VOL. 80

1999

NO. 2

A GENERAL THEOREM COVERING MANY ABSOLUTE SUMMABILITY METHODS

 $_{\rm BY}$

W. T. SULAIMAN (QATAR)

Abstract. A general theorem concerning many absolute summability methods is proved.

1. Introduction. Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) . By σ_n^{δ} we denote the *n*th Cesàro mean of order $\delta > -1$ of the sequence (s_n) ,

$$\sigma_n^{\delta} = \frac{1}{A_n^{\delta}} \sum_{v=1}^n A_{n-v}^{\delta-1} s_v.$$

Here $A_k^{\delta} = {\binom{k+\delta}{k}} = (\delta+1)\dots(\delta+k)/k!$. It may be easily verified that $A_k^{\delta} \sim k^{\delta}$. The series $\sum a_n$ is said to be $|C, \delta|_k$ summable, $k \ge 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} |\sigma_n^{\delta} - \sigma_{n-1}^{\delta}|^k < \infty.$$

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad \text{as } n \to \infty.$$

The transformation

$$t_n = \frac{1}{P_n} \sum_{v=0}^{\infty} p_v s_v$$

defines the sequence (t_n) of the Riesz means of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [4]). The series $\sum a_n$ is said to be $|R, p_n|_k$ summable, $k \ge 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} |t_n - t_{n-1}|^k < \infty.$$

1991 Mathematics Subject Classification: 40D15, 40F15, 40F05. Key words and phrases: summability, series, sequence.

[245]

The series $\sum a_n$ is said to be $|\overline{N}, p_n|_k$ summable, $k \ge 1$ (Bor [1]), if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty.$$

In the special case when $p_n = 1$ for all values of n, both $|R, p_n|_k$ and $|\overline{N}, p_n|_k$ summability are the same as $|C, 1|_k$ summability.

The series $\sum a_n$ is said to be $|N, p_n|$ summable if

(1)
$$\sum_{n=1}^{\infty} |T_n - T_{n-1}| < \infty$$

where

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_{n-v} s_v.$$

The sequence class M is defined by

$$M = \left\{ p = \{p_n\} : p_n > 0 \& \frac{p_{n+1}}{p_n} \le \frac{p_{n+2}}{p_{n+1}} \le 1, \ n = 0, 1, \dots, \ P_n \to \infty \right\}.$$

It is known (Das [3]) that for $p \in M$, (1) holds iff

$$\sum_{n=1}^{\infty} \frac{1}{nP_n} \Big| \sum_{v=1}^n p_{n-v} v a_v \Big| < \infty.$$

For $p \in M$, the series $\sum a_n$ is said to be $|N, p_n|_k$ summable, $k \ge 1$ (Sulaiman [5]), if

$$\sum_{n=1}^{\infty} \frac{1}{n P_n^k} \Big| \sum_{v=1}^n p_{n-v} v a_v \Big|^k < \infty.$$

In the special case in which $p_n = A_n^{r-1}$, r > -1, $|N, p_n|_k$ summability is equivalent to $|C, r|_k$ summability. The series $\sum a_n$ is said to be $|R, \log n, 1|_k$ summable if it is $|\overline{N}, p_n|_k$ summable with $p_n = 1/(n+1)$ and $P_n \sim \log(n+1)$. For any sequence $\{f_n\}$, we define $\Delta f_n = f_n - f_{n+1}$.

2. Main result. We prove the following:

THEOREM 1. Let $\{f_n\}, \{g_n\}, \{G_n\}, and \{H_n\}$ be sequences of positive constants such that $\{f_n\} \in M$ and $F_n = \sum_{v=1}^n f_v \to \infty$ as $n \to \infty$. Let $\{\varepsilon_n\}$ be a sequence of constants. Given a sequence $\{x_n\}$ define

$$X_n = \frac{1}{G_n} \sum_{v=1}^n g_v x_v, \qquad Y_n = \frac{1}{F_{n-1}H_n} \sum_{v=1}^n v f_{n-v} x_v \varepsilon_n$$

and assume

(2)
$$g_{n+1} = O(g_n),$$

(3)
$$\frac{H_{n+1}F_{n+1}}{G_{n+1}} = O\left(\frac{H_nF_n}{G_n}\right),$$

(4)
$$\Delta g_n = O\left(\frac{g_{n+1}}{n}\right)$$

(5)
$$\Delta\left(\frac{g_n H_n F_n}{nG_n}\right) = O\left(\frac{g_n H_n}{nG_n}\right)$$

