MAPPING PROPERTIES OF c_{0}

BY

PAUL LEWIS (DENTON, TEX.)

Abstract

Bessaga and Pełczyński showed that if c_{0} embeds in the dual X^{*} of a Banach space X, then ℓ^{1} embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of ℓ^{1} contains a copy of ℓ^{1} that is complemented in ℓ^{1}. Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of $L^{1}[0,1]$ contains a copy of ℓ^{1} that is complemented in $L^{1}[0,1]$. In this note a traditional sliding hump argument is used to establish a simple mapping property of c_{0} which simultaneously yields extensions of the preceding theorems as corollaries. Additional classical mapping properties of c_{0} are briefly discussed and applications are given.

All Banach spaces in this note are defined over the real field. The canonical unit vector basis of c_{0} will be denoted by $\left(e_{n}\right)$, the canonical unit vector basis of ℓ^{1} will be denoted by $\left(e_{n}^{*}\right)$, and a continuous linear transformation will be referred to as an operator. The reader is referred to Diestel [3] or Lindenstrauss and Tzafriri [8] for undefined notation and terminology.

Theorem 1. If $T: c_{0} \rightarrow X$ is an operator and $\left(x_{k}^{*}\right)$ is any bounded sequence in X^{*} so that

$$
\sum_{k=1}^{\infty}\left|x_{k}^{*}\left(T\left(e_{n_{k}}\right)\right)-1\right|<\infty
$$

for some subsequence $\left(T\left(e_{n_{k}}\right)\right)$ of $\left(T\left(e_{n}\right)\right)$, then there is a sequence $\left(w_{i}^{*}\right)$ in $\left\{x_{k}^{*}-x_{j}^{*}: k, j \in \mathbb{N}\right\}$ so that $\left(w_{i}^{*}\right)$ is equivalent to $\left(e_{i}^{*}\right)$ as a basic sequence and $\left[w_{i}^{*}\right]$ is complemented in X^{*}.

Proof. Let $\left(b_{k}\right)=T\left(e_{n_{k}}\right)$ for $k \in \mathbb{N}$, let C be a positive number so that $C>1$ and $\|T(x)\| \leq C\|x\|$ for all x, and choose $B>1$ so that

$$
2 \sup \left\|x_{n}^{*}\right\|<B
$$

Without loss of generality, suppose that

$$
\left|x_{n}^{*}\left(b_{n}\right)-1\right|<\frac{1}{B C \cdot 2^{n+4}}
$$

1991 Mathematics Subject Classification: Primary 46B20.
for each n. Further, since $\left(b_{n}\right)$ is weakly null, suppose that

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left|x_{i}^{*}\left(b_{n}\right)\right|<\frac{1}{B C \cdot 2^{n+5}} \tag{1}
\end{equation*}
$$

for each n. Now let $r_{1}=1, r_{2}=2$, and choose r_{3} and r_{4} so that $r_{2}<r_{3}<r_{4}$ and

$$
\left|\left(x_{r_{4}}^{*}-x_{r_{3}}^{*}\right)\left(b_{r_{2}}\right)\right|<\frac{1}{B C \cdot 2^{1+5}}
$$

Next choose r_{5} and r_{6} so that $r_{4}<r_{5}<r_{6}$ and

$$
\begin{align*}
& \left|\left(x_{r_{6}}^{*}-x_{r_{5}}^{*}\right)\left(b_{r_{2}}\right)\right|<\frac{1}{B C \cdot 2^{2+5}} \tag{2}\\
& \left|\left(x_{r_{6}}^{*}-x_{r_{5}}^{*}\right)\left(b_{r_{4}}\right)\right|<\frac{1}{B C \cdot 2^{2+5}}
\end{align*}
$$

An additional step clarifies the induction process. Choose r_{7} and r_{8} so that $r_{6}<r_{7}<r_{8}$ and

$$
\begin{align*}
& \left|\left(x_{r_{8}}^{*}-x_{r_{7}}^{*}\right)\left(b_{r_{2}}\right)\right|<\frac{1}{B C \cdot 2^{3+5}} \\
& \left|\left(x_{r_{8}}^{*}-x_{r_{7}}^{*}\right)\left(b_{r_{4}}\right)\right|<\frac{1}{B C \cdot 2^{3+5}} \tag{3}\\
& \left|\left(x_{r_{8}}^{*}-x_{r_{7}}^{*}\right)\left(b_{r_{6}}\right)\right|<\frac{1}{B C \cdot 2^{3+5}}
\end{align*}
$$

