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MAPPING PROPERTIES OF c0

BY

PAUL L E W I S (DENTON, TEX.)

Abstract. Bessaga and Pe lczyński showed that if c0 embeds in the dual X∗ of a
Banach space X, then ℓ1 embeds as a complemented subspace of X. Pe lczyński proved
that every infinite-dimensional closed linear subspace of ℓ1 contains a copy of ℓ1 that is
complemented in ℓ1. Later, Kadec and Pe lczyński proved that every non-reflexive closed
linear subspace of L1[0, 1] contains a copy of ℓ1 that is complemented in L1[0, 1]. In this
note a traditional sliding hump argument is used to establish a simple mapping property
of c0 which simultaneously yields extensions of the preceding theorems as corollaries.
Additional classical mapping properties of c0 are briefly discussed and applications are
given.

All Banach spaces in this note are defined over the real field. The canon-
ical unit vector basis of c0 will be denoted by (en), the canonical unit vector
basis of ℓ1 will be denoted by (e∗n), and a continuous linear transformation
will be referred to as an operator. The reader is referred to Diestel [3] or
Lindenstrauss and Tzafriri [8] for undefined notation and terminology.

Theorem 1. If T : c0 → X is an operator and (x∗
k) is any bounded

sequence in X∗ so that
∞
∑

k=1

|x∗
k(T (enk

)) − 1| < ∞

for some subsequence (T (enk
)) of (T (en)), then there is a sequence (w∗

i ) in

{x∗
k − x∗

j : k, j ∈ N} so that (w∗
i ) is equivalent to (e∗i ) as a basic sequence

and [w∗
i ] is complemented in X∗.

P r o o f. Let (bk) = T (enk
) for k ∈ N, let C be a positive number so that

C > 1 and ‖T (x)‖ ≤ C‖x‖ for all x, and choose B > 1 so that

2 sup ‖x∗
n‖ < B.

Without loss of generality, suppose that

|x∗
n(bn) − 1| <

1

BC · 2n+4
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for each n. Further, since (bn) is weakly null, suppose that

(1)
n−1
∑

i=1

|x∗
i (bn)| <

1

BC · 2n+5

for each n. Now let r1 = 1, r2 = 2, and choose r3 and r4 so that r2 < r3 < r4
and

|(x∗
r4

− x∗
r3

)(br2)| <
1

BC · 21+5
.

Next choose r5 and r6 so that r4 < r5 < r6 and

(2)
|(x∗

r6
− x∗

r5
)(br2)| <

1

BC · 22+5
,

|(x∗
r6

− x∗
r5

)(br4)| <
1

BC · 22+5
.

An additional step clarifies the induction process. Choose r7 and r8 so that
r6 < r7 < r8 and

(3)

|(x∗
r8

− x∗
r7

)(br2)| <
1

BC · 23+5
,

|(x∗
r8

− x∗
r7

)(br4)| <
1

BC · 23+5
,

|(x∗
r8

− x∗
r7

)(br6)| <
1

BC · 23+5
.

Continue this construction inductively, and let un = br2n and z∗n = x∗
r2n

for
each n. Note that

|z∗i (un) − x∗
r2i−1

(un)| <
1

BC · 2i+4

for n < i. Further,

|z∗n(un) − 1| <
1

BC · 2n+4
and

n
∑

i=1

|z∗i (un+1)| <
1

BC · 2(n+1)+5

for each n.

Next let w∗
n = z∗n − x∗

r2n−1
= x∗

r2n
− x∗

r2n−1
for n ∈ N. Then

|w∗
n(un) − 1| ≤ |z∗n(un) − 1| + |x∗

r2n−1
(un)|

<
1

BC · 2n+4
+

1

BC · 2n+5
=

3

BC
·

1

2n+1
·

1

24
.

Also, ‖x∗
n‖ ≤ B for each n.

Now suppose that q ∈ N and ti is a non-zero real number for 1 ≤ i ≤ q.
If εi = sgn(tiw

∗
i (ui)), then
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q
∑

i=1

tiw
∗
i (εiu1) ≥ |t1w

∗
1(u1)| −

q
∑

i=2

|w∗
i ti(u1)|

≥ |t1|

(

1 −
3

BC
·

1

22
·

1

24

)

−

(

|t2|

BC · 21+5
+ . . . +

|tq|

BC · 2(q−1)+5

)

.

