
COLLOQU IUM MATHEMAT I CUM
VOL. 80 1999 NO. 2

A PALEY–WIENER THEOREM ON NA HARMONIC SPACES

BY

FRANCESCA ASTENGO AND BIANCA DI BLAS IO (TORINO)

Abstract. Let N be an H-type group and consider its one-dimensional solvable ex-
tensionNA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley–
Wiener theorem for nonradial functions on NA supported in a set whose boundary is a
horocycle of the form Na, a ∈ A.

1. Introduction. A classical problem in harmonic analysis is to charac-
terize the image under the Fourier transform of functions with given support.

The theorems concerning this subject are usually called Paley–Wiener
type theorems. Among these we recall the following classical result for the
real Fourier transform F in R

n.

Theorem A. Let f be a function in the Schwartz space S(Rn) and let

a ∈ R. The support of f is contained in the set {(x1, . . . , xn) ∈ R
n : xn ≥ a}

if and only if for every ξ′ in R
n−1 the function ξn 7→ Ff(ξ′, ξn) extends to

a holomorphic function in Im− = {ξn ∈ C : Im ξn < 0} such that

sup
(ξ′,ξn)∈Rn−1×Im−

|Ff(ξ′, ξn)|e
−a Im ξn(1 + |ξ′|+ |ξn|)

l <∞ ∀l ∈ N.

This theorem can be extended to the class of Schwartz functions whose
support is contained in a set with any hyperplane as boundary. An analogous
result was obtained by J. Faraut [F] in the case of noncompact rank one
symmetric spaces.

The purpose of this paper is to find an analogue of Theorem A in the case
of the solvable NA groups introduced by E. Damek [Da2]. Such a group is a
one-dimensional extension of a two-step nilpotent Lie group N of Heisenberg
type [Ka1], obtained by letting A = R

+ act on N by anisotropic dilations.
One can endow NA with a suitable left-invariant Riemannian metric which
makes it a harmonic manifold [DaR2]. This class of NA groups includes all
noncompact symmetric spaces G/K of rank one, where G = NAK is the
Iwasawa decomposition of the connected simply connected semisimple Lie
group G of rank one with finite center andK is a maximal compact subgroup
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of G (the real hyperbolic spaces fit into this framework as degenerate cases).
There are NA groups such that the center of the Lie algebra of N is of any
given dimension [Ka1], hence most of them are nonsymmetric spaces.

We denote by S(NA) the space of Schwartz functions on the group NA
(see Section 4 for the definition and [GV, V] for the symmetric case). Let f

be in S(NA) and denote by f̂ its Helgason–Fourier transform, defined as in
[ACD] by

f̂(λ, n) =
\

NA

f(x)Pλ(x, n) dx ∀λ ∈ R, ∀n ∈ N,

where Pλ is a complex power of the Poisson kernel (see Section 3, and see
[He] for the symmetric case).

In the context of nonsymmetric harmonic spaces we prove

Theorem B. Let f be in S(NA) and τ be a real number. The support

of f is contained in the set Eτ = {na ∈ NA : a ≥ eτ} if and only if the

following conditions hold :

(i) λ 7→ f̂(λ, n) is holomorphic in {λ ∈ C : Imλ > 0};

(ii) (λ, n) 7→ f̂(λ, n) is C∞({λ ∈ C : Imλ ≥ 0} ×N);

(iii) for every positive integer l and for 1 < p ≤ ∞,

sup
Im λ≥0

‖f̂(λ, ·)‖Lp(N)(1 + |λ|)leτ Imλ <∞.

In Section 7 we shall see that it is sufficient to verify condition (iii) for
a certain p to prove that f is supported in Eτ . Moreover, notice that the
boundary of Eτ is the orbit Neτ , which is easily seen to be a horocycle, a
generalization of a hyperplane in R

n.

The necessity part of the proof of Theorem B is fairly easy and follows
from the formula for thePoisson kernel. The sufficiency part is nontrivial and
uses the Gelfand transform of the commutative algebra L1(N)♮ of biradial
integrable functions on N . Therefore in Section 5 we describe the Gelfand
spectrum of L1(N)♮. The section generalizes to non-Iwasawa N groups the
analysis of M -invariant functions on N for the symmetric case (M is the
centralizer of A in K). Due to the lack of the group K (see [Da3]), we
exploit the theory of averaging projectors developed by Damek and F. Ricci
[DaR1]. We need a new averaging projector on the group N to analyze
biradial functions.

The proof of Theorem B is inspired by that given by Faraut [F] for an
analogous theorem in the context of rank one symmetric spaces. Instead of
condition (iii) in Theorem B, Faraut has
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(iii)′ for every positive integer l,

sup
Im λ≥0

‖∆j f̂(λ, ·)‖L1(N)(1 + |λ|)leτ Im λ <∞, j = 1, 2,

where ∆1 and ∆2 are suitable sublaplacians on N (see Section 5 for the
definition).

The technique used in Faraut’s and in our paper (with minor modifica-
tions) can be applied to extend Faraut’s result to all NA harmonic spaces.
However, Faraut uses the theory of Whittaker vectors, which we can avoid
with the help of the material of Section 5 and some results derived from
[CH].

Other results concerning Paley–Wiener type theorems on NA harmonic
spaces can be found in [ADY, Di, Ri2] for the radial case. For nonradial
C∞ functions with compact support in the symmetric case see [He]; in the
nonsymmetric case a partial result has been obtained in [ACD], but it seems
that the full characterization is nontrivial to prove.

Our paper is organized as follows: Section 2 contains some notation and
background material, and recalls the main facts used in the sequel; Sec-
tion 3 deals with the Poisson kernel and the Helgason–Fourier transform. In
Section 4 we prove the necessity part of Theorem B. In Section 5 we deter-
mine the Gelfand spectrum of L1(N)♮. In Section 6 we evaluate the Gelfand
transforms of the powers of the Poisson kernel and we find their asymp-
totic expansions. Finally, in Section 7, we complete the proof of Theorem
B, demonstrating the sufficiency of our conditions.

The authors would like to thank Jean-Philippe Anker and Fulvio Ricci
for their suggestions and comments.

2. Preliminaries. We have divided this section into two subsections to
make it more readable. The first subsection deals with groups N of Heisen-
berg type and their representations; the second one with harmonic exten-
sions NA of Heisenberg type groups.

