A GENERAL THEOREM COVERING MANY ABSOLUTE SUMMABILITY METHODS

BY
W. T. SULAIMAN (QATAR)

Abstract

A general theorem concerning many absolute summability methods is proved.

1. Introduction. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. By σ_{n}^{δ} we denote the nth Cesàro mean of order $\delta>-1$ of the sequence $\left(s_{n}\right)$,

$$
\sigma_{n}^{\delta}=\frac{1}{A_{n}^{\delta}} \sum_{v=1}^{n} A_{n-v}^{\delta-1} s_{v}
$$

Here $A_{k}^{\delta}=\binom{k+\delta}{k}=(\delta+1) \ldots(\delta+k) / k$!. It may be easily verified that $A_{k}^{\delta} \sim k^{\delta}$. The series $\sum a_{n}$ is said to be $|C, \delta|_{k}$ summable, $k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

The transformation

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{\infty} p_{v} s_{v}
$$

defines the sequence $\left(t_{n}\right)$ of the Riesz means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients (p_{n}) (see [4]). The series $\sum a_{n}$ is said to be $\left|R, p_{n}\right|_{k}$ summable, $k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

1991 Mathematics Subject Classification: 40D15, 40F15, 40 F05.
Key words and phrases: summability, series, sequence.

The series $\sum a_{n}$ is said to be $\left|\bar{N}, p_{n}\right|_{k}$ summable, $k \geq 1$ (Bor [1]), if

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

In the special case when $p_{n}=1$ for all values of n, both $\left|R, p_{n}\right|_{k}$ and $\left|\bar{N}, p_{n}\right|_{k}$ summability are the same as $|C, 1|_{k}$ summability.

The series $\sum a_{n}$ is said to be $\left|N, p_{n}\right|$ summable if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|T_{n}-T_{n-1}\right|<\infty \tag{1}
\end{equation*}
$$

where

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v}
$$

The sequence class M is defined by

$$
M=\left\{p=\left\{p_{n}\right\}: p_{n}>0 \& \frac{p_{n+1}}{p_{n}} \leq \frac{p_{n+2}}{p_{n+1}} \leq 1, n=0,1, \ldots, P_{n} \rightarrow \infty\right\} .
$$

It is known (Das [3]) that for $p \in M,(1)$ holds iff

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|<\infty
$$

For $p \in M$, the series $\sum a_{n}$ is said to be $\left|N, p_{n}\right|_{k}$ summable, $k \geq 1$ (Sulaiman [5]), if

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}^{k}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|^{k}<\infty
$$

In the special case in which $p_{n}=A_{n}^{r-1}, r>-1,\left|N, p_{n}\right|_{k}$ summability is equivalent to $|C, r|_{k}$ summability. The series $\sum a_{n}$ is said to be $|R, \log n, 1|_{k}$ summable if it is $\left|\bar{N}, p_{n}\right|_{k}$ summable with $p_{n}=1 /(n+1)$ and $P_{n} \sim \log (n+1)$. For any sequence $\left\{f_{n}\right\}$, we define $\Delta f_{n}=f_{n}-f_{n+1}$.
2. Main result. We prove the following:

Theorem 1. Let $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{G_{n}\right\}$, and $\left\{H_{n}\right\}$ be sequences of positive constants such that $\left\{f_{n}\right\} \in M$ and $F_{n}=\sum_{v=1}^{n} f_{v} \rightarrow \infty$ as $n \rightarrow \infty$. Let $\left\{\varepsilon_{n}\right\}$ be a sequence of constants. Given a sequence $\left\{x_{n}\right\}$ define

$$
X_{n}=\frac{1}{G_{n}} \sum_{v=1}^{n} g_{v} x_{v}, \quad Y_{n}=\frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n} v f_{n-v} x_{v} \varepsilon_{n}
$$

and assume

$$
\begin{align*}
g_{n+1} & =O\left(g_{n}\right) \tag{2}\\
\frac{H_{n+1} F_{n+1}}{G_{n+1}} & =O\left(\frac{H_{n} F_{n}}{G_{n}}\right) \tag{3}
\end{align*}
$$

$$
\begin{align*}
\Delta g_{n} & =O\left(\frac{g_{n+1}}{n}\right), \tag{4}\\
\Delta\left(\frac{g_{n} H_{n} F_{n}}{n G_{n}}\right) & =O\left(\frac{g_{n} H_{n}}{n G_{n}}\right), \tag{5}\\
\Delta\left(\frac{n G_{n}}{g_{n} H_{n} F_{n}} \varepsilon_{n}\right) & =O\left(\frac{1}{F_{n}}\right), \\
\sum_{n=v+1}^{\infty} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}} & =O\left(\frac{1}{H_{v}^{k}}\right) .
\end{align*}
$$

Let $k \geq 1$. Then a necessary and sufficient condition for the implication:

$$
\text { if } \sum\left|X_{n}\right|^{k}<\infty \text { then } \sum\left|Y_{n}\right|^{k}<\infty
$$

to hold (for any sequence $\left\{x_{n}\right\}$) is
(i) $\varepsilon_{n}=O\left(g_{n} H_{n} F_{n} /\left(n G_{n}\right)\right)$, and
(ii) $\Delta \varepsilon_{n}=O\left(g_{n+1} H_{n} /\left(n G_{n}\right)\right)$.