Further,
q

∑

i=1

tiw
∗
i (ε2u2)

= |t2w
∗
2(u2)| −

q
∑

i=1,i 6=2

tiw
∗
i (ε2u2)

≥ |t2|

(

1 −
3

BC
·

1

23
·

1

24

)

−

(

|t1|
1

BC
·

1

22+5
+ |t3|

1

BC
·

1

22+5
+ . . . + |tq|

1

BC
·

1

2(q−1)+5

)

.

(Observe that

|w∗
1(u2)| = |(x∗

2 − x∗
1)(br4)| ≤ |x∗

2(br4)| + |x∗
1(br4)|

<
1

BC · 2r4+5
+

1

BC · 2r4+5
<

1

BC · 22+5

from (1). Also,

|w∗
3(u2)| = |(x∗

r6
− x∗

r5
)(br4)| ≤

1

BC · 22+5

from (2), and

|(x∗
r8

− x∗
r7

)(br4)| <
1

BC · 23+5

from (3).)
In general,

〈

q
∑

i=1

εiui,

q
∑

n=1

tnw
∗
n

〉

≥ |t1|

(

1 −
3

BC
·

1

22
·

1

24

)

− |t1|

(

1

BC · 2r4+5
+

1

BC · 2r6+5
+ . . . +

1

BC · 2r2q+5

)

+ |t2|

(

1 −
3

BC
·

1

23
·

1

24

)
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− |t2|

(

1

BC · 22+4
+

1

BC · 2r6+5
+ . . . +

1

BC · 2r2q+5

)

+ |t3|

(

1 −
3

BC
·

1

24
·

1

24

)

− |t3|

(

2
1

BC · 23+4
+

1

BC · 2r8+5
+

1

BC · 2r10+5
+ . . . +

1

BC · 2r2q+5

)

+ |t4|

(

1 −
3

BC
·

1

25
·

1

24

)

− |t4|

(

3
1

BC · 24+4
+

1

BC · 2r10+5
+ . . . +

1

BC · 2r2q+5

)

+ . . .+

+ |tq|

(

1 −
3

BC
·

1

2q+1
·

1

24

)

− |tq |

(

q − 1

BC · 2q+4

)

.

Note that
3

BC · 2224
+

1

BC · 2r4+5
+ . . . +

1

BC · 2r2q
≤

2

BC · 24
,

3

BC · 2324
+

1

BC · 22+4
+

1

BC · 2r6+5
+ . . . +

1

BC · 2r2q+5
≤

2

BC · 24
,

. . .

3

BC · 2q+124
+

q − 1

BC · 2q+4
≤

2

BC · 24
.

Consequently,

〈

q
∑

i=1

εiui,

q
∑

n=1

tnw
∗
n

〉

≥
(

q
∑

i=1

|ti|
)

(

1 −
2

BC · 24

)

> 0.

Thus
∑q

i=1 εiui 6= 0, and

∥

∥

∥

q
∑

i=1

tiw
∗
i

∥

∥

∥
≥

(

1
/∥

∥

∥

q
∑

i=1

εiui

∥

∥

∥

)〈

q
∑

i=1

εiui,

q
∑

n=1

tnw
∗
n

〉

≥
(

q
∑

i=1

|ti|
)

((

1 −
1

BC · 23

)

c−1

)

.

Hence
((

1 −
1

BC · 23

)

c−1

)

(

q
∑

i=1

|ti|
)

≤
∥

∥

∥

q
∑

i=1

tiw
∗
i

∥

∥

∥
≤ B

q
∑

i=1

|ti|,

and (w∗
i ) ∼ (e∗i ).

Next we show that [w∗
n] is complemented in X∗. Suppose that v∗ =

∑∞
n=1 tnw

∗
n, and let U : X∗ → [w∗

n] be defined by
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U(x∗) =
∑

n

x∗(un)w∗
n.

Since (un) is a subsequence of (bk) and
∑

bk is weakly unconditionally con-
vergent, it is clear that U is well defined, continuous, and linear. Now observe
that

‖v∗ − U(v∗)‖

=
∥

∥

∥

∑

tnw
∗
n −

∑

tnU(w∗
n)
∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

tnw
∗
n −

∞
∑

n=1

tn

(

∞
∑

k=1

w∗
n(uk)w∗

k

)∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

tnw
∗
n −

∞
∑

n=1

tnw
∗
n(un)w∗

n −

∞
∑

n=1

tn

(

∞
∑

k=1, k 6=n

w∗
n(uk)w∗

k

)
∥

∥

∥

≤

∞
∑

n=1

|tn| · |1 −w∗
n(un)| · ‖w∗

n‖ +

∞
∑

n=1

|tn|
(

∞
∑

k=1, k 6=n

|w∗
n(uk)|B

)

≤

∞
∑

n=1

|tn|
(

sup
k

{

|1 − w∗
k(uk)| +

∞
∑

i=1, i 6=k

|w∗
k(ui)|

})

B.