2.1. Groups of Heisenberg type. Let n be a two-step real nilpotent Lie
algebra endowed with an inner product 〈 , 〉n. Write n as an orthogonal sum
n = v ⊕ z, where z = [n,n] is the center of n.

For each Z in z, define the map JZ : v → v by

〈JZX,Y 〉n = 〈[X,Y ], Z〉n ∀X,Y ∈ v.

Definition [Ka1]. The Lie algebra n is called an H-type algebra if, for
every Z in z,

J2
Z = −|Z|2Iv,
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where Iv is the identity on v. A connected and simply connected Lie group
N is called an H-type group if its Lie algebra is an H-type algebra.

Note that for every unit Z in z, the map JZ defines a complex structure
on v, so that v has even dimension 2m.

Since n is a nilpotent Lie algebra, the exponential map is surjective. We
can then parametrize the elements of N = expn by (X,Z), for X in v and
Z in z. By the Campbell–Hausdorff formula it follows that the product law
in N is

(X,Z)(X ′, Z ′) =
(
X +X ′, Z + Z ′ + 1

2 [X,X
′]
)

∀X,X ′ ∈ v, ∀Z,Z ′ ∈ z.

We denote by dX and dZ the Lebesgue measure on v and on z respectively;
it is easy to check that dn = dXdZ is a Haar measure on N .

The unitary irreducible representations of N fall into two classes: the
first are trivial on the center and do not appear in the Plancherel formula;
the others are parametrized by R

+ × Sz (see [CH, Ri1]), where Sz = {ω ∈
z : |ω| = 1} is the unit sphere in z.

For ω in Sz, we consider v endowed with the complex structure Jω. We
denote by Iω : v → C

m the corresponding isomorphism and by {·, ·}ω the
corresponding Hermitian inner product given by

{X,Y }ω = 〈X,Y 〉n + i〈JωX,Y 〉n ∀X,Y ∈ v.

We define Wν,ω to be the space of functions ξ : v → C such that ξ ◦ I−1
ω :

C
m → C is an entire function and

‖ξ‖2ν =
\
v

|ξ(X)|2e−ν|X|2/2 dX <∞.

Thus Wν,ω is a Hilbert space with respect to the inner product associated
with the norm ‖ ‖ν . For any multiindex j in N

m (N = {0, 1, 2, . . .}) we
denote by ℘j,ν the following homogeneous normalized polynomial:

(2.1) ℘j,ν(X) = π−m/2(ν/2)
(m+|j|)/2

(j!)−1/2(Iω(X))j ∀X ∈ v,

where |j| = j1 + . . . + jm, j! = j1! . . . jm! and ζp = ζj11 . . . ζjmm , for ζ in C
m.

One can check that the family {℘j,ν}j∈Nm is an orthonormal basis of Wν,ω.

For any ν in R
+ and any ω in Sz let πν,ω be the unitary representation

of N on Wν,ω defined, for every (X,Z) in N , by

(2.2) [πν,ω(X,Z)ξ](Y ) = e−ν(|X|2/4+{Y,X}ω/2+i〈Z,ω〉n)ξ(X+Y ) ∀Y ∈ v.

As customary the representations πν,ω can be viewed as representations
of the Banach algebra L1(N) on Wν,ω by setting

(2.3) πν,ω(f) =
\
N

πν,ω(n)f(n) dn.
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The following inversion formula holds (see [CH, Ri1]):

(2.4) f(n) =
|Sz|

(2π)Q

∞\
0

\
Sz

tr(πν,ω(f)πν,ω(n
−1))νm+k−1 ds(ω) dν

for every n in N , where |Sz| is the measure of the unit sphere Sz and ds(ω)
is the normalized surface measure thereof.

2.2. Harmonic spaces. Let NA be the semidirect product of the Lie
groups N and A = R

+ with respect to the action of A on N given by the
dilations (X,Z) 7→ (a1/2X, aZ). As customary we write (X,Z, a) for the
element na = exp(X + Z)a. It can easily be checked that the product law
in NA is given by

(X,Z, a)(X ′ , Z ′, a′) =
(
X + a1/2X ′, Z + aZ ′ + 1

2a
1/2[X,X ′], aa′

)
.

We denote by k the dimension of the center z, and by Q = m + k the
homogeneous dimension of N .

The left Haar measure on NA, unique up to a multiplicative constant,
is given by

dx = a−Q−1dXdZda = a−Q−1dnda,

where da is the Lebesgue measure on R
+.

Note that the right Haar measure is a−1dXdZda, hence the group NA
is not unimodular. This implies that the group NA has exponential volume
growth.

We endow NA with the left-invariant Riemannian structure induced by
the following inner product on the Lie algebra n⊕ R of NA:

〈(X,Z, α), (X ′ , Z ′, α′)〉 = 〈X,X ′〉n + 〈Z,Z ′〉n + αα′,

where α = log a (a ∈ A). In [DaR2] it is proved that, as a Riemannian
manifold, NA is a harmonic space [RWW]. Rank one symmetric spaces of
the noncompact type constitute a subclass of NA harmonic spaces.

In [CDKR] it is proved that the geodesic distance of x = (X,Z, a) from
the identity e of NA is

̺(x) = d(x, e) = log
1 + r(x)

1− r(x)
,

where r(x) lies in the interval (0, 1) and is given by

1− r(x)2 =
4a

(1 + a+ |X|2/4)2 + |Z|2
.

Note that

r(x) = tanh
̺(x)

2
and 1− r(x)2 =

(
cosh

̺(x)

2

)−2

.



216 F. ASTENGO AND B. DI BLASIO

We fix an orthonormal basis {H,E1, . . . , E2m, U1, . . . , Uk} adapted to the
orthogonal decomposition of the Lie algebra of NA as R ⊕ v ⊕ z and we
write X =

∑2m
j=1 xjEj and Z =

∑k
l=1 zlUl for X in v and Z in z.

We keep the same notation for the left-invariant vector fields on the
group N corresponding to the vectors E1, . . . , E2m, U1, . . . , Uk. It is easy to
check that for a smooth function f on N we have

(2.5)
Ejf(X,Z) = ∂xj

f(X,Z) +
1

2

k∑

l=1

〈JUl
X,Ej〉n∂zlf(X,Z)

Ulf(X,Z) = ∂zlf(X,Z)

for j = 1, . . . , 2m and l = 1, . . . , k.