3. Lemmas

Lemma 1 (Bor [2]). Let $k \geq 1$, and let $A=\left(a_{n v}\right)$ be an infinite matrix that maps ℓ^{k} into ℓ^{k}. Then $a_{n v}=O(1)$ for all n and v.

Proof. By the Closed Graph Theorem, A defines a bounded linear mapping in ℓ^{k}. Then the bound $\left|a_{n v}\right| \leq C$ follows, where C is the norm of A.

Lemma 2 (Sulaiman [6]). Let $p \in M$. Then for $0<r \leq 1$,

$$
\sum_{n=v+1}^{\infty} \frac{p_{n-v-1}}{n^{r} P_{n-1}}=O\left(v^{-r}\right) .
$$

Lemma 3. Suppose that $\varepsilon_{n}=O\left(\alpha_{n} \beta_{n}\right), \alpha_{n}, \beta_{n}>0, \alpha_{n+1} \beta_{n+1}=$ $O\left(\alpha_{n} \beta_{n}\right), \Delta\left(\alpha_{n} \beta_{n}\right)=O\left(\alpha_{n}\right)$ and $\Delta\left(\varepsilon_{n} /\left(\alpha_{n} \beta_{n}\right)\right)=O\left(1 / \beta_{n}\right)$. Then $\Delta \varepsilon_{n}=$ $O\left(\alpha_{n}\right)$.

Proof. We have $\varepsilon_{n}=k_{n} \alpha_{n} \beta_{n}$ where $k_{n}=\varepsilon_{n} /\left(\alpha_{n} \beta_{n}\right)=O(1)$. Therefore

$$
\begin{aligned}
\Delta \varepsilon_{n} & =k_{n} \Delta\left(\alpha_{n} \beta_{n}\right)+\Delta k_{n}\left(\alpha_{n+1} \beta_{n+1}\right) \\
& =O(1) O\left(\alpha_{n}\right)+O\left(1 / \beta_{n}\right) O\left(\alpha_{n} \beta_{n}\right)=O\left(\alpha_{n}\right) .
\end{aligned}
$$

4. Proof of Theorem 1. Sufficiency. We have via Abel's transformation:

$$
\begin{aligned}
Y_{n} & =\frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n} g_{v} x_{v}\left(v \frac{f_{n-v}}{g_{v}} \varepsilon_{v}\right) \\
& =\frac{1}{F_{n-1} H_{n}}\left[\sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} g_{r} x_{r}\right) \Delta_{v}\left(v \frac{f_{n-v}}{g_{v}} \varepsilon_{v}\right)+\left(\sum_{r=1}^{n} g_{r} x_{r}\right) n \frac{f_{0}}{g_{n}} \varepsilon_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n-1} G_{v} X_{v}\left\{-\frac{f_{n-v}}{g_{v}} \varepsilon_{v}+(v+1) \Delta g_{v}^{-1} f_{n-v} \varepsilon_{v}\right. \\
& \left.+(v+1) g_{v+1}^{-1} \Delta_{v} f_{n-v} \varepsilon_{v}+(v+1) g_{v+1}^{-1} f_{n-v-1} \Delta \varepsilon_{v}\right\}+\frac{n G_{n} X_{n} f_{0}}{F_{n-1} H_{n} g_{n}} \varepsilon_{n} \\
= & Y_{n, 1}+Y_{n, 2}+Y_{n, 3}+Y_{n, 4}+Y_{n, 5}, \quad \text { say. }
\end{aligned}
$$

By Minkowski's inequality,

$$
\sum_{n=1}^{m}\left|Y_{n, 1}\right|^{k}=O(1) \sum_{n=1}^{m} \sum_{r=1}^{5}\left|Y_{n, r}\right|^{k} .
$$