(6)
$$\Delta\left(\frac{nG_n}{g_nH_nF_n}\varepsilon_n\right) = O\left(\frac{1}{F_n}\right),$$

(7)
$$\sum_{n=v+1}^{\infty} \frac{f_{n-v}}{F_{n-1}H_n^k} = O\left(\frac{1}{H_v^k}\right).$$

Let $k \ge 1$. Then a necessary and sufficient condition for the implication: if $\sum |X_n|^k < \infty$ then $\sum |Y_n|^k < \infty$

if
$$\sum |X_n|^{\kappa} < \infty$$
 then $\sum |Y_n|^{\kappa} < \infty$

to hold (for any sequence $\{x_n\}$) is

(i)
$$\varepsilon_n = O(g_n H_n F_n / (nG_n))$$
, and
(ii) $\Delta \varepsilon_n = O(g_{n+1} H_n / (nG_n))$.

3. Lemmas

LEMMA 1 (Bor [2]). Let $k \ge 1$, and let $A = (a_{nv})$ be an infinite matrix that maps ℓ^k into ℓ^k . Then $a_{nv} = O(1)$ for all n and v.

Proof. By the Closed Graph Theorem, A defines a bounded linear mapping in ℓ^k . Then the bound $|a_{nv}| \leq C$ follows, where C is the norm of A.

LEMMA 2 (Sulaiman [6]). Let $p \in M$. Then for $0 < r \leq 1$,

$$\sum_{n=v+1}^{\infty} \frac{p_{n-v-1}}{n^r P_{n-1}} = O(v^{-r}).$$

LEMMA 3. Suppose that $\varepsilon_n = O(\alpha_n \beta_n)$, $\alpha_n, \beta_n > 0$, $\alpha_{n+1}\beta_{n+1} = O(\alpha_n \beta_n)$, $\Delta(\alpha_n \beta_n) = O(\alpha_n)$ and $\Delta(\varepsilon_n/(\alpha_n \beta_n)) = O(1/\beta_n)$. Then $\Delta \varepsilon_n = O(\alpha_n)$.

Proof. We have $\varepsilon_n = k_n \alpha_n \beta_n$ where $k_n = \varepsilon_n / (\alpha_n \beta_n) = O(1)$. Therefore $\Delta \varepsilon_n = k_n \Delta(\alpha_n \beta_n) + \Delta k_n (\alpha_{n+1} \beta_{n+1})$ $= O(1)O(\alpha_n) + O(1/\beta_n)O(\alpha_n \beta_n) = O(\alpha_n).$

4. Proof of Theorem 1. *Sufficiency*. We have via Abel's transformation:

$$Y_n = \frac{1}{F_{n-1}H_n} \sum_{v=1}^n g_v x_v \left(v \frac{f_{n-v}}{g_v} \varepsilon_v \right)$$
$$= \frac{1}{F_{n-1}H_n} \left[\sum_{v=1}^{n-1} \left(\sum_{r=1}^v g_r x_r \right) \Delta_v \left(v \frac{f_{n-v}}{g_v} \varepsilon_v \right) + \left(\sum_{r=1}^n g_r x_r \right) n \frac{f_0}{g_n} \varepsilon_n \right]$$

$$= \frac{1}{F_{n-1}H_n} \sum_{v=1}^{n-1} G_v X_v \left\{ -\frac{f_{n-v}}{g_v} \varepsilon_v + (v+1) \Delta g_v^{-1} f_{n-v} \varepsilon_v + (v+1) g_{v+1}^{-1} \Delta_v f_{n-v} \varepsilon_v + (v+1) g_{v+1}^{-1} f_{n-v-1} \Delta \varepsilon_v \right\} + \frac{n G_n X_n f_0}{F_{n-1} H_n g_n} \varepsilon_n$$

= $Y_{n,1} + Y_{n,2} + Y_{n,3} + Y_{n,4} + Y_{n,5}$, say.