The left-invariant vector fields extending to NA the vectors H,E1, . . .
. . . , E2m, U1, . . . , Uk are respectively given by a∂a, a

1/2E1, . . . , a
1/2E2m,

aU1, . . . , aUk.

Moreover, Damek [Da1] has proved that the Laplace–Beltrami operator
of the group NA can be written as

(2.6) L = a
2m∑

j=1

E2
j + a2

k∑

l=1

U2
l + (a∂a)

2 −Qa∂a.

3. The Poisson kernel and the Helgason–Fourier transform. For
n1 in N , define (see [Da1, CDKR]) the Poisson kernel on NA at n1 as the
function

P(·, n1) : NA→ R, na 7→ P(na, n1) = Pa(n
−1
1 n),

where, for any a > 0, Pa(n) is the function on N given by

Pa(n) = Pa(X,Z) = aQ
((

a+
|X|2

4

)2

+ |Z|2
)−Q

.

We use the following properties of the Poisson kernel:

(3.1)
LP(·, n1) = 0 ∀n1 ∈ N,

Pa(n) = a−QP1(a
−1na) ∀a ∈ A, ∀n ∈ N.

It is easy to check that level sets of the Poisson kernel and sets of the
form {na ∈ NA : a = eτ} are horocycles, that is, submanifolds orthogonal
to all geodesics with the same endpoint. Horocycles can be viewed as a
generalization of the hyperplanes in R

n, which are submanifolds orthogonal
to a fixed direction.

Define the kernel Pλ : NA×N → C by

Pλ(x, n) = [P(x, n)]1/2−iλ/Q.
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In [ACD] the authors and R. Camporesi studied the Fourier analysis of
smooth, compactly supported functions on NA. If f is such a function, we
defined its Fourier transform to be the function f̂ on C × N given by the
rule

f̂(λ, n) =
\

NA

f(x)Pλ(x, n) dx ∀λ ∈ C, ∀n ∈ N ;

we proved the following inversion formula for f in C∞
c (NA):

(3.2) f(x) =
1

4π

\
R×N

P−λ(x, n)f̂(λ, n)|c(λ)|
−2 dλ dn ∀x ∈ NA,

where c(λ) is given by

c(λ) =
2Q−2iλΓ (2iλ)Γ ((2m+ k + 1)/2)

Γ (Q/2 + iλ)Γ ((m+ 1)/2 + iλ)
.

4. The main theorem. If U and V belong to the universal enveloping
algebra U of NA, denote respectively by ULf and by V Rf the corresponding
left-invariant and right-invariant vector fields applied to a C∞ function f
on NA. Often we shall simply write Uf for ULf .

Definition. Denote by S(NA) the space of C∞ functions f on NA
such that

sup
x∈NA

eQ̺(x)/2(1 + ̺(x))h|(ULV Rf)(x)| <∞,

for every positive integer h and every U, V ∈ U .

The Schwartz spaces for the symmetric case were first defined in [HC]
and further studied in detail in [GV, V]. Note that the factor eQ̺(x)/2 com-
pensates the exponential volume growth of NA.

It can be verified that if f is a function in S(NA) then its Fourier trans-

form f̂ is well defined in {λ ∈ C : Imλ = 0} × N . Moreover, the inversion
formula (3.2) holds for f in S(NA).

We are interested in functions with support contained in sets of the type

Eτ = {na ∈ NA : a ≥ eτ}, τ ∈ R.

Note that the boundary of Eτ is a horocycle.

Definition. Let 1 < p ≤ ∞. For every real number τ denote by Hτ,p

the space of functions ψ defined on {λ ∈ C : Imλ ≥ 0} ×N such that

(i) λ 7→ ψ(λ, n) is holomorphic in {λ ∈ C : Imλ > 0};
(ii) (λ, n) 7→ ψ(λ, n) is C∞({λ ∈ C : Imλ ≥ 0} ×N);
(iii) for every positive integer h the following estimate holds:

sup
Imλ≥0

‖ψ(λ, ·)‖Lp(N)(1 + |λ|)heτ Imλ <∞.
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Theorem 4.1. Suppose that dim z = k > 1. Let f be in S(NA) and let

τ be a real number. The following conditions are equivalent :

(1) the support of f is contained in Eτ ;

(2) f̂ extends to a function belonging to Hτ,p for every p, 1 < p ≤ ∞;

(3) f̂ extends to a function belonging to Hτ,p for some p, 1 < p <
2k/(k + 1).

The proof that (1)⇒(2) is contained in Proposition 4.3 below; (2)⇒(3)
is trivial, while the implication (3)⇒(1) will be proved in Section 7.

Our method does not work in the case k = 1. This is due to the fact
that the spherical functions in Proposition 5.3 are just in L∞(N) and so
the estimate (7.3) does not make sense. However, the following lemma and
proposition cover also the case k = 1.

Lemma 4.2. If f is in S(NA) then, for every U and V in the universal

enveloping algebra U , there exists a constant c > 0 such that\
N

|(ULV Rf)(na)| dn ≤ caQ/2.

P r o o f. It is easy to check that

̺(a1/2na1/2) ≥ ̺(n) ∀a ∈ A, ∀n ∈ N.

Thus for f in S(NA),\
N

|(ULV Rf)(na)| dn =
\
N

|(ULV Rf)(a1/2na−1/2a)|aQ/2 dn

≤ c
\
N

e−Q̺(a1/2na1/2)/2(1 + ̺(a1/2na1/2))−haQ/2 dn

≤ caQ/2
\
N

e−(Q/2)̺(n)(1 + ̺(n))−h dn

= caQ/2,

for a sufficiently large integer h.

Proposition 4.3. Let f be in S(NA) and let τ be a real number. If the

support of f is contained in Eτ , then f̂ extends to a function belonging to

Hτ,p for every p, 1 < p ≤ ∞.

