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TIGHTNESS AND π-CHARACTER IN CENTERED SPACES

BY

MURRAY BELL (WINNIPEG, MANITOBA)

Abstract. We continue an investigation into centered spaces, a generalization of
dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from
tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X
has uncountable tightness, then t(X) = sup{κ : 2κ ⊂ X}. The relationships between 9
popular cardinal functions for the class of centered spaces are justified. An example is
constructed which shows, unlike the dyadic and polyadic properties, that the centered
property is not preserved by passage to a zeroset.

1. Introduction. For S a non-empty collection of non-empty subsets of
a set X, put Cen(S) = {T ⊂ S : T is centered, i.e., whenever F ⊂ T is finite,
then

⋂
F 6= ∅}. Give Cen(S) the topology that uses {s+, s− : s ∈ S} as a

subbase, where s+ = {T ∈ Cen(S) : s ∈ T} and s− = {T ∈ Cen(S) : s 6∈ T}.
For A ⊂ X, put A+ = {T ∈ Cen(S) : A ⊂ T} and A− = {T ∈ Cen(S) :
A ∩ T = ∅}. Then {A+ ∩B− : A,B are finite subsets of X and A ∩B = ∅}
forms a clopen base for Cen(S). The boolean spaces Cen(S) have served
topologists well as a rich source of examples. Although isolated uses of
these kind of spaces existed, they were formally introduced (by an equivalent
definition) by Talagrand [14] who called them adequate compact spaces (at
the time of [4], I was not aware of this reference). If we consider the two
extreme examples: the Cantor cube 2κ (where S is a centered collection
of cardinality κ) and the 1-point compactification of a discrete space ακ

(where S is a disjoint collection of cardinality κ), then their topological
sum 2κ + ακ, for κ > ω, is not of the form Cen(S). By studying Hausdorff
continuous images of Cen(S) (these are centered spaces [4]), we include these
simple combinations. Independently of the author, Plebanek [11] began an
investigation into centered spaces which he called AD-compact spaces.

In this paper, we expand our investigations into centered spaces to in-
clude tightness and π-character considerations. In Section 2 we look at a
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third way of viewing the spaces Cen(S); this way, compact c-sets, is pre-
sented in the fashion of the weakly dyadic spaces (a generalization of centered
spaces) introduced by Kulpa and Turzański [10]; this way is more akin to
the dyadic approach and will be expedient for this paper. We acknowledge
a debt to the paper of Gerlits [7] and collect relevant results in Section 3.
In Section 4 our main theorems show that if X is a centered space of un-
countable tightness, then πχ(X) and t(X) are equal to sup{κ : 2κ ⊂ X}.
In particular, πχ(X) = t(X) for centered spaces. This generalizes the same
theorem proven for polyadic spaces (Hausdorff continuous images of ακλ)
by Gerlits [7]. In Section 5 we look at the partial order of 9 popular cardinal
functions and show that unlike the polyadic case, dχ(X) can be less than
t(X) (Example 5.2) and dπχ(X) can be less than dχ(X) (Example 5.3). In
Section 6, we clear up a loose end (a basic structural question) by presenting
an example of a centered space which has a zeroset Z that is not centered.

We reserve κ, λ, µ, ν and τ for cardinals and α, β, γ, δ and σ for ordinals.
Cardinal functions used are:

w(X) = min{|P| : P is a base for X},

χ(x,X) = min{|P| : P is a local base at x},

χ(X) = sup{χ(x,X) : x ∈ X},

π(X) = min{|P| : P is a π-base for X},

πχ(x,X) = min{|P| : P is a local π-base at x},

πχ(X) = sup{πχ(x,X) : x ∈ X}.

If A ⊂ X and x ∈ A (the closure of A in X), then

a(x,A) = min{|B| : x ∈ B and B ⊂ A},

t(x,X) = sup{a(x,A) : A ⊂ X and x ∈ A},

t(X) = sup{t(x,X) : x ∈ X},

c(X) = sup{|P| : P is a disjoint collection of open subsets of X},

d(X) = min{|D| : D is dense in X},

dχ(X) = min{κ : {x ∈ X : χ(x,X) ≤ κ} is dense in X},

dπχ(X) = min{κ : {x ∈ X : πχ(x,X) ≤ κ} is dense in X}.

Some convenient notations are:

• X ≈ Y means that X is homeomorphic to Y .

• φ : X ։ Y means that φ is a continuous surjection.

• X ։ Y means that φ : X ։ Y for some φ.

• p ∈ 2κ ⊂ X means that there exists L ⊂ X with L ≈ 2κ and p ∈ L.

Sets and properties defined with a parameter κ will be of the < κ version
and not the ≤ κ version. For example, a Gκ-set Z is a set which is the
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intersection of less than κ open sets. All spaces appearing in this paper are
Hausdorff.