By Minkowski's inequality,

$$\sum_{n=1}^{m} |Y_{n,1}|^k = O(1) \sum_{n=1}^{m} \sum_{r=1}^{5} |Y_{n,r}|^k.$$

Applying Hölder's inequality gives

$$\begin{split} \sum_{n=2}^{m+1} |Y_{n,1}|^k &= \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^k H_n^k} \left| \sum_{v=1}^{n-1} f_{n-v} \frac{G_v}{g_v} X_v \varepsilon_v \right|^k \\ &\leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_n^k} \\ &\times \left\{ \sum_{v=1}^{n-1} f_{n-v} \left(\frac{G_v}{g_v} \right)^k |X_v|^k |\varepsilon_v|^k \right\} \left\{ \sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}} \right\}^{k-1} \\ &\leq O(1) \sum_{v=1}^m \left(\frac{G_v}{g_v} \right)^k |X_v|^k |\varepsilon_v|^k \sum_{n=v+1}^{m+1} \frac{f_{n-v}}{F_{n-1} H_n^k} \\ &\leq O(1) \sum_{v=1}^m \frac{1}{H_v^k} \left(\frac{v}{F_v} \right)^k \left(\frac{G_v}{g_v} \right)^k |X_v|^k |\varepsilon_v|^k, \\ \\ \sum_{n=2}^{m+1} |Y_{n,2}|^k &= \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^k H_n^k} \left| \sum_{v=1}^{n-1} (v+1) G_v \Delta g_v^{-1} f_{n-v} X_v \varepsilon_v \right|^k \\ &\leq O(1) \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_n^k} \\ &\times \left\{ \sum_{v=1}^{n-1} v^k G_v^k |\Delta g_v^{-1}|^k f_{n-v} |X_v|^k |\varepsilon_v|^k \right\} \left\{ \sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}} \right\}^{k-1} \\ &\leq O(1) \sum_{v=1}^m v^k G_v^k |\Delta g_v^{-1}|^k K_v|^k |\varepsilon_v|^k |\varepsilon_v|^k \\ &\leq O(1) \sum_{v=1}^m \left(\frac{v}{H_v} \right)^k G_v^k \frac{|\Delta g_v|^k}{g_v^k g_{v+1}^k} |X_v|^k |\varepsilon_v|^k \end{split}$$

$$\begin{split} &\leq O(1) \sum_{v=1}^{m} \frac{1}{H_v^k} \left(\frac{v}{F_v}\right)^k \left(\frac{G_v}{g_v}\right)^k |X_v|^k |\varepsilon_v|^k, \\ &\sum_{n=2}^{m+1} |Y_{n,3}|^k = \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k-1} H_n^k} \left|\sum_{v=1}^{n-1} (v+1) g_{v+1}^{-1} G_v \Delta_v f_{n-v} X_v \varepsilon_v\right|^k \\ &\leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k-1} H_n^k} \\ &\quad \times \left\{\sum_{v=1}^{n-1} v^k \left(\frac{G_v}{g_{v+1}}\right)^k |\Delta_v f_{n-v}| |X_v|^k |\varepsilon_v|^k\right\} \left\{\sum_{v=1}^{n-1} |\Delta f_{n-v}|\right\}^{k-1} \\ &\leq O(1) \sum_{v=1}^m v^k \left(\frac{G_v}{g_v}\right)^k |X_v|^k |\varepsilon_v|^k \sum_{n=v+1}^{m+1} \frac{|\Delta v f_{n-v}|}{F_{n-1}^k H_n^k} \\ &\leq O(1) \sum_{v=1}^m \frac{1}{H_v^k} \left(\frac{v}{F_v}\right)^k \left(\frac{G_v}{g_v}\right)^k |X_v|^k |\varepsilon_v|^k, \\ &\sum_{n=2}^{m+1} |Y_{n,4}|^k = \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^k H_n^k} \left|\sum_{v=1}^{n-1} v g_{v+1}^{-1} f_{n-v-1} G_v X_v \Delta \varepsilon_v\right|^k \\ &\leq \sum_{v=1}^{m+1} \frac{1}{F_{n-1} H_n^k} \\ &\quad \times \left\{\sum_{v=1}^{n-1} v^k \left(\frac{G_v}{g_{v+1}}\right)^k |X_v|^k |\Delta \varepsilon_v|^k \sum_{n=v+1}^{m-1} \frac{f_{n-v-1}}{F_{n-1} H_n^k} \right\} \\ &\leq O(1) \sum_{v=1}^m v^k \left(\frac{G_v}{g_{v+1}}\right)^k |X_v|^k |\Delta \varepsilon_v|^k \sum_{n=v+1}^{m+1} \frac{f_{n-v-1}}{F_{n-1} H_n^k} \\ &\leq O(1) \sum_{v=1}^m \left(\frac{v}{H_v}\right)^k \left(\frac{G_v}{g_{v+1}}\right)^k |X_v|^k |\Delta \varepsilon_v|^k, \\ &\sum_{n=v+1}^m |Y_{n,5}|^k = \sum_{n=1}^m \left|\frac{nG_n X_n f_0 \varepsilon_n}{F_{n-1} H_n g_n}\right|^k \\ &\leq O(1) \sum_{n=1}^m \left(\frac{n}{F_n}\right)^k \left(\frac{G_n}{g_n}\right)^k \frac{1}{H_n^k} |X_n|^k |\varepsilon_n|^k. \end{split}$$