P r o o f. We have to check that f̂ has properties (i), (ii) and (iii) in the
definition of Hτ,p. We prove (i) by verifying that the integral

(4.1) f̂(λ, n) =
\

NA

f(x)Pλ(x, n) dx

converges uniformly for (λ, n) in {λ ∈ C : 0 ≤ Imλ ≤ λ1} × N , for every
λ1 > 0, and applying the Morera theorem. Observe that for 0 ≤ Imλ ≤ λ1
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and a > eτ , by (3.1), we have

|Pλ(na, n)| = |a−Q/2+iλP1(a
−1n−1na)1/2−iλ/Q| ≤ Ca−Q/2,

where C = max(1, e−τλ1). Let f be in S(NA) with support contained in
Eτ ; by Lemma 4.2, we obtain\

NA

|f(na)Pλ(na, n)|a
−Q−1 dn da ≤ C

\
NA

|f(na)|a−(3/2)Q−1 dn da

≤ c

∞\
eτ

a−Q−1 da.

Thus (4.1) converges uniformly in {λ ∈ C : 0 ≤ Imλ ≤ λ1} × N, for every
λ1 > 0, and (i) is proved.

In the same way we can show that (4.1) with DRf instead of f (DR

being any right-invariant differential operator on N) converges uniformly;
then also (ii) is proved.

It is easy to verify that, if 1 < p ≤ ∞ and Imλ > −Q(1− 1/p)/2, then

P
1/2−iλ/Q
a is in Lp(N) for every a in A.

Set fa(n) = f(na) for every na in NA, let 1 < p < ∞ and Imλ ≥ 0;
then by Lemma 4.2 and formula (3.1), we obtain

‖f̂(λ, ·)‖Lp(N) =
∥∥∥
\
A

fa ∗ P
1/2−iλ/Q
a a−Q−1 da

∥∥∥
Lp(N)

≤
\
A

‖fa ∗ P 1/2−iλ/Q
a ‖Lp(N)a

−Q−1 da

≤
\
A

‖fa‖L1(N)‖P
1/2−iλ/Q
a ‖Lp(N)a

−Q−1 da

=
\
A

\
N

|f(na)| dn a−Q/2−Im λaQ/p‖P
1/2−iλ/Q
1 ‖Lp(N)a

−Q−1 da

≤ c‖P
1/2
1 ‖Lp(N)

∞\
eτ

a− ImλaQ/pa−Q−1 da

≤ ce−τ Im λ.

For every nonnegative integer h, the same holds with L̂hf instead of f̂ ; hence

sup
Imλ≥0

eτ Im λ(1 + |λ|2)h‖f̂(λ, ·)‖Lp(N) = sup
Imλ≥0

eτ Im λ‖L̂hf(λ, ·)‖Lp(N) <∞.

The case p = ∞ can be handled in a similar way.

5.Biradial spherical analysis on N . LetG be a connected semisimple
Lie group with finite center and rank one. Fix an Iwasawa decomposition
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G = NAK; then N is an H-type group [Ko2]. It is well known that
(MN,M) is a Gelfand pair, where M is the centralizer of A in K.

Although for nonsymmetric NA spaces there is no compact group K
acting transitively by isometries on geodesic spheres [Da3], it is possible to
obtain an analogue of the Gelfand pair (MN,M) by using the notion of aver-
aging projector given below. This will allow us to avoid the operator-valued
Fourier transform (2.3) on N and use a scalar-valued transform instead (see
Lemma 5.4).

Let us recall some definitions first. Suppose that S is a Lie group with
left Haar measure dx. If ϕ and ψ are two functions in C∞

c (S), we write

〈ϕ,ψ〉 =
\
S

ϕ(x)ψ(x) dx,

and

ϕ ∗ ψ(y) =
\
S

ϕ(yx)ψ(x−1) dx, ϕ̌(x) = ϕ(x−1) ∀x, y ∈ S.

Definition [DaR1]. An averaging projector on the Lie group S is a
linear operator Π : C∞

c (S) → C∞
c (S) such that for every ϕ,ψ ∈ C∞

c (S) the
following properties hold:

(1) Π2 = Π;

(2) if ϕ ≥ 0, then Πϕ ≥ 0;

(3) 〈Πϕ,ψ〉 = 〈ϕ,Πψ〉;

(4)
T
S
Πϕ(x) dx =

T
S
ϕ(x) dx;

(5) Π(ϕ ∗Πψ) = (Πϕ) ∗ (Πψ);

(6) if B̺ denotes the ball centered at the identity and of radius ̺ in the
given left-invariant Riemannian structure, there exists a constant c ≥ 1 such
that

suppϕ ⊂ B̺ ⇒ suppΠϕ ⊂ Bc̺;

(7) Π extends to a bounded operator from Cn(B̺) in C
n(Bc̺) for every

integer n and every ̺ > 0.

Note that condition (6) does not depend on the Riemannian structure
chosen. In fact, it was proved in [H] that all left-invariant Riemannian
distances are equivalent. Moreover, notice that by (3) and (7) the averaging
projector Π extends to the space of locally integrable functions on NA.

We say that a function ϕ on S is Π-radial if Πϕ = ϕ. It was proved in
[DaR1] that condition (5) can equivalently be replaced by the following two
conditions:

(5a) the convolution of two Π-radial functions in C∞
c (S) is Π-radial;

(5b) if ϕ ∈ C∞
c (S) is Π-radial, then so is ϕ̌.
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Now let N be an H-type group. Damek and Ricci [DaR1, Section 3]
defined an averaging projector Π1 on N by averaging over spheres in v,
namely

Π1ϕ(X,Z) =
\
Sv

ϕ(|X|η, Z) ds(η) ∀(X,Z) ∈ N, ∀ϕ ∈ C∞
c (N),

where ds(η) is the normalized surface measure on the unit sphere Sv in v.

Here we define a slightly different operator Π, by averaging also over
spheres in the center z. Let ϕ be in C∞

c (N); we define Πϕ by the rule

Πϕ(X,Z) =
\
Sv

\
Sz

ϕ(|X|η, |Z|ω) ds(ω) ds(η) ∀(X,Z) ∈ N.

Hence a Π-radial function is a function that depends only on |X| and
|Z|; in accordance with [Ko1, CH], we will say biradial for Π-radial. Let
L1(N)♮ be the space of all biradial integrable functions on the group N .

Proposition 5.1. The operator Π is an averaging projector on N and

L1(N)♮ is a commutative Banach algebra.

P r o o f. Properties (1)–(4), (7) in the definition of averaging projector
are simple to check. As for (6), recall [Ka2] that the left-invariant distance
induced by the inner product on n between the point (X,Z) and the identity
0N depends only on |X| and |Z|, so that (6) follows.