Continue this construction inductively, and let $u_{n}=b_{r_{2 n}}$ and $z_{n}^{*}=x_{r_{2 n}}^{*}$ for each n. Note that

$$
\left|z_{i}^{*}\left(u_{n}\right)-x_{r_{2 i-1}}^{*}\left(u_{n}\right)\right|<\frac{1}{B C \cdot 2^{i+4}}
$$

for $n<i$. Further,

$$
\left|z_{n}^{*}\left(u_{n}\right)-1\right|<\frac{1}{B C \cdot 2^{n+4}} \quad \text { and } \quad \sum_{i=1}^{n}\left|z_{i}^{*}\left(u_{n+1}\right)\right|<\frac{1}{B C \cdot 2^{(n+1)+5}}
$$

for each n.
Next let $w_{n}^{*}=z_{n}^{*}-x_{r_{2 n-1}}^{*}=x_{r_{2 n}}^{*}-x_{r_{2 n-1}}^{*}$ for $n \in \mathbb{N}$. Then

$$
\begin{aligned}
\left|w_{n}^{*}\left(u_{n}\right)-1\right| & \leq\left|z_{n}^{*}\left(u_{n}\right)-1\right|+\left|x_{r_{2 n-1}}^{*}\left(u_{n}\right)\right| \\
& <\frac{1}{B C \cdot 2^{n+4}}+\frac{1}{B C \cdot 2^{n+5}}=\frac{3}{B C} \cdot \frac{1}{2^{n+1}} \cdot \frac{1}{2^{4}}
\end{aligned}
$$

Also, $\left\|x_{n}^{*}\right\| \leq B$ for each n.
Now suppose that $q \in \mathbb{N}$ and t_{i} is a non-zero real number for $1 \leq i \leq q$. If $\varepsilon_{i}=\operatorname{sgn}\left(t_{i} w_{i}^{*}\left(u_{i}\right)\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{q} t_{i} w_{i}^{*}\left(\varepsilon_{i} u_{1}\right) \geq & \left|t_{1} w_{1}^{*}\left(u_{1}\right)\right|-\sum_{i=2}^{q}\left|w_{i}^{*} t_{i}\left(u_{1}\right)\right| \\
\geq & \left|t_{1}\right|\left(1-\frac{3}{B C} \cdot \frac{1}{2^{2}} \cdot \frac{1}{2^{4}}\right) \\
& \quad-\left(\frac{\left|t_{2}\right|}{B C \cdot 2^{1+5}}+\ldots+\frac{\left|t_{q}\right|}{B C \cdot 2^{(q-1)+5}}\right)
\end{aligned}
$$

Further,

$$
\begin{aligned}
& \sum_{i=1}^{q} t_{i} w_{i}^{*}\left(\varepsilon_{2} u_{2}\right) \\
& \quad=\left|t_{2} w_{2}^{*}\left(u_{2}\right)\right|-\sum_{i=1, i \neq 2}^{q} t_{i} w_{i}^{*}\left(\varepsilon_{2} u_{2}\right) \\
& \quad \geq\left|t_{2}\right|\left(1-\frac{3}{B C} \cdot \frac{1}{2^{3}} \cdot \frac{1}{2^{4}}\right) \\
& \quad \quad-\left(\left|t_{1}\right| \frac{1}{B C} \cdot \frac{1}{2^{2+5}}+\left|t_{3}\right| \frac{1}{B C} \cdot \frac{1}{2^{2+5}}+\ldots+\left|t_{q}\right| \frac{1}{B C} \cdot \frac{1}{2^{(q-1)+5}}\right)
\end{aligned}
$$

(Observe that

$$
\begin{aligned}
\left|w_{1}^{*}\left(u_{2}\right)\right| & =\left|\left(x_{2}^{*}-x_{1}^{*}\right)\left(b_{r_{4}}\right)\right| \leq\left|x_{2}^{*}\left(b_{r_{4}}\right)\right|+\left|x_{1}^{*}\left(b_{r_{4}}\right)\right| \\
& <\frac{1}{B C \cdot 2^{r_{4}+5}}+\frac{1}{B C \cdot 2^{r_{4}+5}}<\frac{1}{B C \cdot 2^{2+5}}
\end{aligned}
$$

from (1). Also,

$$
\left|w_{3}^{*}\left(u_{2}\right)\right|=\left|\left(x_{r_{6}}^{*}-x_{r_{5}}^{*}\right)\left(b_{r_{4}}\right)\right| \leq \frac{1}{B C \cdot 2^{2+5}}
$$

