uk(c) such that φ(y)=x. For m 6∈b∩M , we let y(m)=0. If m∈b∩M ,
then by Lemma 3, there exist integers b and as (s ∈ S ∩ b) such that

bm =
∑
s∈S∩b

ass

and b 6≡0 mod p for all p∈R(k). The fact that b 6≡ 0 mod p for all p ∈ R(k)
implies that every nonzero element of k has a unique bth root. Since x(s) 6= 0
for all s ∈ S ∩b, there will be a unique nonzero element y(m) ∈ k satisfying
the equation

y(m)b =
∏

s∈S∩b

x(s)as .

The function y : č ∩M → k thus defined is a semigroup homomorphism
satisfying φ(y) = x, and is the unique such semigroup homomorphism since
any y in the preimage of x must satisfy the above equation for y(m). Hence,
φ is injective.

For the converse, let p ∈ R(k) be such that S ∩ b does not generate
Zb ⊗ Zp, and let ξ be a nontrivial pth root of 1. Let x ∈ Hom(Z≥0S,k)
be the semigroup homomorphism given by x(m) = 1 for m ∈ Z≥0S ∩ b
and x(m) = 0 otherwise. The point y ∈ Uk(c), given by y(m) = 1 for all
m ∈ b∩M and y(m) = 0 otherwise, is clearly a preimage of x. We will show
that x has more than one preimage. Since the map b ∩M → Zb ⊗ Zp is
surjective while the map Z≥0S → Zb⊗Zp is not, we can find a primitive m0

in b∩M such that m0 6∈ Z≥0S and m0 is nonzero mod p. Define y′ ∈ Uk(c)
by letting y′(m) = y(m) for all m ∈ Z≥0S, y′(m0) = ξ, and choosing any
consistent extension to č ∩M . Then y and y′ are both preimages of x but
y(m0) 6= y′(m0).
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Proof of Theorem 2. Let c be a maximal cone of Σ and let µc be the
restriction of µP to Uk(c). As we said above, č is the R≥0-span of the
translated polytope P −v where v is the vertex of P dual to the cone c. Let
S be the set (P − v) ∩M . For each face b of č, the set b ∩ S is precisely
{m ∈ M | m + v ∈ σ ∩M} where σ is the face of P corresponding to b.
Moreover, the map µc factors through the natural map φ of Theorem 3,
giving the following commutative diagram:

Uk(c) Prk

Hom(Z≥0S,k)

µc //
φ

IIIIII $$ xx
xx
x
<<

Since Zσ = Zb, the hypotheses of our theorem guarantee that b ∩ S
generates Zb⊗Zp for all p∈R(k); hence, by Theorem 3, the map φ is in-
jective. But it is clear that the natural map Hom(Z≥0S,k)→ Prk is injective,
because each element of S corresponds to a distinct projective coordinate.
It follows that µc is injective.

It remains to show that if x1 and x2 are two points of Xk(Σ) with
xi ∈ Uk(ci) (for maximal cones c1 and c2 of Σ) such that µP (x1) = µP (x2),
then x1 = x2. We will show that if x2 has the same image as x1, then
x1 ∈ Im{Uk(c1 ∩ c2)→ Uk(c1)}; in other words, x1 ∈ Uk(c1)∩Uk(c2). But
then x1 and x2 are both in Uk(c2) and by the previous paragraph they must
coincide.

Let b be the common face c1 ∩ c2 and recall from the beginning of
Section 1.2 that x1 is in the image of the inclusion Uk(b) → Uk(c1) if and
only if the support of x1 (in č1∩M) is precisely the set (b⊥∩ č1)∩M . Let v1
and v2 be the vertices of P dual to the cones c1 and c2. Then x1(v2−v1) 6= 0,
since x1(v2− v1) and x2(v2− v2) = 1 are the same projective coordinate for
the point µP (x1) = µP (x2) ∈ Prk. Since v2−v1 ∈ int b⊥∩ č1, it follows from
Lemma 2 (or its proof, rather) that suppx1 = (b⊥ ∩ č1) ∩M as desired.

The proof of the converse is similar to the proof of the converse in The-
orem 3.

2.3. Topological embeddings and examples. For applications of Theo-
rem 2, we single out the cases k = R and k = C. For these fields, every
p ∈ R(k) has a nontrivial pth root of 1. Moreover, since Xk(Σ) is compact,
and Prk is Hausdorff, µP is a topological embedding if it is injective.

Corollary 1. The map µP : XC(Σ)→ PrC is a topological embedding if
and only if for every pair (v, σ), where σ is a face of P and v is a vertex
of σ, the image of {m ∈M | m+ v ∈ σ ∩M} generates the lattice Zσ.

Example. Let M = Z3, and let P be the convex hull of the set

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 1, 3)}.
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Then µP : XC(Σ) → P4
C is a topological embedding, but not an algebraic

embedding (the semigroup for the maximal cone dual to (0, 0, 0) is not gen-
erated as a semigroup by S).

Corollary 2. The map µP : XR(Σ)→ PrR is a topological embedding if
and only if for every pair (v, σ), where σ is a face of P and v is a vertex
of σ, the image of {m ∈ M | m + v ∈ σ ∩M} generates Zσ ⊗ Z2 as a
Z2-vector space.

Example 2. Let M = Z3, and let P be the convex hull of the set

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 3)}.
Then µP : XR(Σ)→ P3

R is a topological embedding while µP : XC(Σ)→ P3
C

is not.
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