2. Compact c-set, Cen(S) or Adequate Compact. Fix τ ≥ ω and
let 2τ be the Cantor cube of weight τ , where 2 = {0, 1}.

For x ∈ 2τ put G(x) = {y ∈ 2τ : y−1(1) ⊂ x−1(1)}. We call W ⊂ 2τ a
c-set if whenever x ∈ W , then G(x) ⊂ W . Compact c-sets, Cen(S)’s and
adequate compact spaces are three slightly different ways of looking at the
same class of spaces (see Turzański [17]); each has its own advantages. So,
a centered space is a continuous image of a compact c-set.

We now give the basic notations that will be used in the rest of the
paper. For κ ≤ τ , put Jκ = {s : s is a function from A to 2 where A ⊂ τ

and |A| < κ}. If x ∈ 2τ , put Jκ(x) = {x↾A : A ⊂ τ and |A| < κ}. For
κ ≤ τ and s ∈ Jκ, put Hs = {x ∈ 2τ : x extends s}. If s and t are
partial functions, s ⊂ t means that t extends s; if s and t are compatible
functions, then s ∪ t is the unique minimal extension of both s and t. Put
Σκ = {x ∈ 2τ : |x−1(1)| < κ}.

Let W be a compact c-set in 2τ . Put Wκ = W ∩Σκ. Then Wω is dense
in W , Wκ is closed in Σκ and λ < κ implies that Wλ ⊂ Wκ. If x ∈ W

and s ∈ Jκ(x), then put Gs(x) = Hs ∩ G(x). If s ∈ Jκ, then ŝ represents
the point in 2τ defined by ŝ(α) = s(α) for α ∈ dom(s) and ŝ(α) = 0 for
α 6∈ dom(s). Note that if s ∈ Jκ(x), then ŝ ∈ G(x).

For a boolean space X, put Cen(X) = Cen(CO(X)) where CO(X) is the
set of all clopen subsets of X. Two of our examples will be derived in this
way. The remaining three examples will be spaces of complete subgraphs
of a graph. A graph G on a set X is a G ⊂ [X]2 = {D ⊂ X : |D| = 2}.
A subset Y ⊂ X is complete if {y1, y2} ∈ G for every y1 6= y2 in Y . Put
G∗ = {Y ⊂ X : Y is complete}. For A ⊂ X, put A+ = {Y ∈ G∗ : A ⊂ Y }
and A− = {Y ∈ G∗ : A ∩ Y = ∅}. Then {A+ ∩B− : A,B are finite subsets
of X and A ∩B = ∅} forms a clopen base for G∗.

3. Basic results required. We devote this section to collecting results
which we need but which quickly follow from the results of Gerlits [7].

Theorem 3.1 (Gerlits [6]). Let φ : 2τ ։ X, τ ≥ κ > ω and x ∈ 2τ . If

for every A ⊂ τ with |A| < κ there exists y ∈ 2τ such that y↾A = x↾A and

φ(y) 6= φ(x), then φ(x) ∈ 2κ ⊂ X.

In fact, Gerlits’ Theorem will be applied in this paper in the following
way.

Corollary 3.2. Let W be a compact c-set in 2τ , φ : W ։ X, κ > ω,
p ∈ X and x, y ∈ W with x ∈ φ−1(p) ∩ G(y). If Gs(y) 6⊂φ−1(p) for every

s ∈ Jκ(x) then p ∈ 2κ ⊂ X. Alternatively stated , if there does not exist
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L ⊂ X with L ≈ 2κ and p ∈ L, then there exists s ∈ Jκ(x) such that

Gs(y) ⊂ φ−1(p).

P r o o f. Consider φ↾G(y) : G(y) ։ φ(G(y)) ⊂ X. If R = {α < τ :
y(α) = 1}, then |R| ≥ κ because x ∈ φ−1(p) and Gs(y) 6⊂ φ−1(p) for every
s ∈ Jκ(x). Now apply Theorem 3.1 with G(y) ≈ 2R in the role of 2τ to get
p ∈ 2κ ⊂ φ(G(y)).

We will require two notions (due to Arkhangel’skĭı [1], [2]): a space X

is κ-monolithic if whenever Y ⊂ X and |Y | < κ, then w(Y ) < κ. If Y ⊂ X,

then Y is κ-closed in X if whenever A ⊂ Y and |A| < κ, then A
X

⊂ Y .

Fact 3.3. Let W be a compact c-set in 2τ and κ > ω.

(1) If κ is regular , then Wκ is κ-closed in W and Wκ is κ-monolithic.

(2) Wκ 6։ Iκ.

P r o o f. (1) This follows because Wκ is a closed subset of Σκ and, for κ
regular, Σκ is κ-monolithic and is κ-closed in 2τ .

(2) The same argument that Gerlits uses to prove that Σκ 6։ K, where
K is a compact space with K ⊃ 2κ (a⇒j of Theorem 9 in [7]), also shows
that no closed subset L of Σκ can continuously map onto K where K is a
compact space with K ⊃ 2κ.

Fact 3.4. Let W be a compact c-set in 2τ , φ : W ։ X and κ > ω.