from (2), and

$$
\left|\left(x_{r_{8}}^{*}-x_{r_{7}}^{*}\right)\left(b_{r_{4}}\right)\right|<\frac{1}{B C \cdot 2^{3+5}}
$$

from (3).)
In general,

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*}\right\rangle \\
& \quad \geq
\end{aligned}
$$

$$
\begin{aligned}
& -\left|t_{2}\right|\left(\frac{1}{B C \cdot 2^{2+4}}+\frac{1}{B C \cdot 2^{r_{6}+5}}+\ldots+\frac{1}{B C \cdot 2^{r_{2 q}+5}}\right) \\
& +\left|t_{3}\right|\left(1-\frac{3}{B C} \cdot \frac{1}{2^{4}} \cdot \frac{1}{2^{4}}\right) \\
& -\left|t_{3}\right|\left(2 \frac{1}{B C \cdot 2^{3+4}}+\frac{1}{B C \cdot 2^{r_{8}+5}}+\frac{1}{B C \cdot 2^{r_{10}+5}}+\ldots+\frac{1}{B C \cdot 2^{r_{2 q}+5}}\right) \\
& +\left|t_{4}\right|\left(1-\frac{3}{B C} \cdot \frac{1}{2^{5}} \cdot \frac{1}{2^{4}}\right) \\
& -\left|t_{4}\right|\left(3 \frac{1}{B C \cdot 2^{4+4}}+\frac{1}{B C \cdot 2^{r_{10}+5}}+\ldots+\frac{1}{B C \cdot 2^{r_{2 q}+5}}\right)+\ldots+ \\
& +\left|t_{q}\right|\left(1-\frac{3}{B C} \cdot \frac{1}{2^{q+1}} \cdot \frac{1}{2^{4}}\right)-\left|t_{q}\right|\left(\frac{q-1}{B C \cdot 2^{q+4}}\right) .
\end{aligned}
$$

Note that

$$
\begin{array}{r}
\frac{3}{B C \cdot 2^{2} 2^{4}}+\frac{1}{B C \cdot 2^{r_{4}+5}}+\ldots+\frac{1}{B C \cdot 2^{r_{2 q}}}
\end{array} \leq \frac{2}{B C \cdot 2^{4}}, ~=\frac{1}{\frac{3}{B C \cdot 2^{3} 2^{4}}+\frac{1}{B C \cdot 2^{2+4}}+\frac{1}{B C \cdot 2^{r_{6}+5}}+\ldots+\frac{1}{B C \cdot 2^{r_{2 q}+5}}} \leq \begin{array}{r}
B C \cdot 2^{4} \\
\cdots \\
\frac{3}{B C \cdot 2^{q+1} 2^{4}}+\frac{q-1}{B C \cdot 2^{q+4}}
\end{array} \leq \frac{2}{B C \cdot 2^{4}} .
$$

Consequently,

$$
\left\langle\sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*}\right\rangle \geq\left(\sum_{i=1}^{q}\left|t_{i}\right|\right)\left(1-\frac{2}{B C \cdot 2^{4}}\right)>0
$$

Thus $\sum_{i=1}^{q} \varepsilon_{i} u_{i} \neq 0$, and

$$
\begin{aligned}
\left\|\sum_{i=1}^{q} t_{i} w_{i}^{*}\right\| & \geq\left(1 /\left\|\sum_{i=1}^{q} \varepsilon_{i} u_{i}\right\|\right)\left\langle\sum_{i=1}^{q} \varepsilon_{i} u_{i}, \sum_{n=1}^{q} t_{n} w_{n}^{*}\right\rangle \\
& \geq\left(\sum_{i=1}^{q}\left|t_{i}\right|\right)\left(\left(1-\frac{1}{B C \cdot 2^{3}}\right) c^{-1}\right)
\end{aligned}
$$

