COLLOQUIUM MATHEMATICUM

VOL. 80

1999

NO. 2

MAPPING PROPERTIES OF c_0

BY

PAUL LEWIS (DENTON, TEX.)

Abstract. Bessaga and Pelczyński showed that if c_0 embeds in the dual X^* of a Banach space X, then ℓ^1 embeds as a complemented subspace of X. Pelczyński proved that every infinite-dimensional closed linear subspace of ℓ^1 contains a copy of ℓ^1 that is complemented in ℓ^1 . Later, Kadec and Pelczyński proved that every non-reflexive closed linear subspace of $L^1[0, 1]$ contains a copy of ℓ^1 that is complemented in $L^1[0, 1]$. In this note a traditional sliding hump argument is used to establish a simple mapping property of c_0 which simultaneously yields extensions of the preceding theorems as corollaries. Additional classical mapping properties of c_0 are briefly discussed and applications are given.

All Banach spaces in this note are defined over the real field. The canonical unit vector basis of c_0 will be denoted by (e_n) , the canonical unit vector basis of ℓ^1 will be denoted by (e_n^*) , and a continuous linear transformation will be referred to as an operator. The reader is referred to Diestel [3] or Lindenstrauss and Tzafriri [8] for undefined notation and terminology.

THEOREM 1. If $T : c_0 \to X$ is an operator and (x_k^*) is any bounded sequence in X^* so that

$$\sum_{k=1}^{\infty} |x_k^*(T(e_{n_k})) - 1| < \infty$$

for some subsequence $(T(e_{n_k}))$ of $(T(e_n))$, then there is a sequence (w_i^*) in $\{x_k^* - x_j^* : k, j \in \mathbb{N}\}$ so that (w_i^*) is equivalent to (e_i^*) as a basic sequence and $[w_i^*]$ is complemented in X^* .

Proof. Let $(b_k) = T(e_{n_k})$ for $k \in \mathbb{N}$, let C be a positive number so that C > 1 and $||T(x)|| \leq C ||x||$ for all x, and choose B > 1 so that

$$2\sup \|x_n^*\| < B.$$

Without loss of generality, suppose that

$$|x_n^*(b_n) - 1| < \frac{1}{BC \cdot 2^{n+4}}$$

1991 Mathematics Subject Classification: Primary 46B20.

[235]

for each n. Further, since (b_n) is weakly null, suppose that

(1)
$$\sum_{i=1}^{n-1} |x_i^*(b_n)| < \frac{1}{BC \cdot 2^{n+5}}$$

for each n. Now let $r_1 = 1$, $r_2 = 2$, and choose r_3 and r_4 so that $r_2 < r_3 < r_4$ and

$$|(x_{r_4}^* - x_{r_3}^*)(b_{r_2})| < \frac{1}{BC \cdot 2^{1+5}}.$$

Next choose r_5 and r_6 so that $r_4 < r_5 < r_6$ and

(2)
$$\begin{aligned} |(x_{r_6}^* - x_{r_5}^*)(b_{r_2})| &< \frac{1}{BC \cdot 2^{2+5}}, \\ |(x_{r_6}^* - x_{r_5}^*)(b_{r_4})| &< \frac{1}{BC \cdot 2^{2+5}}. \end{aligned}$$

An additional step clarifies the induction process. Choose r_7 and r_8 so that $r_6 < r_7 < r_8$ and

(3)

$$|(x_{r_8}^* - x_{r_7}^*)(b_{r_2})| < \frac{1}{BC \cdot 2^{3+5}},$$

$$|(x_{r_8}^* - x_{r_7}^*)(b_{r_4})| < \frac{1}{BC \cdot 2^{3+5}},$$

$$|(x_{r_8}^* - x_{r_7}^*)(b_{r_6})| < \frac{1}{BC \cdot 2^{3+5}}.$$

Continue this construction inductively, and let $u_n = b_{r_{2n}}$ and $z_n^* = x_{r_{2n}}^*$ for each n. Note that

$$|z_i^*(u_n) - x_{r_{2i-1}}^*(u_n)| < \frac{1}{BC \cdot 2^{i+4}}$$

for n < i. Further,

$$|z_n^*(u_n) - 1| < \frac{1}{BC \cdot 2^{n+4}}$$
 and $\sum_{i=1}^n |z_i^*(u_{n+1})| < \frac{1}{BC \cdot 2^{(n+1)+5}}$

for each n.