We will prove that condition (5) holds by checking (5a) and (5b) instead.
Let ϕ be a biradial function; then (5b) is immediate, for ϕ̌ = ϕ. Now we
check (5a), by means of the partial Radon transform in the central variable,
defined as follows. For a C∞

c (N) function ϕ on N and a unit vector ω in z,
define the function Rωϕ on N/exp(ω⊥) = Nω by the rule

Rωϕ(X,λ) =
\

exp(ω⊥)

ϕ(X,λω + Z) dZ ∀X ∈ v, ∀λ ∈ R.

Note that Nω is isomorphic to the ordinary Heisenberg group Hm of di-
mension 2m+ 1 and that the function ϕ is biradial if and only if its Radon
transform Rωϕ does not depend on the vector ω but only on |X| and |λ|.

Now take two biradial functions ϕ and ψ in C∞
c (N). Since the Radon

transform maps convolution on N to convolution on Hm, we have

(5.1) Rω(ϕ ∗ ψ) = (Rωϕ) ∗Hm (Rωψ).

Since ϕ and ψ are biradial, the right hand side of (5.1) does not depend
on ω. Moreover, since on the Heisenberg group Hm convolution preserves
biradial functions, we have proved that (5a) holds.

The fact that L1(N)♮ is commutative follows easily from the commutativ-
ity of L1(Hm)♮, formula (5.1), and the injectivity of the Radon transform.



222 F. ASTENGO AND B. DI BLASIO

Let∆1 and∆2 be the left-invariant differential operators onN defined by

(5.2) ∆1 =

2m∑

j=1

E2
j and ∆2 =

k∑

l=1

U2
l ,

where the vector fields Ej and Ul are defined in (2.5). Given a smooth
biradial function ϕ on N , define the function ϕ0 on R

+ × R
+ by

ϕ0(r, s) = ϕ(X,Z) with |X|2 = r, |Z|2 = s.

Straightforward computations show that the action of the operators above
is given by

(5.3)
(∆1ϕ)(X,Z) = 4m

dϕ0

dr
(r, s) + 4r

d2ϕ0

dr2
(r, s) +

r

4
∆2ϕ(X,Z),

(∆2ϕ)(X,Z) = 2k
dϕ0

ds
(r, s) + 4s

d2ϕ0

ds2
(r, s).

Our goal now is to find the Gelfand spectrum of the commutative algebra
L1(N)♮; as proved in [DaR1, Theorem 2.5], it consists of the bounded spher-
ical functions, i.e., the bounded biradial eigenfunctions φ of all differential
operators that commute with Π normalized so that φ(0N ) = 1.

Lemma 5.2. Any left-invariant differential operator that commutes with

the averaging projector Π is a polynomial in ∆1 and ∆2.

P r o o f. By (5.3), it is clear that both ∆1 and ∆2 commute with Π.
Conversely, let D be a left-invariant differential operator such that ΠD =
DΠ. In particular, D commutes with Π1, so, by [DaR1, Theorem 3.3], D is
a polynomial in ∆1, U1, . . . , Uk:

D =
∑

α∈Nk

Pα(∆1)U
α,

where Pα is a polynomial and Uα = Uα1

1 . . . Uαk

k for α = (α1, . . . , αk).
For any A in the orthogonal group O(k) over k elements and any function

ϕ on N , define the function ϕ◦A on N by ϕ◦A(X,Z) = ϕ(X,AZ). Suppose
that ϕ is a smooth biradial function on N ; we would like to have

(5.4) (Dϕ)(X,AZ) = D(ϕ ◦ A)(X,Z) ∀(X,Z) ∈ N, ∀A ∈ O(k).

Since ∆1 commutes with Π, we have

(Dϕ)(X,AZ) =
(∑

α

Pα(∆1)U
αϕ

)
(X,AZ) =

∑

α

Pα(∆1)((U
αϕ)◦A)(X,Z)

and

D(ϕ ◦ A)(X,Z) =
∑

α

Pα(∆1)U
α(ϕ ◦ A)(X,Z).

Thus (5.4) holds if and only if D is also a polynomial in ∆2.
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Let Jz be the function defined for every x in R by the rule

Jz(x) =





Γ (z + 1)

Γ ((2z + 1)/2)Γ (1/2)

1\
−1

eixs(1− s2)(2z−1)/2 ds if z > −1/2,

cos x if z = −1/2,

and let Lα
d be the dth Laguerre polynomial of order α, i.e.,

Lα
d (x) =

d∑

j=0

(
d+ α

d− j

)
(−x)j

j!
∀x ∈ R.

If φ is a spherical function, we denote by χj its eigenvalue with respect to
the operator ∆j , i.e.

∆jφ = χjφ, j = 1, 2.

Proposition 5.3. The bounded spherical functions are

φν,d(X,Z) = e−ν|X|2/4L
m−1
d

(
1
2ν|X|2

)
(
d+m−1

d

) J(k−2)/2(ν|Z|)

with eigenvalues χ1 = −ν(2d+m) and χ2 = −ν2, and

φµ(X,Z) = Jm−1(µ|X|)

with χ1 = −µ2 and χ2 = 0, where 2m = dimv, k = dim z, ν, µ > 0 and

integer d ≥ 0.
Moreover , if k ≥ 2, then φν,d is in Lq(N) for every q > 2k/(k − 1).

P r o o f. By Lemma 5.2, it is enough to find the eigenfunctions of the
operators ∆1 and ∆2. By (5.3) and by arguments as in [Ko1], one can check
that these eigenfunctions are of the desired form.

Suppose now that dim z = k ≥ 2. Then passing to polar coordinates in v

and z and using well known estimates for Bessel functions (see, for example,
[EMOT, vol. II, p. 85, formula (3)]), we find\

N

|φν,d(X,Z)|
q dX dZ = c

∞\
0

r2m−1e−qνr2/4

∣∣∣∣L
m−1
d

(
1

2
νr2

)∣∣∣∣
q

dr

×

∞\
0

|J(k−2)/2(νs)|
qsk−1 ds

≤ c
( ν\

0

sk−1 ds+

∞\
ν

(νs)−(k−1)q/2sk−1 ds
)

≤ c
(
νk + ν−(k−1)q/2

∞\
ν

s−1+k−(k−1)q/2 ds
)
,

which is finite if q > 2k/(k − 1).
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Definition. Let ϕ be a function in L1(N)♮. We define its Gelfand

transform Gϕ by the rule

Gϕ(ν, d) =
\
N

ϕ(n)φν,d(n) dn ∀ν > 0, ∀d ∈ N.