Hence

$$
\left(\left(1-\frac{1}{B C \cdot 2^{3}}\right) c^{-1}\right)\left(\sum_{i=1}^{q}\left|t_{i}\right|\right) \leq\left\|\sum_{i=1}^{q} t_{i} w_{i}^{*}\right\| \leq B \sum_{i=1}^{q}\left|t_{i}\right|
$$

and $\left(w_{i}^{*}\right) \sim\left(e_{i}^{*}\right)$.
Next we show that $\left[w_{n}^{*}\right]$ is complemented in X^{*}. Suppose that $v^{*}=$ $\sum_{n=1}^{\infty} t_{n} w_{n}^{*}$, and let $U: X^{*} \rightarrow\left[w_{n}^{*}\right]$ be defined by

$$
U\left(x^{*}\right)=\sum_{n} x^{*}\left(u_{n}\right) w_{n}^{*} .
$$

Since $\left(u_{n}\right)$ is a subsequence of $\left(b_{k}\right)$ and $\sum b_{k}$ is weakly unconditionally convergent, it is clear that U is well defined, continuous, and linear. Now observe that

$$
\begin{aligned}
\| v^{*}- & U\left(v^{*}\right) \| \\
& =\left\|\sum_{n} t_{n} w_{n}^{*}-\sum t_{n} U\left(w_{n}^{*}\right)\right\| \\
& =\left\|\sum_{n=1}^{\infty} t_{n} w_{n}^{*}-\sum_{n=1}^{\infty} t_{n}\left(\sum_{k=1}^{\infty} w_{n}^{*}\left(u_{k}\right) w_{k}^{*}\right)\right\| \\
& =\left\|\sum_{n=1}^{\infty} t_{n} w_{n}^{*}-\sum_{n=1}^{\infty} t_{n} w_{n}^{*}\left(u_{n}\right) w_{n}^{*}-\sum_{n=1}^{\infty} t_{n}\left(\sum_{k=1, k \neq n}^{\infty} w_{n}^{*}\left(u_{k}\right) w_{k}^{*}\right)\right\| \\
& \leq \sum_{n=1}^{\infty}\left|t_{n}\right| \cdot\left|1-w_{n}^{*}\left(u_{n}\right)\right| \cdot\left\|w_{n}^{*}\right\|+\sum_{n=1}^{\infty}\left|t_{n}\right|\left(\sum_{k=1, k \neq n}^{\infty}\left|w_{n}^{*}\left(u_{k}\right)\right| B\right) \\
& \leq \sum_{n=1}^{\infty}\left|t_{n}\right|\left(\sup _{k}\left\{\left|1-w_{k}^{*}\left(u_{k}\right)\right|+\sum_{i=1, i \neq k}^{\infty}\left|w_{k}^{*}\left(u_{i}\right)\right|\right\}\right) B .
\end{aligned}
$$

Also,

$$
\sum_{n=1}^{\infty}\left|t_{n}\right| \leq \frac{c}{1-\frac{1}{B C \cdot 2^{3}}}\left\|v^{*}\right\| .
$$

Further,

$$
\sup _{k}\left|1-w_{k}^{*}\left(u_{k}\right)\right| \leq \frac{3}{B C \cdot 2^{2} 2^{4}},
$$

and $\left\|w_{k}^{*}\right\| \leq B$ for each k.
Next note that

$$
\begin{aligned}
\sum_{k=2}^{\infty}\left|w_{1}^{*}\left(u_{k}\right)\right| & =\sum_{k=2}^{\infty}\left|\left(x_{2}^{*}-x_{1}^{*}\right)\left(u_{k}\right)\right| \\
& =\left|\left(x_{2}^{*}-x_{1}^{*}\right)\left(T\left(e_{r_{4}}\right)\right)\right|+\left|\left(x_{2}^{*}-x_{1}^{*}\right)\left(T\left(e_{r_{6}}\right)\right)\right|+\ldots \\
& \leq\left(\left|x_{2}^{*} T\left(e_{r_{4}}\right)\right|+\left|x_{1}^{*} T\left(e_{r_{4}}\right)\right|\right)+\left(\left|x_{2}^{*} T\left(e_{r_{6}}\right)\right|+\left|x_{1}^{*} T\left(e_{r_{6}}\right)\right|\right)+\ldots \\
& <\frac{1}{B C \cdot 2^{r_{4}+5}}+\frac{1}{B C \cdot 2^{r_{6}+5}}+\ldots<\frac{1}{B C \cdot 2^{r_{4}+4}}<\frac{1}{B C \cdot 2^{4}} .
\end{aligned}
$$

A similar argument shows that

$$
\sum_{i=1, i \neq k}^{\infty}\left|w_{k}^{*}\left(u_{i}\right)\right|<\frac{1}{B C \cdot 2^{4}}
$$

for each k. Thus

$$
\left\|v^{*}-U\left(v^{*}\right)\right\| \leq \frac{c}{1-\frac{1}{B C \cdot 2^{3}}}\left\|v^{*}\right\|\left(\frac{3}{B C \cdot 2^{2} 2^{4}}+\frac{1}{B C \cdot 2^{4}}\right) B<\frac{1}{7}\left\|v^{*}\right\|
$$

If $U_{1}=U_{\mid\left[w_{i}^{*}\right]}$, then $\|$ Identity $-U_{1} \|_{\mid\left[w_{i}^{*}\right]}<1$, and U_{1} is invertible on $\left[w_{i}^{*}\right]$. It is easy to see that $U_{1}^{-1} U$ is a projection from X^{*} onto $\left[w_{i}^{*}\right]$.