Next let $w_n^* = z_n^* - x_{r_{2n-1}}^* = x_{r_{2n}}^* - x_{r_{2n-1}}^*$ for $n \in \mathbb{N}$. Then

$$\begin{aligned} |w_n^*(u_n) - 1| &\leq |z_n^*(u_n) - 1| + |x_{r_{2n-1}}^*(u_n)| \\ &< \frac{1}{BC \cdot 2^{n+4}} + \frac{1}{BC \cdot 2^{n+5}} = \frac{3}{BC} \cdot \frac{1}{2^{n+1}} \cdot \frac{1}{2^4} \end{aligned}$$

Also, $||x_n^*|| \leq B$ for each n.

Now suppose that $q \in \mathbb{N}$ and t_i is a non-zero real number for $1 \leq i \leq q$. If $\varepsilon_i = \operatorname{sgn}(t_i w_i^*(u_i))$, then

$$\sum_{i=1}^{q} t_i w_i^*(\varepsilon_i u_1) \ge |t_1 w_1^*(u_1)| - \sum_{i=2}^{q} |w_i^* t_i(u_1)|$$
$$\ge |t_1| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^2} \cdot \frac{1}{2^4} \right)$$
$$- \left(\frac{|t_2|}{BC \cdot 2^{1+5}} + \dots + \frac{|t_q|}{BC \cdot 2^{(q-1)+5}} \right).$$

Further,

$$\sum_{i=1}^{q} t_i w_i^*(\varepsilon_2 u_2)$$

= $|t_2 w_2^*(u_2)| - \sum_{i=1, i \neq 2}^{q} t_i w_i^*(\varepsilon_2 u_2)$
 $\ge |t_2| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^3} \cdot \frac{1}{2^4} \right)$
 $- \left(|t_1| \frac{1}{BC} \cdot \frac{1}{2^{2+5}} + |t_3| \frac{1}{BC} \cdot \frac{1}{2^{2+5}} + \dots + |t_q| \frac{1}{BC} \cdot \frac{1}{2^{(q-1)+5}} \right).$

(Observe that

$$|w_1^*(u_2)| = |(x_2^* - x_1^*)(b_{r_4})| \le |x_2^*(b_{r_4})| + |x_1^*(b_{r_4})|$$

$$< \frac{1}{BC \cdot 2^{r_4+5}} + \frac{1}{BC \cdot 2^{r_4+5}} < \frac{1}{BC \cdot 2^{2+5}}$$

from (1). Also,

$$|w_3^*(u_2)| = |(x_{r_6}^* - x_{r_5}^*)(b_{r_4})| \le \frac{1}{BC \cdot 2^{2+5}}$$

from (2), and

$$|(x_{r_8}^* - x_{r_7}^*)(b_{r_4})| < \frac{1}{BC \cdot 2^{3+5}}$$

from (3).)

In general,

$$\begin{split} \left\langle \sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*} \right\rangle \\ &\geq |t_{1}| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^{2}} \cdot \frac{1}{2^{4}} \right) \\ &- |t_{1}| \left(\frac{1}{BC \cdot 2^{r_{4}+5}} + \frac{1}{BC \cdot 2^{r_{6}+5}} + \ldots + \frac{1}{BC \cdot 2^{r_{2q}+5}} \right) \\ &+ |t_{2}| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^{3}} \cdot \frac{1}{2^{4}} \right) \end{split}$$