The relation between the Gelfand transform and the group Fourier trans-
form is explained in the following lemma.

Lemma 5.4. Let πν,ω be the representation of the group N on the Hilbert

space Wν,ω defined in (2.2) and ξ any homogeneous polynomial in Wν,ω of

degree d such that ‖ξ‖ν = 1. For every function ϕ in L1(N)♮ we have

Gϕ(ν, d) = 〈πν,ω(ϕ)ξ, ξ〉ν .

P r o o f. Let ψν,ω,d be the function defined on N by ψν,ω,d(n) =
〈πν,ω(n)ξ, ξ〉ν . One can prove [CH] that

〈dπν,ω(∆1)ξ, ξ〉ν = −ν(2d+m) and 〈dπν,ω(∆2)ξ, ξ〉ν = −ν2.

Since

∆jψν,ω,d(n) = 〈πν,ω(n)dπν,ω(∆j)ξ, ξ〉ν , j = 1, 2,

we deduce that ψν,ω,d and φν,d are eigenfunctions of ∆1 and ∆2 with the
same eigenvalues. Since both functions attain the value 1 at the identity, we
have

Π(ψν,ω,d) = φν,d.

Therefore, since Πϕ = ϕ, we have

〈πν,ω(ϕ)ξ, ξ〉ν =
\
N

ϕ(n)ψν,ω,d(n) dn =
\
N

ϕ(n)Π(ψν,ω,d)(n) dn

=
\
N

ϕ(n)φν,d(n) dn = Gϕ(ν, d).

Remark. One could also check that the spherical functions φµ corre-
spond to the representations of N which are trivial on the center.

Theorem 5.5. Let ϕ be a biradial function in C∞
c (N). Then the follow-

ing inversion formula holds for all n ∈ N :

ϕ(n) =
|Sz|

(2π)Q

∞\
0

∞∑

d=0

(
d+m− 1

d

)
Gϕ(ν, d)φν,d(n)ν

Q−1 dν.

P r o o f. From the inversion formula (2.4) for the group Fourier transform
we have

ϕ(0N ) =
|Sz|

(2π)Q

∞\
0

\
Sz

tr(πν,ω(ϕ)) ds(ω) ν
Q−1 dν.

Arguing as in [HR], we can prove that, if ϕ is biradial, then the infinite-
dimensional matrix [〈πν,ω(ϕ)℘j,ν , ℘l,ν〉ν ]j,l is diagonal, where ℘j,ν are the
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homogeneous polynomials defined in (2.1). By Lemma 5.4 and since the
dimension of the space of homogeneous polynomials of degree d is

(
d+m−1

d

)
,

we have

tr(πν,ω(ϕ)) =
∑

j∈Nm

〈πν,ω(ϕ)℘j,ν , ℘j,ν〉ν

=
∞∑

d=0

∑

|j|=d

\
N

ϕ(n)〈πν,ω(n)℘j,ν , ℘j,ν〉ν dn

=

∞∑

d=0

(
d+m− 1

d

)
Gϕ(ν, d).

Therefore

ϕ(0N ) =
|Sz|

(2π)Q

∞\
0

∞∑

d=0

(
d+m− 1

d

)
Gϕ(ν, d)νQ−1 dν.

Let Λ be the left translation, i.e., Λnϕ(n1) = ϕ(n−1n1); since φν,d is a
spherical function we have G(Λn−1ϕ)(ν, d) = Gϕ(ν, d)φν,d(n

−1), so that

ϕ(n) = (Λn−1ϕ)(0N )

=
|Sz|

(2π)Q

∞\
0

∞∑

d=0

(
d+m− 1

d

)
G(Λn−1ϕ)(ν, d)νQ−1 dν

=
|Sz|

(2π)Q

∞\
0

∞∑

d=0

(
d+m− 1

d

)
Gϕ(ν, d)φν,d(n

−1)νQ−1 dν

=
|Sz|

(2π)Q

∞\
0

∞∑

d=0

(
d+m− 1

d

)
Gϕ(ν, d)φν,d(n)ν

Q−1 dν,

because φν,d(n
−1) = φν,d(n).

One could also find the Plancherel formula by applying standard argu-
ments.

6. The Fourier transform of the powers of the Poisson kernel. In
the whole section ν denotes a positive number and d a nonnegative integer. In
the previous section we have proved that the spherical function φν,d belongs
to Lq(N) for every q>2k/(k−1). Moreover, if Imλ>−(Q/2)(1−1/q′), then

P
1/2−iλ/Q
a is in Lq′(N) for every a > 0. It follows that if Imλ > −(Q/2)(1/q)

for some q > 2k/(k − 1), then, by the Hölder inequality, the function

Kν,d(a, λ) =
\
N

P 1/2−iλ/Q
a (n)φν,d(n) dn
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is well defined for every a > 0. Moreover, the function λ 7→ Kν,d(a, λ) is
holomorphic in the region {λ ∈ C : Imλ > −(Q/2)(1/q)}.

If Imλ > 0, then P
1/2−iλ/Q
a is in L1(N)♮; thus, by Lemma 5.4, we have

Kν,d(a, λ) = 〈πν,ω(P
1/2−iλ/Q
a )ξ, ξ〉ν if Imλ > 0,

for every ω in Sz and every homogeneous polynomial ξ of degree d such that
‖ξ‖ν = 1.

M. G. Cowling and U. Haagerup [CH] calculated the Fourier transform of

P
1/2−iλ/Q
1 ; using their result and the identity (3.1), for Imλ > 0 we obtain

(6.1) Kν,d(a, λ) = aQ/2−iλα(λ)ν−2iλL(ν,Q0/2− iλ+ d,Q0/2 + iλ+ d),

where

α(λ) =
(2π)m+1π(k−1)/2

Γ (Q0/2− iλ)Γ (Q/2− iλ)

and, for ν in R
+ and b, c in C, with Re b > 0 (see [EMOT, Vol. I, p. 255]),

L(ν, b, c) =

∞\
0

e−ν(2x+1)xb−1(x+ 1)−c dx.