Remark. (a) The operator $T: c_{0} \rightarrow X$ satisfies the hypotheses of Theorem 1 if and only if lim inf $\left\|T\left(e_{n}\right)\right\|>0$. H. Rosenthal [11] has given a penetrating study of the situation in which $T: \ell^{\infty}(\Gamma) \rightarrow X$ is an operator so that $\inf _{\gamma \in \Gamma}\left\|T\left(e_{\gamma}\right)\right\|>0$.
(b) If $\left(x_{k}^{*}\right)$ is w^{*}-null, the proof of Theorem 1 makes it clear that we may choose the sequence $\left(w_{i}^{*}\right)$ in the conclusion of the theorem to be w^{*}-null.

As the following corollaries indicate, Theorem 1 unifies and extends several classical results.

Corollary 2 ([1, Thm. 4], [3, p. 48]). If c_{0} embeds isomorphically in the dual X^{*} of the Banach space X, then X contains a copy of ℓ^{1} which is complemented (in $X^{* *}$ and thus) in X.

Proof. If $T: c_{0} \rightarrow X^{*}$ is an isomorphism, then let $\left(x_{n}\right)$ be a bounded sequence in $X\left(\subseteq X^{* *}\right)$ so that $\sum_{n=1}^{\infty}\left|x_{n}\left(T\left(e_{n}\right)\right)-1\right|=0$. Apply Theorem 1 to the sequence $\left(x_{n}\right)$.

Corollary 3 ([10], [3, p. 72]). If ℓ^{1} is a quotient of X, then X contains a copy of ℓ^{1} which is complemented in $X^{* *}$.

Proof. If $T: X \rightarrow \ell^{1}$ is a surjective operator, then $T^{*}: \ell^{\infty} \rightarrow X^{*}$ is an isomorphism. Hence $T_{\mid c_{0}}^{*}$ is an isomorphism.

If Σ is a σ-algebra, $\left(\mu_{n}\right)$ is a bounded sequence in $\operatorname{cabv}(\Sigma, X)$, and $0<\varepsilon<\delta$, then $\left(\mu_{n}\right)$ is said to be (δ, ε)-relatively disjoint [11] if there is a pairwise disjoint sequence $\left(A_{n}\right)$ in Σ so that

$$
\left|\mu_{n}\right|\left(A_{n}\right)>\delta \quad \text { and } \quad \sum_{m=1, m \neq n}^{\infty}\left|\mu_{n}\right|\left(A_{m}\right)<\varepsilon
$$

for each n. Further, $\left(\mu_{n}\right)$ is said to be relatively disjoint if it is (δ, ε)-relatively disjoint for some pair (δ, ε). Rosenthal [11] and Kadec and Pełczyński [7] showed that if $\left(\mu_{n}\right)$ is a relatively disjoint sequence in $\operatorname{cabv}(\Sigma, X)$, then $\left(\mu_{n}\right) \sim\left(e_{n}^{*}\right)$ and $\left[\mu_{n}\right]$ is complemented in $\operatorname{cabv}(\Sigma, X)$.

If \mathcal{A} is an algebra of subsets of Ω, then $\operatorname{fabv}(\mathcal{A}, X)$ denotes the Banach space (total variation norm) of all finitely additive set functions $m: \mathcal{A} \rightarrow X$ which have finite variation. Both [4] and [6] contain an extensive discussion of spaces of measures. In addition, we note that [4] includes a detailed presentation of results related to the Radon-Nikodym property. Note that
part (i) of Corollary 4 below contains an extension of Proposition 3.1 of [11] to the setting of finitely additive set functions defined on an algebra of sets. Further, we remark that in a classic paper Kadec and Pełczyński [7, Theorem 6] showed that if Y is any non-reflexive closed linear subspace of $L^{1}[0,1]$, then Y contains a copy of ℓ^{1} which is complemented in $L^{1}[0,1]$. Part (v) of the next corollary shows that if X and X^{*} have the Radon-Nikodym property, then any non-reflexive closed linear subspace of $L^{1}(\mu, X)$ contains a copy of ℓ^{1} which is complemented in $L^{1}(\mu, X)$.