$$\begin{split} &-|t_2| \left(\frac{1}{BC \cdot 2^{2+4}} + \frac{1}{BC \cdot 2^{r_6+5}} + \ldots + \frac{1}{BC \cdot 2^{r_{2q}+5}} \right) \\ &+ |t_3| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^4} \cdot \frac{1}{2^4} \right) \\ &- |t_3| \left(2 \frac{1}{BC \cdot 2^{3+4}} + \frac{1}{BC \cdot 2^{r_8+5}} + \frac{1}{BC \cdot 2^{r_{10}+5}} + \ldots + \frac{1}{BC \cdot 2^{r_{2q}+5}} \right) \\ &+ |t_4| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^5} \cdot \frac{1}{2^4} \right) \\ &- |t_4| \left(3 \frac{1}{BC \cdot 2^{4+4}} + \frac{1}{BC \cdot 2^{r_{10}+5}} + \ldots + \frac{1}{BC \cdot 2^{r_{2q}+5}} \right) + \ldots + \\ &+ |t_q| \left(1 - \frac{3}{BC} \cdot \frac{1}{2^{q+1}} \cdot \frac{1}{2^4} \right) - |t_q| \left(\frac{q-1}{BC \cdot 2^{q+4}} \right). \end{split}$$

Note that

$$\frac{3}{BC \cdot 2^{2}2^{4}} + \frac{1}{BC \cdot 2^{r_{4}+5}} + \dots + \frac{1}{BC \cdot 2^{r_{2q}}} \le \frac{2}{BC \cdot 2^{4}},$$

$$\frac{3}{BC \cdot 2^{3}2^{4}} + \frac{1}{BC \cdot 2^{2+4}} + \frac{1}{BC \cdot 2^{r_{6}+5}} + \dots + \frac{1}{BC \cdot 2^{r_{2q}+5}} \le \frac{2}{BC \cdot 2^{4}},$$

$$\dots$$

$$\frac{3}{BC \cdot 2^{q+1}2^{4}} + \frac{q-1}{BC \cdot 2^{q+4}} \le \frac{2}{BC \cdot 2^{4}}.$$

Consequently,

$$\left\langle \sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*} \right\rangle \geq \left(\sum_{i=1}^{q} |t_{i}| \right) \left(1 - \frac{2}{BC \cdot 2^{4}} \right) > 0.$$

Thus $\sum_{i=1}^{q} \varepsilon_i u_i \neq 0$, and

$$\left\|\sum_{i=1}^{q} t_{i} w_{i}^{*}\right\| \geq \left(1 / \left\|\sum_{i=1}^{q} \varepsilon_{i} u_{i}\right\|\right) \left\langle\sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*}\right\rangle$$
$$\geq \left(\sum_{i=1}^{q} |t_{i}|\right) \left(\left(1 - \frac{1}{BC \cdot 2^{3}}\right) c^{-1}\right).$$

Hence

$$\left(\left(1 - \frac{1}{BC \cdot 2^3}\right)c^{-1}\right)\left(\sum_{i=1}^q |t_i|\right) \le \left\|\sum_{i=1}^q t_i w_i^*\right\| \le B\sum_{i=1}^q |t_i|,$$

and $(w_i^*) \sim (e_i^*)$. Next we show that $[w_n^*]$ is complemented in X^* . Suppose that $v^* = \sum_{n=1}^{\infty} t_n w_n^*$, and let $U: X^* \to [w_n^*]$ be defined by

$$U(x^*) = \sum_n x^*(u_n)w_n^*.$$

Since (u_n) is a subsequence of (b_k) and $\sum b_k$ is weakly unconditionally convergent, it is clear that U is well defined, continuous, and linear. Now observe that

$$\begin{aligned} \|v^* - U(v^*)\| \\ &= \left\| \sum_{n=1}^{\infty} t_n w_n^* - \sum_{n=1}^{\infty} t_n U(w_n^*) \right\| \\ &= \left\| \sum_{n=1}^{\infty} t_n w_n^* - \sum_{n=1}^{\infty} t_n \left(\sum_{k=1}^{\infty} w_n^*(u_k) w_k^* \right) \right\| \\ &= \left\| \sum_{n=1}^{\infty} t_n w_n^* - \sum_{n=1}^{\infty} t_n w_n^*(u_n) w_n^* - \sum_{n=1}^{\infty} t_n \left(\sum_{k=1, \, k \neq n}^{\infty} w_n^*(u_k) w_k^* \right) \right\| \\ &\leq \sum_{n=1}^{\infty} |t_n| \cdot |1 - w_n^*(u_n)| \cdot \|w_n^*\| + \sum_{n=1}^{\infty} |t_n| \left(\sum_{k=1, \, k \neq n}^{\infty} |w_n^*(u_k)| B \right) \\ &\leq \sum_{n=1}^{\infty} |t_n| \left(\sup_k \left\{ |1 - w_k^*(u_k)| + \sum_{i=1, \, i \neq k}^{\infty} |w_k^*(u_i)| \right\} \right) B. \end{aligned}$$

Also,

$$\sum_{n=1}^{\infty} |t_n| \le \frac{c}{1 - \frac{1}{BC \cdot 2^3}} \|v^*\|.$$

~ ~

Further,

$$\sup_{k} |1 - w_k^*(u_k)| \le \frac{3}{BC \cdot 2^2 2^4},$$

and $||w_k^*|| \le B$ for each k.