Also,
∞
∑

n=1

|tn| ≤
c

1 − 1
BC·23

‖v∗‖.

Further,

sup
k

|1 − w∗
k(uk)| ≤

3

BC · 2224
,

and ‖w∗
k‖ ≤ B for each k.

Next note that
∞
∑

k=2

|w∗
1(uk)| =

∞
∑

k=2

|(x∗
2 − x∗

1)(uk)|

= |(x∗
2 − x∗

1)(T (er4))| + |(x∗
2 − x∗

1)(T (er6))| + . . .

≤ (|x∗
2T (er4)| + |x∗

1T (er4)|) + (|x∗
2T (er6)| + |x∗

1T (er6)|) + . . .

<
1

BC · 2r4+5
+

1

BC · 2r6+5
+ . . . <

1

BC · 2r4+4
<

1

BC · 24
.

A similar argument shows that
∞
∑

i=1, i 6=k

|w∗
k(ui)| <

1

BC · 24
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for each k. Thus

‖v∗ − U(v∗)‖ ≤
c

1 − 1
BC·23

‖v∗‖

(

3

BC · 2224
+

1

BC · 24

)

B <
1

7
‖v∗‖.

If U1 = U|[w∗

i
], then ‖Identity−U1‖|[w∗

i
] < 1, and U1 is invertible on [w∗

i ]. It

is easy to see that U−1
1 U is a projection from X∗ onto [w∗

i ].

Remark. (a) The operator T : c0 → X satisfies the hypotheses of
Theorem 1 if and only if lim inf ‖T (en)‖ > 0. H. Rosenthal [11] has given a
penetrating study of the situation in which T : ℓ∞(Γ ) → X is an operator
so that infγ∈Γ ‖T (eγ)‖ > 0.

(b) If (x∗
k) is w∗-null, the proof of Theorem 1 makes it clear that we may

choose the sequence (w∗
i ) in the conclusion of the theorem to be w∗-null.

As the following corollaries indicate, Theorem 1 unifies and extends sev-
eral classical results.

Corollary 2 ([1, Thm. 4], [3, p. 48]). If c0 embeds isomorphically in

the dual X∗ of the Banach space X, then X contains a copy of ℓ1 which is

complemented (in X∗∗ and thus) in X.

P r o o f. If T : c0 → X∗ is an isomorphism, then let (xn) be a bounded
sequence in X (⊆ X∗∗) so that

∑∞
n=1 |xn(T (en))−1| = 0. Apply Theorem 1

to the sequence (xn).

Corollary 3 ([10], [3, p. 72]). If ℓ1 is a quotient of X, then X contains

a copy of ℓ1 which is complemented in X∗∗.

P r o o f. If T : X → ℓ1 is a surjective operator, then T ∗ : ℓ∞ → X∗ is an
isomorphism. Hence T ∗

|c0
is an isomorphism.

If Σ is a σ-algebra, (µn) is a bounded sequence in cabv(Σ,X), and
0 < ε < δ, then (µn) is said to be (δ, ε)-relatively disjoint [11] if there is a
pairwise disjoint sequence (An) in Σ so that

|µn|(An) > δ and

∞
∑

m=1,m 6=n

|µn|(Am) < ε

for each n. Further, (µn) is said to be relatively disjoint if it is (δ, ε)-relatively
disjoint for some pair (δ, ε). Rosenthal [11] and Kadec and Pe lczyński [7]
showed that if (µn) is a relatively disjoint sequence in cabv(Σ,X), then
(µn) ∼ (e∗n) and [µn] is complemented in cabv(Σ,X).