Necessity of (i). By the result of Bor [1], the transformation from (X_n) into (Y_n) maps ℓ^k into ℓ^k and hence the diagonal elements of this transformation are bounded (by Lemma 1), so (i) is necessary.

Necessity of (ii). This follows from Lemma 3 and necessity of (i) by taking $\alpha_n \equiv g_n H_n/(nG_n)$ and $\beta_n \equiv F_n$, using (2).

This completes the proof of the theorem.

REMARK. (1) If we put $x_n = a_n$, $f_n = p_n$ and $H_n = n^{1/k}$ in the formula defining $Y_n, p \in M$, then the condition $\sum |Y_n|^k < \infty$ is equivalent to $|N, p_n|_k$ summability of $\sum a_n \varepsilon_n$ (note that P_n/P_{n-1} is a bounded sequence).

(2) If we put $x_n = a_n$, $Q_n = q_0 + \ldots + q_n$, $g_n = Q_{n-1}$ and $G_n = Q_{n-1}(Q_n/q_n)^{1/k}$ in the formula defining X_n , then the condition $\sum |X_n|^k < \infty$ simply means $|\overline{N}, q_n|_k$ summability of $\sum a_n$.

(3) If we put $x_n = a_n$, $Q_n = q_0 + \ldots + q_n$, $g_n = Q_{n-1}$ and $G_n = n^{1/k-1}Q_nQ_{n-1}/q_n$ in the formula defining X_n , then the condition $\sum |X_n|^k < \infty$ means $|R, q_n|_k$ summability of $\sum a_n$.

5. Applications. Throughout the rest of the paper we assume that $P_n \to \infty$ and $Q_n \to \infty$ as $n \to \infty$.

THEOREM 2. Let $p \in M$ and let $nq_n = O(Q_n)$, $Q_n = O(Q_{n-1})$, and

$$\frac{P_{n+1}}{P_n} = O\left(\left(\frac{Q_n}{Q_{n-1}}\right)\left(\frac{q_nQ_{n+1}}{q_{n+1}Q_n}\right)^{1/k}\right),$$
$$\Delta\left(\frac{P_n}{n}\left(\frac{nq_n}{Q_n}\right)^{1/k}\right) = O\left(\frac{1}{n}\left(\frac{nq_n}{Q_n}\right)^{1/k}\right),$$
$$\Delta\left(\frac{n}{P_n}\left(\frac{Q_n}{nq_n}\right)^{1/k}\varepsilon_n\right) = O\left(\frac{1}{P_n}\right).$$