Next note that

$$\begin{split} \sum_{k=2}^{\infty} |w_1^*(u_k)| &= \sum_{k=2}^{\infty} |(x_2^* - x_1^*)(u_k)| \\ &= |(x_2^* - x_1^*)(T(e_{r_4}))| + |(x_2^* - x_1^*)(T(e_{r_6}))| + \dots \\ &\leq (|x_2^*T(e_{r_4})| + |x_1^*T(e_{r_4})|) + (|x_2^*T(e_{r_6})| + |x_1^*T(e_{r_6})|) + \dots \\ &< \frac{1}{BC \cdot 2^{r_4 + 5}} + \frac{1}{BC \cdot 2^{r_6 + 5}} + \dots < \frac{1}{BC \cdot 2^{r_4 + 4}} < \frac{1}{BC \cdot 2^4}. \end{split}$$

A similar argument shows that

$$\sum_{i=1,\,i\neq k}^{\infty} |w_k^*(u_i)| < \frac{1}{BC\cdot 2^4}$$

for each k. Thus

$$\|v^* - U(v^*)\| \le \frac{c}{1 - \frac{1}{BC \cdot 2^3}} \|v^*\| \left(\frac{3}{BC \cdot 2^2 2^4} + \frac{1}{BC \cdot 2^4}\right) B < \frac{1}{7} \|v^*\|.$$

If $U_1 = U_{|[w_i^*]}$, then $||\text{Identity} - U_1||_{|[w_i^*]} < 1$, and U_1 is invertible on $[w_i^*]$. It is easy to see that $U_1^{-1}U$ is a projection from X^* onto $[w_i^*]$.

REMARK. (a) The operator $T : c_0 \to X$ satisfies the hypotheses of Theorem 1 if and only if $\liminf ||T(e_n)|| > 0$. H. Rosenthal [11] has given a penetrating study of the situation in which $T : \ell^{\infty}(\Gamma) \to X$ is an operator so that $\inf_{\gamma \in \Gamma} ||T(e_{\gamma})|| > 0$.

(b) If (x_k^*) is w^* -null, the proof of Theorem 1 makes it clear that we may choose the sequence (w_i^*) in the conclusion of the theorem to be w^* -null.

As the following corollaries indicate, Theorem 1 unifies and extends several classical results.

COROLLARY 2 ([1, Thm. 4], [3, p. 48]). If c_0 embeds isomorphically in the dual X^* of the Banach space X, then X contains a copy of ℓ^1 which is complemented (in X^{**} and thus) in X.

Proof. If $T: c_0 \to X^*$ is an isomorphism, then let (x_n) be a bounded sequence in $X (\subseteq X^{**})$ so that $\sum_{n=1}^{\infty} |x_n(T(e_n)) - 1| = 0$. Apply Theorem 1 to the sequence (x_n) .

COROLLARY 3 ([10], [3, p. 72]). If ℓ^1 is a quotient of X, then X contains a copy of ℓ^1 which is complemented in X^{**} .

Proof. If $T: X \to \ell^1$ is a surjective operator, then $T^*: \ell^{\infty} \to X^*$ is an isomorphism. Hence $T^*_{|_{C_0}}$ is an isomorphism. ■

If Σ is a σ -algebra, (μ_n) is a bounded sequence in $\operatorname{cabv}(\Sigma, X)$, and $0 < \varepsilon < \delta$, then (μ_n) is said to be (δ, ε) -relatively disjoint [11] if there is a pairwise disjoint sequence (A_n) in Σ so that

$$|\mu_n|(A_n) > \delta$$
 and $\sum_{m=1, m \neq n}^{\infty} |\mu_n|(A_m) < \varepsilon$

for each *n*. Further, (μ_n) is said to be *relatively disjoint* if it is (δ, ε) -relatively disjoint for some pair (δ, ε) . Rosenthal [11] and Kadec and Pełczyński [7] showed that if (μ_n) is a relatively disjoint sequence in $\operatorname{cabv}(\Sigma, X)$, then $(\mu_n) \sim (e_n^*)$ and $[\mu_n]$ is complemented in $\operatorname{cabv}(\Sigma, X)$.