If A is an algebra of subsets of Ω, then fabv(A,X) denotes the Banach
space (total variation norm) of all finitely additive set functions m : A → X
which have finite variation. Both [4] and [6] contain an extensive discussion
of spaces of measures. In addition, we note that [4] includes a detailed
presentation of results related to the Radon–Nikodym property. Note that



MAPPING PROPERTIES OF c0 241

part (i) of Corollary 4 below contains an extension of Proposition 3.1 of [11]
to the setting of finitely additive set functions defined on an algebra of sets.
Further, we remark that in a classic paper Kadec and Pe lczyński [7, Theo-
rem 6] showed that if Y is any non-reflexive closed linear subspace of L1[0, 1],
then Y contains a copy of ℓ1 which is complemented in L1[0, 1]. Part (v)
of the next corollary shows that if X and X∗ have the Radon–Nikodym
property, then any non-reflexive closed linear subspace of L1(µ,X) contains
a copy of ℓ1 which is complemented in L1(µ,X).

Corollary 4. (i) If (µn) is any bounded sequence in fabv(A,X) for

which there is a pairwise disjoint sequence (An) in A and an ε > 0 so that

|µn|(An) > ε

for each n, then there is a sequence (νi) in {µn − µk : k, n ∈ N} so that

(νi) ∼ (e∗i ) and [νi] is complemented in fabv(A,X).
(ii) If K is a relatively weakly compact subset of fabv(A,X) and (Ai)

is a pairwise disjoint sequence of members of A, then limi |µ|(Ai) = 0 uni-

formly for µ ∈ K.

(iii) If K is a relatively weakly compact subset of cabv(Σ,X), then

{|µ| : µ ∈ K} is uniformly countably additive.

(iv) If µ is a finite positive measure on Σ and K is a relatively weakly

compact subset of the space L1(µ,X) of Bochner integrable functions, then
K is uniformly integrable.

(v) If Y is a closed linear subspace of fabv(A,X), Y is not reflexive,
and X and X∗ have the Radon–Nikodym property , then Y contains a copy

of ℓ1 which is complemented in fabv(A,X).

P r o o f. (i) For each n let (Ani
)kn

i=1 be a partition of An and (x∗
ni

)kn

i=1 be
points in the unit ball of X∗ so that

kn
∑

i=1

x∗
ni
µn(Ani

) > ε.

Now define the X∗-valued simple function sn by

sn =

kn
∑

i=1

χAni
x∗
ni
,

and observe that
T
sn dµn > ε. Define T : c0 → fabv(A,X)∗ by

T ((γn)) =
∑

n

γnsn.

Then T is an operator. Normalize and use Theorem 1 to conclude that some
sequence (νi) in {µn − µk : n, k ∈ N} is equivalent to (e∗n) and that [νn] is
complemented in fabv(A,X).
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(ii) Suppose that ε > 0 and (µi) is a sequence in K so that |µi|(Ai) > ε
for each i. Part (i) ensures that (e∗n) is equivalent to some sequence in K−K.
However, this is impossible since K −K is relatively weakly compact.

(iii) Since each member of K is a countably additive measure on a
σ-algebra, |K| = {|µ| : µ ∈ K} is uniformly countably additive if and only
if limi |µ|(Ai) = 0 uniformly for µ ∈ K whenever (Ai) is a pairwise disjoint
sequence from Σ. Deny the uniform countable additivity of |K|, repeat the
same construction as in (i), and obtain the same contradiction as in (ii).

(iv) If f ∈ L1(µ,X) and A ∈ Σ, put

νf (A) =
\
A

f dµ.

It is well known that limµ(A)→0 |νf |(A) = 0 uniformly for f ∈ K (i.e., K is
uniformly integrable) if and only if {|νf | : f ∈ K} is uniformly countably
additive. Appeal to (iii).

(v) If Y is not reflexive, then BY is not relatively weakly compact in
fabv(A,X). By Theorem 4.1 of Brooks and Dinculeanu [2], there is a pairwise
disjoint sequence (Ai) in A, an ε > 0, and a sequence (µi) in BY so that
|µi|(Ai) > ε for each i. The construction in (i) above shows that Y contains
a copy of ℓ1 which is complemented in fabv(A,X).

In the following corollary, P denotes the σ-algebra of all subsets of N.

Corollary 5 ([9, Lemma 2], [3, p. 74]). Every infinite-dimensional

closed linear subspace of ℓ1 contains a copy of ℓ1 which is complemented in

fabv(P) and thus in ℓ1.

P r o o f. Every infinite-dimensional subspace of ℓ1 is non-reflexive.

Corollary 6 ([4, p. 149]). If (Ω,Σ, µ) is a finite measure space and

X∗ is a quotient of L∞(µ), then either X is reflexive or X contains a copy

of ℓ1 which is complemented in X∗∗. Consequently , if X∗∗ is contained in

L1(µ), then X is reflexive or ℓ1 is a complemented subspace of X.