Applying Hölder's inequality gives

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left|Y_{n, 1}\right|^{k}= & \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1} f_{n-v} \frac{G_{v}}{g_{v}} X_{v} \varepsilon_{v}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \\
& \times\left\{\sum_{v=1}^{n-1} f_{n-v}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}\right\}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}}\right\}^{k-1} \\
\leq & O(1) \sum_{v=1}^{m}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}} \\
\leq & O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}, \\
\sum_{n=2}^{m+1}\left|Y_{n, 2}\right|^{k}= & \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1}(v+1) G_{v} \Delta g_{v}^{-1} f_{n-v} X_{v} \varepsilon_{v}\right|^{k} \\
\leq & O(1) \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \\
& \times\left\{\left.\left.\sum_{v=1}^{n-1} v^{k} G_{v}^{k}\left|\Delta g_{v}^{-1}\right|^{k} f_{n-v}\right|^{2} X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}\right\}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}}\right\}^{k-1} \\
\leq & O(1) \sum_{v=1}^{m} v^{k} G_{v}^{k}\left|\Delta g_{v}^{-1}\right|\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{v}{H_{v}}\right)^{k} G_{v}^{k}\left|\Delta g_{v}\right|^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \leq O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}, \\
& \sum_{n=2}^{m+1}\left|Y_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1}(v+1) g_{v+1}^{-1} G_{v} \Delta_{v} f_{n-v} X_{v} \varepsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}} \\
& \times\left\{\sum_{v=1}^{n-1} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|\Delta_{v} f_{n-v}\right|\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}\right\}\left\{\sum_{v=1}^{n-1}\left|\Delta f_{n-v}\right|\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} v^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{\left|\Delta_{v} f_{n-v}\right|}{F_{n-1}^{k} H_{n}^{k}} \\
& \leq O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\varepsilon_{v}\right|^{k}, \\
& \sum_{n=2}^{m+1}\left|Y_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1} v g_{v+1}^{-1} f_{n-v-1} G_{v} X_{v} \Delta \varepsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \\
& \times\left\{\sum_{v=1}^{n-1} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k} f_{n-v-1}\left|X_{v}\right|^{k}\left|\Delta \varepsilon_{v}\right|^{k}\right\}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v-1}}{F_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|X_{v}\right|^{k}\left|\Delta \varepsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{f_{n-v-1}}{F_{n-1} H_{n}^{k}} \\
& \leq O(1) \sum_{v=1}^{m}\left(\frac{v}{H_{v}}\right)^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|X_{v}\right|^{k}\left|\Delta \varepsilon_{v}\right|^{k} \\
& \sum_{n=1}^{m}\left|Y_{n, 5}\right|^{k}=\sum_{n=1}^{m}\left|\frac{n G_{n} X_{n} f_{0} \varepsilon_{n}}{F_{n-1} H_{n} g_{n}}\right|^{k} \\
& \leq O(1) \sum_{n=1}^{m}\left(\frac{n}{F_{n}}\right)^{k}\left(\frac{G_{n}}{g_{n}}\right)^{k} \frac{1}{H_{n}^{k}}\left|X_{n}\right|^{k}\left|\varepsilon_{n}\right|^{k}
\end{aligned}
$$

Necessity of (i). By the result of Bor [1], the transformation from $\left(X_{n}\right)$ into $\left(Y_{n}\right)$ maps ℓ^{k} into ℓ^{k} and hence the diagonal elements of this transformation are bounded (by Lemma 1), so (i) is necessary.

Necessity of (ii). This follows from Lemma 3 and necessity of (i) by taking $\alpha_{n} \equiv g_{n} H_{n} /\left(n G_{n}\right)$ and $\beta_{n} \equiv F_{n}$, using (2).

This completes the proof of the theorem.
REmark. (1) If we put $x_{n}=a_{n}, f_{n}=p_{n}$ and $H_{n}=n^{1 / k}$ in the formula defining $Y_{n}, p \in M$, then the condition $\sum\left|Y_{n}\right|^{k}<\infty$ is equivalent to $\left|N, p_{n}\right|_{k}$ summability of $\sum a_{n} \varepsilon_{n}$ (note that P_{n} / P_{n-1} is a bounded sequence).
(2) If we put $x_{n}=a_{n}, Q_{n}=q_{0}+\ldots+q_{n}, g_{n}=Q_{n-1}$ and $G_{n}=$ $Q_{n-1}\left(Q_{n} / q_{n}\right)^{1 / k}$ in the formula defining X_{n}, then the condition $\sum\left|X_{n}\right|^{k}<$ ∞ simply means $\left|\bar{N}, q_{n}\right|_{k}$ summability of $\sum a_{n}$.
(3) If we put $x_{n}=a_{n}, Q_{n}=q_{0}+\ldots+q_{n}, g_{n}=Q_{n-1}$ and $G_{n}=$ $n^{1 / k-1} Q_{n} Q_{n-1} / q_{n}$ in the formula defining X_{n}, then the condition $\sum\left|X_{n}\right|^{k}$ $<\infty$ means $\left|R, q_{n}\right|_{k}$ summability of $\sum a_{n}$.
5. Applications. Throughout the rest of the paper we assume that $P_{n} \rightarrow \infty$ and $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