Corollary 4. (i) If $\left(\mu_{n}\right)$ is any bounded sequence in $\operatorname{fabv}(\mathcal{A}, X)$ for which there is a pairwise disjoint sequence $\left(A_{n}\right)$ in \mathcal{A} and an $\varepsilon>0$ so that

$$
\left|\mu_{n}\right|\left(A_{n}\right)>\varepsilon
$$

for each n, then there is a sequence $\left(\nu_{i}\right)$ in $\left\{\mu_{n}-\mu_{k}: k, n \in \mathbb{N}\right\}$ so that $\left(\nu_{i}\right) \sim\left(e_{i}^{*}\right)$ and $\left[\nu_{i}\right]$ is complemented in $\operatorname{fabv}(\mathcal{A}, X)$.
(ii) If K is a relatively weakly compact subset of $\operatorname{fabv}(\mathcal{A}, X)$ and $\left(A_{i}\right)$ is a pairwise disjoint sequence of members of \mathcal{A}, then $\lim _{i}|\mu|\left(A_{i}\right)=0$ uniformly for $\mu \in K$.
(iii) If K is a relatively weakly compact subset of $\operatorname{cabv}(\Sigma, X)$, then $\{|\mu|: \mu \in K\}$ is uniformly countably additive.
(iv) If μ is a finite positive measure on Σ and K is a relatively weakly compact subset of the space $L^{1}(\mu, X)$ of Bochner integrable functions, then K is uniformly integrable.
(v) If Y is a closed linear subspace of $\operatorname{fabv}(\mathcal{A}, X), Y$ is not reflexive, and X and X^{*} have the Radon-Nikodym property, then Y contains a copy of ℓ^{1} which is complemented in $\operatorname{fabv}(\mathcal{A}, X)$.

Proof. (i) For each n let $\left(A_{n_{i}}\right)_{i=1}^{k_{n}}$ be a partition of A_{n} and $\left(x_{n_{i}}^{*}\right)_{i=1}^{k_{n}}$ be points in the unit ball of X^{*} so that

$$
\sum_{i=1}^{k_{n}} x_{n_{i}}^{*} \mu_{n}\left(A_{n_{i}}\right)>\varepsilon
$$

Now define the X^{*}-valued simple function s_{n} by

$$
s_{n}=\sum_{i=1}^{k_{n}} \chi_{A_{n_{i}}} x_{n_{i}}^{*}
$$

and observe that $\int s_{n} d \mu_{n}>\varepsilon$. Define $T: c_{0} \rightarrow \operatorname{fabv}(\mathcal{A}, X)^{*}$ by

$$
T\left(\left(\gamma_{n}\right)\right)=\sum_{n} \gamma_{n} s_{n}
$$

Then T is an operator. Normalize and use Theorem 1 to conclude that some sequence $\left(\nu_{i}\right)$ in $\left\{\mu_{n}-\mu_{k}: n, k \in \mathbb{N}\right\}$ is equivalent to $\left(e_{n}^{*}\right)$ and that $\left[\nu_{n}\right]$ is complemented in $\operatorname{fabv}(\mathcal{A}, X)$.
(ii) Suppose that $\varepsilon>0$ and $\left(\mu_{i}\right)$ is a sequence in K so that $\left|\mu_{i}\right|\left(A_{i}\right)>\varepsilon$ for each i. Part (i) ensures that $\left(e_{n}^{*}\right)$ is equivalent to some sequence in $K-K$. However, this is impossible since $K-K$ is relatively weakly compact.
(iii) Since each member of K is a countably additive measure on a σ-algebra, $|K|=\{|\mu|: \mu \in K\}$ is uniformly countably additive if and only if $\lim _{i}|\mu|\left(A_{i}\right)=0$ uniformly for $\mu \in K$ whenever $\left(A_{i}\right)$ is a pairwise disjoint sequence from Σ. Deny the uniform countable additivity of $|K|$, repeat the same construction as in (i), and obtain the same contradiction as in (ii).
(iv) If $f \in L^{1}(\mu, X)$ and $A \in \Sigma$, put