Then a necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|N, p_n|_k$ summable whenever $\sum a_n$ is $|\overline{N}, q_n|_k$ summable, $k \ge 1$, is

$$\varepsilon_n = O\left(\frac{P_n}{n} \left(\frac{nq_n}{Q_n}\right)^{1/k}\right), \qquad \Delta \varepsilon_n = O\left(\frac{1}{n} \left(\frac{nq_n}{Q_n}\right)^{1/k}\right).$$

THEOREM 3. Let $p \in M$ and let $nq_n = O(Q_n)$, $Q_n = O(Q_{n-1})$, and

$$\frac{P_{n+1}}{P_n} = O\left(\frac{q_n Q_{n+1}}{q_{n+1} Q_n}\right), \qquad \Delta\left(\frac{P_n q_n}{Q_n}\right) = O\left(\frac{q_n}{Q_n}\right),$$
$$\Delta\left(\frac{Q_n}{P_n q_n}\varepsilon_n\right) = O\left(\frac{1}{P_n}\right).$$

Then a necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|N, p_n|_k$ summable whenever $\sum a_n$ is $|R, q_n|_k$ summable, $k \ge 1$, is

$$\varepsilon_n = O(P_n q_n / Q_n), \quad \Delta \varepsilon_n = O(q_n / Q_n).$$

The following results are consequences of Theorem 2.

COROLLARY 4. A necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|C, \alpha|_k$ summable, $0 < \alpha < 1$, whenever $\sum a_n$ is $|C, 1|_k$ summable, $k \ge 1$, is

$$\varepsilon_n = O(n^{\alpha - 1}), \qquad \Delta \varepsilon_n = O(n^{-1}),$$

provided that $\Delta(n^{1-\alpha}\varepsilon_n) = O(n^{-\alpha}).$

COROLLARY 5. A necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|N, 1/(n+1)|_k$ summable whenever $\sum a_n$ is $|C, 1|_k$ summable, $k \ge 1$, is

$$\varepsilon_n = O(\log n/n), \quad \Delta \varepsilon_n = O(n^{-1}).$$

provided that

$$\Delta\left(\frac{n}{\log n}\varepsilon_n\right) = O\left(\frac{1}{\log n}\right).$$

COROLLARY 6. A necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|N, 1/(n+1)|_k$ summable whenever $\sum a_n$ is $|R, \log n, 1|_k$ summable, $k \ge 1$, is

$$\varepsilon_n = O\{(\log n)^{1-1/k}/n\}, \qquad \Delta \varepsilon_n = O\{1/n(\log n)^{1/k}\},$$

provided that

$$\Delta\left(\frac{n}{(\log n)^{1-1/k}}\varepsilon_n\right) = O\left(\frac{1}{\log n}\right).$$

COROLLARY 7. A necessary and sufficient condition that $\sum a_n \varepsilon_n$ be $|C, \alpha|_k$ summable, $0 < \alpha \leq 1$, whenever $\sum a_n$ is $|R, \log n, 1|_k$ summable, $k \geq 1$, is

$$\varepsilon_n = O\{n^{\alpha - 1}/(\log n)^{1/k}\}, \quad \Delta \varepsilon_n = O\{1/(n(\log n)^{1/k})\},$$

provided that $\Delta(n^{1-\alpha}(\log n)^{1/k}\varepsilon_n) = O(n^{-\alpha}).$

Acknowledgments. The author is grateful to the referee for his kind advice and valuable suggestions during the preparation of this paper.

REFERENCES

- [1] H. Bor, $On |\overline{N}, p_n|_k$ summability factors, Proc. Amer. Math. Soc. 94 (1985), 419-422.
- [2] —, On the relative strength of two absolute summability methods, ibid. 113 (1991), 1009–1012.
- G. Das, Tauberian theorems for absolute Nörlund summability, Proc. London Math. Soc. 19 (1969), 357–384.
- [4] G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949.
- [5] W. T. Sulaiman, Notes on two summability methods, Pure Appl. Math. Sci. 31 (1990), 59-68.

 [6] W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc. 118 (1993), 1139–1145.

Department of Mathematics College of Science University of Qatar Qatar E-mail: waad@qu.edu.qa

> Received 23 January 1998; revised 2 December 1998