THEOREM 2. Let $p \in M$ and let $n q_{n}=O\left(Q_{n}\right), Q_{n}=O\left(Q_{n-1}\right)$, and

$$
\begin{gathered}
\frac{P_{n+1}}{P_{n}}=O\left(\left(\frac{Q_{n}}{Q_{n-1}}\right)\left(\frac{q_{n} Q_{n+1}}{q_{n+1} Q_{n}}\right)^{1 / k}\right) \\
\Delta\left(\frac{P_{n}}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right)=O\left(\frac{1}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right) \\
\Delta\left(\frac{n}{P_{n}}\left(\frac{Q_{n}}{n q_{n}}\right)^{1 / k} \varepsilon_{n}\right)=O\left(\frac{1}{P_{n}}\right)
\end{gathered}
$$

Then a necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $\left|N, p_{n}\right|_{k}$ summable whenever $\sum a_{n}$ is $\left|\bar{N}, q_{n}\right|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O\left(\frac{P_{n}}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right), \quad \Delta \varepsilon_{n}=O\left(\frac{1}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right)
$$

Theorem 3. Let $p \in M$ and let $n q_{n}=O\left(Q_{n}\right), Q_{n}=O\left(Q_{n-1}\right)$, and

$$
\begin{gathered}
\frac{P_{n+1}}{P_{n}}=O\left(\frac{q_{n} Q_{n+1}}{q_{n+1} Q_{n}}\right), \quad \Delta\left(\frac{P_{n} q_{n}}{Q_{n}}\right)=O\left(\frac{q_{n}}{Q_{n}}\right) \\
\Delta\left(\frac{Q_{n}}{P_{n} q_{n}} \varepsilon_{n}\right)=O\left(\frac{1}{P_{n}}\right)
\end{gathered}
$$

Then a necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $\left|N, p_{n}\right|_{k}$ summable whenever $\sum a_{n}$ is $\left|R, q_{n}\right|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O\left(P_{n} q_{n} / Q_{n}\right), \quad \Delta \varepsilon_{n}=O\left(q_{n} / Q_{n}\right)
$$

The following results are consequences of Theorem 2.

Corollary 4. A necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $|C, \alpha|_{k}$ summable, $0<\alpha<1$, whenever $\sum a_{n}$ is $|C, 1|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O\left(n^{\alpha-1}\right), \quad \Delta \varepsilon_{n}=O\left(n^{-1}\right)
$$

provided that $\Delta\left(n^{1-\alpha} \varepsilon_{n}\right)=O\left(n^{-\alpha}\right)$.
Corollary 5. A necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $|N, 1 /(n+1)|_{k}$ summable whenever $\sum a_{n}$ is $|C, 1|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O(\log n / n), \quad \Delta \varepsilon_{n}=O\left(n^{-1}\right)
$$

provided that

$$
\Delta\left(\frac{n}{\log n} \varepsilon_{n}\right)=O\left(\frac{1}{\log n}\right)
$$

Corollary 6. A necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $|N, 1 /(n+1)|_{k}$ summable whenever $\sum a_{n}$ is $|R, \log n, 1|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O\left\{(\log n)^{1-1 / k} / n\right\}, \quad \Delta \varepsilon_{n}=O\left\{1 / n(\log n)^{1 / k}\right\}
$$

provided that

$$
\Delta\left(\frac{n}{(\log n)^{1-1 / k}} \varepsilon_{n}\right)=O\left(\frac{1}{\log n}\right)
$$

Corollary 7. A necessary and sufficient condition that $\sum a_{n} \varepsilon_{n}$ be $|C, \alpha|_{k}$ summable, $0<\alpha \leq 1$, whenever $\sum a_{n}$ is $|R, \log n, 1|_{k}$ summable, $k \geq 1$, is

$$
\varepsilon_{n}=O\left\{n^{\alpha-1} /(\log n)^{1 / k}\right\}, \quad \Delta \varepsilon_{n}=O\left\{1 /\left(n(\log n)^{1 / k}\right)\right\}
$$

provided that $\Delta\left(n^{1-\alpha}(\log n)^{1 / k} \varepsilon_{n}\right)=O\left(n^{-\alpha}\right)$.
Acknowledgments. The author is grateful to the referee for his kind advice and valuable suggestions during the preparation of this paper.

REFERENCES

[1] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Proc. Amer. Math. Soc. 94 (1985), 419422.
[2] -, On the relative strength of two absolute summability methods, ibid. 113 (1991), 1009-1012.
[3] G. Das, Tauberian theorems for absolute Nörlund summability, Proc. London Math. Soc. 19 (1969), 357-384.
[4] G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949.
[5] W. T. Sulaiman, Notes on two summability methods, Pure Appl. Math. Sci. 31 (1990), 59-68.
[6] W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc. 118 (1993), 1139-1145.

Department of Mathematics
College of Science
University of Qatar
Qatar
E-mail: waad@qu.edu.qa
revised 2 December 1998