P r o o f. If T : L∞(µ) → X∗ is a surjection and X is not reflexive, then
T is not weakly compact. Hence T is not unconditionally converging and
is an isomorphism on a copy of c0. Thus X contains a copy of ℓ1 which is
complemented in X∗∗.

If L : X∗∗ → L1(µ) is an isomorphism, then L∗ : L∞(µ) → X∗∗∗ is a
surjection, X∗ is a quotient of L∞(µ), and X is reflexive or X contains a
complemented copy of ℓ1.

If T : c0 → X is an isomorphism, classical techniques of Singer [13] can
be used to easily produce complemented copies of both c0 and ℓ1.

Theorem 7. If T : c0 → X is an isomorphism, (f∗
n) is any bounded

sequence in X∗ so that



MAPPING PROPERTIES OF c0 243

f∗
n(T (em)) = δnm,

and (h∗
k) is any subsequence of (f∗

n), then [h∗
k] is complemented in X∗.

Further , if (h∗
k) is w∗-null in X∗ and (yk) is the corresponding subsequence

of (T (en)), then [yk] is complemented in X.

P r o o f. Suppose that T, (f∗
n), and (h∗

k) are as in the first statement in the
theorem. Let C be a bound for (‖f∗

n‖), let (y∗k) be the sequence of coefficient
functionals for the basic sequence (yk) (which is equivalent to (ek)), and
choose positive numbers A and B so that

A
∑

|αi| ≤
∥

∥

∥

∑

αiy
∗
i

∥

∥

∥
≤ B

∑

|αi|

for each finite sequence (α1, . . . , αm) of real numbers. Therefore

A
∑

|αi| ≤
∥

∥

∥

∑

αih
∗
i|[yn]

∥

∥

∥
≤

∥

∥

∥

∑

αih
∗
i

∥

∥

∥
≤ C

∑

|αi|.

As noted on p. 91 of Singer [13],

{

f∗ ∈ X∗ :
∞
∑

k=1

f∗(yk)h∗
k converges

}

= [yk]⊥ + [h∗
k].

Since (yk) ∼ (ek) and (h∗
k) ∼ (e∗k), we have [yk]⊥ + [h∗

k] = X∗. Further, if
(h∗

k) is w∗-null, then

{

x ∈ X :

∞
∑

k=1

h∗
k(x)yk converges

}

= [yk] + [h∗
k]⊥ = X.

Consequently, each of these direct sums is closed. Straightforward closed
graph arguments show that these direct sums are also topological.

We remark that if X is separable (and T and (f∗
n) have the same meaning

as in the statement of Theorem 7), then Veech’s proof [15] of Sobczyk’s
theorem [14], [3, p. 71] simply shows that there is a bounded sequence (g∗n) in
[T (en))]⊥ so that (f∗

n−g∗n) is w∗-null. Certainly (T (en), f∗
n−g∗n) is biorthog-

onal in this case.
The next corollary shows that a result of Saab and Saab [12] dealing

with complemented copies of c0 in injective tensor products is an immediate
consequence of Theorem 7. Chapter 8 of [4] contains an excellent discussion
of the least crossnorm tensor product completion of Banach spaces.

Corollary 8 ([12]). If X contains a copy of c0, Y is an infinite-dimen-

sional Banach space and Z = X ⊗λ Y is the least crossnorm tensor product

completion of X and Y , then Z contains a complemented copy of c0.

P r o o f. Let (xn) be a sequence in X so that (xn) ∼ (en), let (x∗
n) be

a bounded sequence in X∗ so that x∗(xm)= δnm, and let (y∗n) be a w∗-null
sequence in Y ∗ so that ‖y∗n‖ = 1 for each n. (The Josefson–Nissenzweig
Theorem [3] guarantees the existence of (y∗n).) Choose a sequence (yn) in Y
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so that ‖yn‖ ≤ 3/2 and yn(y∗n) = 1 for each n. Then (x∗
n ⊗ y∗n) is a w∗-null

sequence in Z∗, (xn ⊗ yn) ∼ (en), and x∗
n ⊗ y∗n(xm ⊗ ym) = x∗

n(xn)y∗n(ym)
= δnm. Now appeal to Theorem 7.

We note that precisely the same argument yields the next result.

Corollary 9. If the Banach space X contains a copy of c0 and Y is

an infinite-dimensional space, then the Banach space K(X∗, Y ) of compact

operators from X∗ to Y contains a complemented copy of c0.
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