$$
\nu_{f}(A)=\int_{A} f d \mu .
$$

It is well known that $\lim _{\mu(A) \rightarrow 0}\left|\nu_{f}\right|(A)=0$ uniformly for $f \in K$ (i.e., K is uniformly integrable) if and only if $\left\{\left|\nu_{f}\right|: f \in K\right\}$ is uniformly countably additive. Appeal to (iii).
(v) If Y is not reflexive, then B_{Y} is not relatively weakly compact in fabv (\mathcal{A}, X). By Theorem 4.1 of Brooks and Dinculeanu [2], there is a pairwise disjoint sequence $\left(A_{i}\right)$ in \mathcal{A}, an $\varepsilon>0$, and a sequence $\left(\mu_{i}\right)$ in B_{Y} so that $\left|\mu_{i}\right|\left(A_{i}\right)>\varepsilon$ for each i. The construction in (i) above shows that Y contains a copy of ℓ^{1} which is complemented in $\operatorname{fabv}(\mathcal{A}, X)$.

In the following corollary, \mathcal{P} denotes the σ-algebra of all subsets of \mathbb{N}.
Corollary 5 ([9, Lemma 2], [3, p. 74]). Every infinite-dimensional closed linear subspace of ℓ^{1} contains a copy of ℓ^{1} which is complemented in $\operatorname{fabv}(\mathcal{P})$ and thus in ℓ^{1}.

Proof. Every infinite-dimensional subspace of ℓ^{1} is non-reflexive.
Corollary 6 ([4, p. 149]). If (Ω, Σ, μ) is a finite measure space and X^{*} is a quotient of $L^{\infty}(\mu)$, then either X is reflexive or X contains a copy of ℓ^{1} which is complemented in $X^{* *}$. Consequently, if $X^{* *}$ is contained in $L^{1}(\mu)$, then X is reflexive or ℓ^{1} is a complemented subspace of X.

Proof. If $T: L^{\infty}(\mu) \rightarrow X^{*}$ is a surjection and X is not reflexive, then T is not weakly compact. Hence T is not unconditionally converging and is an isomorphism on a copy of c_{0}. Thus X contains a copy of ℓ^{1} which is complemented in $X^{* *}$.

If $L: X^{* *} \rightarrow L^{1}(\mu)$ is an isomorphism, then $L^{*}: L^{\infty}(\mu) \rightarrow X^{* * *}$ is a surjection, X^{*} is a quotient of $L^{\infty}(\mu)$, and X is reflexive or X contains a complemented copy of ℓ^{1}.

If $T: c_{0} \rightarrow X$ is an isomorphism, classical techniques of Singer [13] can be used to easily produce complemented copies of both c_{0} and ℓ^{1}.

Theorem 7. If $T: c_{0} \rightarrow X$ is an isomorphism, $\left(f_{n}^{*}\right)$ is any bounded sequence in X^{*} so that

$$
f_{n}^{*}\left(T\left(e_{m}\right)\right)=\delta_{n m}
$$

and $\left(h_{k}^{*}\right)$ is any subsequence of $\left(f_{n}^{*}\right)$, then $\left[h_{k}^{*}\right]$ is complemented in X^{*}. Further, if $\left(h_{k}^{*}\right)$ is w^{*}-null in X^{*} and $\left(y_{k}\right)$ is the corresponding subsequence of $\left(T\left(e_{n}\right)\right)$, then $\left[y_{k}\right]$ is complemented in X.

Proof. Suppose that $T,\left(f_{n}^{*}\right)$, and $\left(h_{k}^{*}\right)$ are as in the first statement in the theorem. Let C be a bound for $\left(\left\|f_{n}^{*}\right\|\right)$, let $\left(y_{k}^{*}\right)$ be the sequence of coefficient functionals for the basic sequence $\left(y_{k}\right)$ (which is equivalent to $\left(e_{k}\right)$), and choose positive numbers A and B so that

$$
A \sum\left|\alpha_{i}\right| \leq\left\|\sum \alpha_{i} y_{i}^{*}\right\| \leq B \sum\left|\alpha_{i}\right|
$$

for each finite sequence $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of real numbers. Therefore

$$
A \sum\left|\alpha_{i}\right| \leq\left\|\sum \alpha_{i} h_{i \mid\left[y_{n}\right]}^{*}\right\| \leq\left\|\sum \alpha_{i} h_{i}^{*}\right\| \leq C \sum\left|\alpha_{i}\right|
$$

As noted on p. 91 of Singer [13],

$$
\left\{f^{*} \in X^{*}: \sum_{k=1}^{\infty} f^{*}\left(y_{k}\right) h_{k}^{*} \text { converges }\right\}=\left[y_{k}\right]^{\perp}+\left[h_{k}^{*}\right]
$$