By analytic continuation, (6.1) holds also if Imλ > −(Q/2)(1/q) for some
q > 2k/(k − 1).

Using the equality (see [CH, Proposition 3.6])

(2ν)b

Γ (b)
L(ν, b, c) =

(2ν)c

Γ (c)
L(ν, c, b) ∀b, c ∈ C,

one can easily check that, if |Imλ| < (Q/2)(1/q) for some q > 2k/(k − 1),
then

(6.2) Kν,d(a, λ) = γν,d(λ)Kν,d(a,−λ),

where

γν,d(λ) = (2ν)−2iλ c(−λ)Γ (2iλ)Γ (Q0/2− iλ+ d)

c(λ)Γ (−2iλ)Γ (Q0/2 + iλ+ d)
.

Note that γν,d is holomorphic in {λ ∈ C : Imλ < 0}. Thus by analytic
continuation (6.2) holds for every λ in C and the function λ 7→ Kν,d(a, λ) is
entire.

We have just proved the following

Lemma 6.1. For every positive number a, the function Kν,d(a, ·) contin-
ues analytically to an entire function.

The factor γν,d(λ) is essentially the Fourier transform of the convolution
kernel Aλ associated with the intertwining operator between the represen-
tations whose coefficients are the spherical functions as in [ADY, DoZ]. For-
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mula (6.2) is equivalent to Aλ ∗P
1/2−iλ/Q
1 = P

1/2+iλ/Q
1 , read on the Fourier

transform side.
We now find an asymptotic expansion for Kν,d(·, λ).

Lemma 6.2. For every complex number λ the function Kν,d(·, λ) is a

solution of the differential equation

(6.3) a2u′′(a) + (1−Q)au′(a)− (ν(2d+m)a+ ν2a2)u(a)

= −(λ2 +Q2/4)u(a).

P r o o f. By (2.6) the Laplace–Beltrami operator L on NA can be written
in the form

L = a2∂2a + (1−Q)a∂a + a∆1 + a2∆2,

where ∆1 and ∆2 are the differential operators on N defined by (5.2). We
know by Proposition 5.3 that

∆1φν,d = −ν(2d+m)φν,d and ∆2φν,d = −ν2φν,d.

Moreover, setting Ψλ(na) = P
1/2−iλ/Q
a (n), we have

LΨλ = −(λ2 +Q2/4)Ψλ.

Therefore

−(λ2 +Q2/4)Kν,d(a, λ)

=
\
N

LΨλ(na)φν,d(n) dn

=
\
N

[(a2∂2a + (1−Q)a∂aΨλ)(na)φν,d(n)

+ Ψλ(na)((a∆1 + a2∆2)φν,d)(n)] dn

= (a2∂2a + (1−Q)a∂a)Kν,d(a, λ)− (a2ν(2d+m) + aν2)Kν,d(a, λ).

Lemma 6.3. For 2iλ not being a positive integer , define

Iν,d(a, λ) = aQ/2−iλ
∞∑

l=0

βl(λ)a
l, a > 0,

where β−1(λ) = 0, β0(λ) = 1, and , for l ≥ 1, βl(λ) is given by the recursion

formula

(6.4) l(l − 2iλ)βl(λ)− ν(2d+m)βl−1(λ)− ν2βl−2(λ) = 0.

Then the function Iν,d(·, λ) is a solution of the differential equation (6.3).
Moreover , the function λ 7→Iν,d(a, λ) is holomorphic in {λ∈C : Imλ>0}.

P r o o f. Let v(t) = u(et). Then the equation (6.3) takes the form

v′′ −Qv′ − (etν(2d+m) + e2tν2)v = −(λ2 +Q2/4)v.
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If w(t) = e−(Q/2−iλ)tv(t) then

(6.5) w′′ − 2iλw′ − (etν(2d+m) + e2tν2)w = 0.

We try to find a solution to (6.5) of the form
∑∞

l=0 βl(λ)e
lt. Differentiating

term by term in the series and substituting into (6.5) we find the recursion
formula (6.4). By induction on l one can prove that, if 2iλ is not a positive
integer, then there exists a constant Mλ > 0, depending on λ, such that

|βl(λ)| ≤M l
λ/l! ∀λ ≥ 0.

It follows that the series
∑∞

l=0 βl(λ)e
lt converges uniformly in {t ∈ R : t ≤ τ}

for every real number τ , so that the term by term differentiation is justified.

By induction on l one can also verify that

(6.6) |βl(λ)| ≤ σl/l! if Imλ ≥ 0, ∀l ≥ 0,

where σ = max(ν(2d +m), ν2, 1). Hence the series
∑∞

l=0 βl(λ)a
l converges

uniformly in {λ ∈ C : Imλ ≥ 0} × {λ ∈ R : a ≤ eτ}, for every real number
τ , and Iν,d(a, ·) is holomorphic in the region {λ ∈ C : Imλ > 0}.

Using the identity

∞\
0

(1 + t)−p−qtp−1 dt =
Γ (p)Γ (q)

Γ (p+ q)

one can check that\
N

P
1/2−iλ/Q
1 (n) dn = c(−λ)

π(2m+k+1)/2

2k−1Γ ((2m+ k + 1)/2)
.

For the sake of brevity write

cm,k =
π(2m+k+1)/2

2k−1Γ ((2m+ k + 1)/2)
.

Lemma 6.4. We have

Kν,d(a, λ) = cm,k[c(−λ)Iν,d(a,−λ) + c(λ)γν,d(λ)Iν,d(a, λ)]

for every a > 0 and for every complex number λ.

P r o o f. If 2iλ is not an integer then Iν,d(·,−λ) and Iν,d(·, λ) are two
independent solutions of the differential equation (6.5); it follows that Kν,d

can be written in the form

Kν,d(a, λ) = B1(λ)Iν,d(a,−λ) +B2(λ)Iν,d(a, λ).

We have to compute B1(λ) and B2(λ). By the Lebesgue dominated conver-
gence theorem we obtain
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lim
a→0+

a−Q/2−iλKν,d(a, λ) =
\
N

P
1/2−iλ/Q
1 (n) lim

a→0+
φν,d(ana

−1) dn

=
\
N

P
1/2−iλ/Q
1 (n) dn

= c(−λ)
π2m+k+1

2k−1Γ ((2m+ k + 1)/2)
= c(−λ)cm,k.