If \mathcal{A} is an algebra of subsets of Ω , then fabv (\mathcal{A}, X) denotes the Banach space (total variation norm) of all finitely additive set functions $m : \mathcal{A} \to X$ which have finite variation. Both [4] and [6] contain an extensive discussion of spaces of measures. In addition, we note that [4] includes a detailed presentation of results related to the Radon–Nikodym property. Note that part (i) of Corollary 4 below contains an extension of Proposition 3.1 of [11] to the setting of finitely additive set functions defined on an algebra of sets. Further, we remark that in a classic paper Kadec and Pełczyński [7, Theorem 6] showed that if Y is any non-reflexive closed linear subspace of $L^1[0, 1]$, then Y contains a copy of ℓ^1 which is complemented in $L^1[0, 1]$. Part (v) of the next corollary shows that if X and X^{*} have the Radon–Nikodym property, then any non-reflexive closed linear subspace of $L^1(\mu, X)$ contains a copy of ℓ^1 which is complemented in $L^1(\mu, X)$ contains a copy of ℓ^1 which is complemented in $L^1(\mu, X)$.

COROLLARY 4. (i) If (μ_n) is any bounded sequence in fabv (\mathcal{A}, X) for which there is a pairwise disjoint sequence (A_n) in \mathcal{A} and an $\varepsilon > 0$ so that

$$|\mu_n|(A_n) > \varepsilon$$

for each n, then there is a sequence (ν_i) in $\{\mu_n - \mu_k : k, n \in \mathbb{N}\}$ so that $(\nu_i) \sim (e_i^*)$ and $[\nu_i]$ is complemented in fabv (\mathcal{A}, X) .

(ii) If K is a relatively weakly compact subset of fabv(\mathcal{A}, X) and (A_i) is a pairwise disjoint sequence of members of \mathcal{A} , then $\lim_i |\mu|(A_i) = 0$ uniformly for $\mu \in K$.

(iii) If K is a relatively weakly compact subset of $cabv(\Sigma, X)$, then $\{|\mu| : \mu \in K\}$ is uniformly countably additive.

(iv) If μ is a finite positive measure on Σ and K is a relatively weakly compact subset of the space $L^1(\mu, X)$ of Bochner integrable functions, then K is uniformly integrable.

(v) If Y is a closed linear subspace of fabv(\mathcal{A}, X), Y is not reflexive, and X and X^{*} have the Radon–Nikodym property, then Y contains a copy of ℓ^1 which is complemented in fabv(\mathcal{A}, X).

Proof. (i) For each n let $(A_{n_i})_{i=1}^{k_n}$ be a partition of A_n and $(x_{n_i}^*)_{i=1}^{k_n}$ be points in the unit ball of X^* so that

$$\sum_{i=1}^{k_n} x_{n_i}^* \mu_n(A_{n_i}) > \varepsilon$$

Now define the X^* -valued simple function s_n by

$$s_n = \sum_{i=1}^{k_n} \chi_{A_{n_i}} x_{n_i}^*$$

and observe that $\int s_n d\mu_n > \varepsilon$. Define $T: c_0 \to \text{fabv}(\mathcal{A}, X)^*$ by

$$T((\gamma_n)) = \sum_n \gamma_n s_n.$$

Then T is an operator. Normalize and use Theorem 1 to conclude that some sequence (ν_i) in $\{\mu_n - \mu_k : n, k \in \mathbb{N}\}$ is equivalent to (e_n^*) and that $[\nu_n]$ is complemented in fabv (\mathcal{A}, X) .