Since $\left(y_{k}\right) \sim\left(e_{k}\right)$ and $\left(h_{k}^{*}\right) \sim\left(e_{k}^{*}\right)$, we have $\left[y_{k}\right]^{\perp}+\left[h_{k}^{*}\right]=X^{*}$. Further, if $\left(h_{k}^{*}\right)$ is w^{*}-null, then

$$
\left\{x \in X: \sum_{k=1}^{\infty} h_{k}^{*}(x) y_{k} \text { converges }\right\}=\left[y_{k}\right]+\left[h_{k}^{*}\right]_{\perp}=X
$$

Consequently, each of these direct sums is closed. Straightforward closed graph arguments show that these direct sums are also topological.

We remark that if X is separable (and T and $\left(f_{n}^{*}\right)$ have the same meaning as in the statement of Theorem 7), then Veech's proof [15] of Sobczyk's theorem [14], [3, p. 71] simply shows that there is a bounded sequence $\left(g_{n}^{*}\right)$ in $\left.\left[T\left(e_{n}\right)\right)\right]^{\perp}$ so that $\left(f_{n}^{*}-g_{n}^{*}\right)$ is w^{*}-null. Certainly $\left(T\left(e_{n}\right), f_{n}^{*}-g_{n}^{*}\right)$ is biorthogonal in this case.

The next corollary shows that a result of Saab and Saab [12] dealing with complemented copies of c_{0} in injective tensor products is an immediate consequence of Theorem 7. Chapter 8 of [4] contains an excellent discussion of the least crossnorm tensor product completion of Banach spaces.

Corollary 8 ([12]). If X contains a copy of c_{0}, Y is an infinite-dimensional Banach space and $Z=X \otimes_{\lambda} Y$ is the least crossnorm tensor product completion of X and Y, then Z contains a complemented copy of c_{0}.

Proof. Let $\left(x_{n}\right)$ be a sequence in X so that $\left(x_{n}\right) \sim\left(e_{n}\right)$, let $\left(x_{n}^{*}\right)$ be a bounded sequence in X^{*} so that $x^{*}\left(x_{m}\right)=\delta_{n m}$, and let $\left(y_{n}^{*}\right)$ be a w^{*}-null sequence in Y^{*} so that $\left\|y_{n}^{*}\right\|=1$ for each n. (The Josefson-Nissenzweig Theorem [3] guarantees the existence of $\left(y_{n}^{*}\right)$.) Choose a sequence $\left(y_{n}\right)$ in Y
so that $\left\|y_{n}\right\| \leq 3 / 2$ and $y_{n}\left(y_{n}^{*}\right)=1$ for each n. Then $\left(x_{n}^{*} \otimes y_{n}^{*}\right)$ is a w^{*}-null sequence in $Z^{*},\left(x_{n} \otimes y_{n}\right) \sim\left(e_{n}\right)$, and $x_{n}^{*} \otimes y_{n}^{*}\left(x_{m} \otimes y_{m}\right)=x_{n}^{*}\left(x_{n}\right) y_{n}^{*}\left(y_{m}\right)$ $=\delta_{n m}$. Now appeal to Theorem 7 .

We note that precisely the same argument yields the next result.
Corollary 9. If the Banach space X contains a copy of c_{0} and Y is an infinite-dimensional space, then the Banach space $K\left(X^{*}, Y\right)$ of compact operators from X^{*} to Y contains a complemented copy of c_{0}.

REFERENCES

[1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[2] J. Brooks and N. Dinculeanu, Strong additivity, absolute continuity, and compactness in spaces of measures, J. Math. Anal. Appl. 45 (1974), 156-175.
[3] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
[4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
[5] N. Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635-646.
[6] N. Dunford and J. Schwartz, Linear Operators. Part I, Interscience, New York, 1958.
[7] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21 (1962), 161-176.
[8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
[9] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
[10] -, On strictly singular and strictly cosingular operators. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 37-41.
[11] H. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.
[12] E. Saab and P. Saab, On complemented copies of c_{0} in injective tensor products, in: Contemp. Math. 52, Amer. Math. Soc., 1986, 131-135.
[13] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.
[14] A. Sobczyk, Projections of the space m on its subspace c, Bull. Amer. Math. Soc. 47 (1941), 78-106.
[15] W. Veech, Short proof of Sobczyk's theorem, Proc. Amer. Math. Soc. 28 (1971), 627-628.

University of North Texas
Denton, Texas
E-mail: lewis@unt.edu