Therefore, using the identity (6.2), when 2iλ is not an integer and Imλ > 0,
we have

B1(λ) = cm,kc(−λ) and B2(λ) = cm,kc(λ)γν,d(λ).

Finally, the equality of the lemma holds for every complex number λ because
Kν,d(a, ·) is an entire function.

7. Proof of Theorem 4.1

Proposition 7.1. Let f be in S(NA) and let f̂ be in Hτ,p for some p,
1 < p < 2k/(k + 1). If dim z = k > 1, then the support of f is contained

in Eτ .

P r o o f. It is enough to prove that under the above hypotheses we have

(7.1) f(a) = 0 if a < eτ .

In fact, to prove that f(na) = 0 when a < eτ we consider the function

Λn−1f(na) = f(nna). Since ̂Λn−1f(λ, n) = f̂(λ, nn), also ̂Λn−1f is in Hτ,p.
Thus Λn−1f(a) = 0 if a < eτ .

For a in A, define fa to be the function on N given by

fa(n) = f(na) ∀n ∈ N

and, with a slight abuse of notation, let Πf be the function on NA given
by

Πf(na) = (Πfa)(n) ∀na ∈ NA.

By the Fubini theorem, by property (5) in the definition of the averaging
projector, and since Pa is biradial, we have

Πf̂(λ, ·) = Π
(∞\

0

fa ∗ P
1/2−iλ/Q
a a−Q−1 da

)

=

∞\
0

Π(fa ∗ P
1/2−iλ/Q
a )a−Q−1 da

=

∞\
0

(Πfa) ∗ P
1/2−iλ/Q
a a−Q−1 da = Π̂f(λ, ·).
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Since an averaging projector is a norm-decreasing operator on Lp (see [DaR1,

Proposition 1.3]), if f̂ is in Hτ,p, then also Π̂f is in Hτ,p.

Therefore, since f(a) = fa(0N ) = Πfa(0N ), to prove (7.1) we may and
will suppose that fa is biradial. Note also that for every λ in R the func-

tion f̂(λ, ·) =
T∞
0
fa ∗ P

1/2−iλ/Q
a a−Q−1da is biradial, as fa and Pa are both

biradial.

We will show that if a < eτ then

〈fa, φν,d〉 = 0 ∀ν > 0, d = 0, 1, 2, . . .

Hence by Theorem 5.5 we will obtain fa ≡ 0.

Define

Fν,d(a) =
\
N

f(na)φν,d(n) dn and F̂ν,d(λ) =
\
N

f̂(λ, n)φν,d(n) dn.

Let q be the conjugate exponent of p, i.e. 1/p + 1/q = 1. Note that if
1 < p < 2k/(k + 1), then q > 2k/(k − 1); hence the last integral con-
verges because of Proposition 5.3 and condition (iii) in the definition of the
space Hτ,p.

If Imλ = 0 we get

F̂ν,d(λ) =
\
N

\
A

fa ∗ P
1/2−iλ/Q
a (n)a−Q−1 daφν,d(n) dn

=
\
A

〈fa ∗ P
1/2−iλ/Q
a , φν,d〉a

−Q−1 da

=
\
A

〈fa, φν,d〉〈P
1/2−iλ/Q
a , φν,d〉a

−Q−1 da

=
\
A

Fν,d(a)Kν,d(a, λ)a
−Q−1 da.

Thus by (6.2),

F̂ν,d(λ) = γν,d(λ)F̂ν,d(−λ), Imλ = 0.

By the inversion formula (3.2) and by Lemma 6.4 we have

Fν,d(a) =
1

4π

\
N

∞\
−∞

\
N

f̂(λ, n′)P 1/2+iλ/Q
a (n′−1

n)φν,d(n) dn |c(λ)|
−2 dλ dn′

=
1

4π

∞\
−∞

〈f̂(λ, ·) ∗ P 1/2+iλ/Q
a , φν,d〉|c(λ)|

−2 dλ
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=
1

4π

∞\
−∞

〈f̂(λ, ·), φν,d〉〈P
1/2+iλ/Q
a , φν,d〉|c(λ)|

−2 dλ

=
1

4π

∞\
−∞

F̂ν,d(λ)Kν,d(a,−λ)|c(λ)|
−2 dλ

=
cm,k

4π

∞\
−∞

F̂ν,d(λ)[c(−λ)
−1Iν,d(a, λ) + c(λ)−1γν,d(−λ)Iν,d(a,−λ)] dλ.

Therefore, by (6.2),

(7.2) Fν,d(a) =
cm,k

2π

∞\
−∞

F̂ν,d(λ)Iν,d(a, λ)c(−λ)
−1 dλ.

Since f̂ is inHτ,p, the function F̂ν,d is holomorphic in {λ ∈ C : Imλ > 0}.
By the Hölder inequality, if Imλ ≥ 0, then for every nonnegative integer l
there exists a constant c (depending on ν, d and l) such that

|F̂ν,d(λ)| ≤
\
N

|f̂(λ, n)φν,d(n)| dn(7.3)

≤ ‖f̂(λ, ·)‖Lp(N)‖φν,d‖Lq(N) ≤ c(1 + |λ|2)−le−τ Imλ.

By Lemma 6.3 the function Iν,d(a, ·) is holomorphic in {λ ∈ C : Imλ > 0};
moreover, by (6.6) there exists a constant c (depending on ν and d) such
that

(7.4) |Iν,d(a, λ)| ≤ caQ/2+Im λ ∀a < eτ , Imλ ≥ 0.

Finally, the function λ 7→ c(−λ)−1 is meromorphic with simple poles at
λ = −i(Q/2 + l), l = 0, 1, . . . , and there exists a constant c′ such that

(7.5) c(−λ)−1 ≤ c′(1 + |λ|2)Q.

Therefore we can shift the integration in (7.2), obtaining, for every b > 0,

Fν,d(a) =
cm,k

2π

∞\
−∞

F̂ν,d(λ+ ib)Iν,d(a, λ+ ib)c(−λ − ib)−1 dλ.

Thus, by (7.3)–(7.5), we get

|Fν,d(a)| ≤ caQ/2+be−τb
∞\
−∞

(1 + λ2 + b2)Q−l dλ ≤ caQ/2(e−τa)b

for every positive integer l > Q+ 1.

For a < eτ , letting b→ ∞, we obtain Fν,d(a) = 0.
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