(ii) Suppose that $\varepsilon > 0$ and (μ_i) is a sequence in K so that $|\mu_i|(A_i) > \varepsilon$ for each *i*. Part (i) ensures that (e_n^*) is equivalent to some sequence in K-K. However, this is impossible since K - K is relatively weakly compact.

(iii) Since each member of K is a countably additive measure on a σ -algebra, $|K| = \{|\mu| : \mu \in K\}$ is uniformly countably additive if and only if $\lim_i |\mu|(A_i) = 0$ uniformly for $\mu \in K$ whenever (A_i) is a pairwise disjoint sequence from Σ . Deny the uniform countable additivity of |K|, repeat the same construction as in (i), and obtain the same contradiction as in (ii).

(iv) If $f \in L^1(\mu, X)$ and $A \in \Sigma$, put

$$\nu_f(A) = \int_A f \, d\mu.$$

It is well known that $\lim_{\mu(A)\to 0} |\nu_f|(A) = 0$ uniformly for $f \in K$ (i.e., K is uniformly integrable) if and only if $\{|\nu_f| : f \in K\}$ is uniformly countably additive. Appeal to (iii).

(v) If Y is not reflexive, then B_Y is not relatively weakly compact in fabv (\mathcal{A}, X) . By Theorem 4.1 of Brooks and Dinculeanu [2], there is a pairwise disjoint sequence (A_i) in \mathcal{A} , an $\varepsilon > 0$, and a sequence (μ_i) in B_Y so that $|\mu_i|(A_i) > \varepsilon$ for each *i*. The construction in (i) above shows that Y contains a copy of ℓ^1 which is complemented in fabv (\mathcal{A}, X) .

In the following corollary, \mathcal{P} denotes the σ -algebra of all subsets of \mathbb{N} .

COROLLARY 5 ([9, Lemma 2], [3, p. 74]). Every infinite-dimensional closed linear subspace of ℓ^1 contains a copy of ℓ^1 which is complemented in fabv(\mathcal{P}) and thus in ℓ^1 .

Proof. Every infinite-dimensional subspace of ℓ^1 is non-reflexive.

COROLLARY 6 ([4, p. 149]). If (Ω, Σ, μ) is a finite measure space and X^* is a quotient of $L^{\infty}(\mu)$, then either X is reflexive or X contains a copy of ℓ^1 which is complemented in X^{**} . Consequently, if X^{**} is contained in $L^1(\mu)$, then X is reflexive or ℓ^1 is a complemented subspace of X.

Proof. If $T: L^{\infty}(\mu) \to X^*$ is a surjection and X is not reflexive, then T is not weakly compact. Hence T is not unconditionally converging and is an isomorphism on a copy of c_0 . Thus X contains a copy of ℓ^1 which is complemented in X^{**} .

If $L: X^{**} \to L^1(\mu)$ is an isomorphism, then $L^*: L^{\infty}(\mu) \to X^{***}$ is a surjection, X^* is a quotient of $L^{\infty}(\mu)$, and X is reflexive or X contains a complemented copy of ℓ^1 .

If $T: c_0 \to X$ is an isomorphism, classical techniques of Singer [13] can be used to easily produce complemented copies of both c_0 and ℓ^1 .

THEOREM 7. If $T : c_0 \to X$ is an isomorphism, (f_n^*) is any bounded sequence in X^* so that

$$f_n^*(T(e_m)) = \delta_{nm}$$

and (h_k^*) is any subsequence of (f_n^*) , then $[h_k^*]$ is complemented in X^* . Further, if (h_k^*) is w^* -null in X^* and (y_k) is the corresponding subsequence of $(T(e_n))$, then $[y_k]$ is complemented in X.

Proof. Suppose that $T, (f_n^*)$, and (h_k^*) are as in the first statement in the theorem. Let C be a bound for $(||f_n^*||)$, let (y_k^*) be the sequence of coefficient functionals for the basic sequence (y_k) (which is equivalent to (e_k)), and choose positive numbers A and B so that

$$A\sum |\alpha_i| \le \left\|\sum \alpha_i y_i^*\right\| \le B\sum |\alpha_i|$$

for each finite sequence $(\alpha_1, \ldots, \alpha_m)$ of real numbers. Therefore

$$A\sum_{i} |\alpha_{i}| \le \left\|\sum_{i} \alpha_{i} h_{i}^{*}|_{[y_{n}]}\right\| \le \left\|\sum_{i} \alpha_{i} h_{i}^{*}\right\| \le C\sum_{i} |\alpha_{i}|$$

As noted on p. 91 of Singer [13],

$$\left\{ f^* \in X^* : \sum_{k=1}^{\infty} f^*(y_k) h_k^* \text{ converges} \right\} = [y_k]^{\perp} + [h_k^*].$$

Since $(y_k) \sim (e_k)$ and $(h_k^*) \sim (e_k^*)$, we have $[y_k]^{\perp} + [h_k^*] = X^*$. Further, if (h_k^*) is w^* -null, then

$$\left\{x \in X : \sum_{k=1}^{\infty} h_k^*(x) y_k \text{ converges}\right\} = [y_k] + [h_k^*]_{\perp} = X.$$

Consequently, each of these direct sums is closed. Straightforward closed graph arguments show that these direct sums are also topological. \blacksquare

We remark that if X is separable (and T and (f_n^*) have the same meaning as in the statement of Theorem 7), then Veech's proof [15] of Sobczyk's theorem [14], [3, p. 71] simply shows that there is a bounded sequence (g_n^*) in $[T(e_n))]^{\perp}$ so that $(f_n^* - g_n^*)$ is w*-null. Certainly $(T(e_n), f_n^* - g_n^*)$ is biorthogonal in this case.

The next corollary shows that a result of Saab and Saab [12] dealing with complemented copies of c_0 in injective tensor products is an immediate consequence of Theorem 7. Chapter 8 of [4] contains an excellent discussion of the least crossnorm tensor product completion of Banach spaces.

COROLLARY 8 ([12]). If X contains a copy of c_0 , Y is an infinite-dimensional Banach space and $Z = X \otimes_{\lambda} Y$ is the least crossnorm tensor product completion of X and Y, then Z contains a complemented copy of c_0 .

Proof. Let (x_n) be a sequence in X so that $(x_n) \sim (e_n)$, let (x_n^*) be a bounded sequence in X^* so that $x^*(x_m) = \delta_{nm}$, and let (y_n^*) be a w^* -null sequence in Y^* so that $||y_n^*|| = 1$ for each n. (The Josefson-Nissenzweig Theorem [3] guarantees the existence of (y_n^*) .) Choose a sequence (y_n) in Y P. LEWIS

so that $||y_n|| \leq 3/2$ and $y_n(y_n^*) = 1$ for each n. Then $(x_n^* \otimes y_n^*)$ is a w^* -null sequence in Z^* , $(x_n \otimes y_n) \sim (e_n)$, and $x_n^* \otimes y_n^*(x_m \otimes y_m) = x_n^*(x_n)y_n^*(y_m) = \delta_{nm}$. Now appeal to Theorem 7. \blacksquare

We note that precisely the same argument yields the next result.

COROLLARY 9. If the Banach space X contains a copy of c_0 and Y is an infinite-dimensional space, then the Banach space $K(X^*, Y)$ of compact operators from X^* to Y contains a complemented copy of c_0 .

REFERENCES

- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [2] J. Brooks and N. Dinculeanu, Strong additivity, absolute continuity, and compactness in spaces of measures, J. Math. Anal. Appl. 45 (1974), 156–175.
- [3] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- [5] N. Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646.
- [6] N. Dunford and J. Schwartz, *Linear Operators. Part I*, Interscience, New York, 1958.
- [7] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_p, Studia Math. 21 (1962), 161–176.
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- [9] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- [10] —, On strictly singular and strictly cosingular operators. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 37–41.
- H. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36.
- E. Saab and P. Saab, On complemented copies of c₀ in injective tensor products, in: Contemp. Math. 52, Amer. Math. Soc., 1986, 131–135.
- [13] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.
- [14] A. Sobczyk, Projections of the space m on its subspace c, Bull. Amer. Math. Soc. 47 (1941), 78–106.
- [15] W. Veech, Short proof of Sobczyk's theorem, Proc. Amer. Math. Soc. 28 (1971), 627–628.

University of North Texas Denton, Texas E-mail: lewis@unt.edu

Received 10 November 1998