(1) If p ∈ X \ φ(Wκ), then p ∈ 2κ ⊂ X and πχ(p,X) ≥ κ.

(2) If X = φ(Wκ) and κ is regular , then X is κ-monolithic.

P r o o f. (1) Choose x ∈ φ−1(p). For every s ∈ Jκ(x), ŝ ∈ Gs(x) ∩ Wκ

and so φ(ŝ) 6= p; by Corollary 3.2 (with y = x), p ∈ 2κ ⊂ X. Striving for
a contradiction, assume that πχ(p,X) = λ < κ. Let P be a local π-base at
p such that |P| = λ. Since φ(Wω) is dense in X, for every P ∈ P choose
xP ∈ Wω ⊂ Wλ+ such that φ(xP ) ∈ P . Since Wλ+ is λ+-closed in W ,
{xP : P ∈ P} ⊂ Wλ+ ⊂ Wκ. But p ∈ φ({xP : P ∈ P}), therefore p ∈ φ(Wκ);
a contradiction. Hence, πχ(p,X) ≥ κ.

(2) This follows from compactness of W and Fact 3.3(1).

Fact 3.5. If A ⊂ 2τ , Z is a closed Gκ-set of 2
τ and A ∩ Z 6= ∅, then

there exists D ⊂ A with |D| < κ and D ∩ Z 6= ∅.

4. Tightness and π-character of centered spaces. We want to
extend Gerlits’ results [7] on tightness and π-character in polyadic spaces to
centered spaces. We point out 2 obstacles to this. The first is that with a
product space preimage, there are many dense Σ-products for each κ ≥ ω.
As an example, for each x ∈ 2τ , if we put Σκ(x) = {y ∈ 2τ : |{α ∈ τ : y(α) 6=
x(α)}| < κ}, then Σκ(x) is dense in 2τ . With a compact c-set preimage, we
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are guaranteed only one dense Σ-product for each κ ≥ ω. Let 0 ∈ 2τ be the
constantly 0 function. For each x ∈ W , if we put Wκ(x) = W ∩Σκ(x), then,
unless x = 0, Wκ(x) may not be dense in W and so we lose the tool (so
useful in [7]) of many dense Σ-products. Secondly, Gerlits proves that for
polyadic spaces X, if κ is regular uncountable, then {x ∈ X : πχ(x,X) < κ}
is closed in X. Examples 5.2, 5.3 or 5.6 below, for κ = ω1, show that this is
not true for centered spaces.

Theorem 4.1. Let X be a centered space, cf(κ) > ω and p ∈ X. There

exists A ⊂ X with p ∈ A and a(p,A) ≥ κ if and only if p ∈ 2κ ⊂ X.

Consequently , t(p,X) = sup{κ : p ∈ 2κ ⊂ X} for all points p in a centered

space X with t(p,X) > ω.

P r o o f. Let W be a compact c-set in 2τ and let φ : W ։X be a contin-
uous surjection. The final consequence follows from the equivalence, whose
sufficiency is clear. For necessity, let A ⊂ X with p ∈ A and a(p,A) ≥ κ. As
φ is a closed map, choose x ∈ φ−1(p)∩φ−1(A). Striving for a contradiction,
we assume that there does not exist L ⊂ X with L ≈ 2κ and p ∈ L.

Using Corollary 3.2 (with y = x), choose t0 ∈ Jκ(x) such that Gt0(x) ⊂
φ−1(p). As Ht0 is a closed Gκ-set containing x, choose D0 ⊂ φ−1(A) with
|D0| < κ and x0 ∈ D0 ∩Ht0 . Again by Corollary 3.2 (with y = x0), as t̂0 ∈
φ−1(p)∩G(x0), choose s0 ∈ Jκ such that t0 ⊂ s0 ⊂ t̂0 and Gs0(x0) ⊂ φ−1(p).
By recursion on n < ω, we construct tn ∈ Jκ(x), sn ∈ Jκ, Dn ⊂ φ−1(A) with
|Dn| < κ and xn ∈ Dn ∩ Htn such that tn ⊂ sn ⊂ t̂n, G

sn(xn) ⊂ φ−1(p)
and for n > 0, tn−1 ⊂ tn and dom(tn) = dom(sn−1). At stage n + 1,
put tn+1 = x↾dom(sn). As Htn is a closed Gκ-set containing x, choose
Dn+1 ⊂ φ−1(A), |Dn+1| < κ and xn+1 ∈ Dn+1 ∩Htn+1 . By Corollary 3.2
(with y = xn+1), as t̂n+1 ∈ φ−1(p) ∩ G(xn+1), choose sn+1 ∈ Jκ such that
tn+1 ⊂ sn+1 ⊂ t̂n+1 and Gsn+1(xn+1) ⊂ φ−1(p).

We now show that every cluster point of the sequence {xn : n < ω} is
in φ−1(p). If not, get s ∈ Jω and an infinite R ⊂ ω such that {xn : n ∈
R} ⊂ Hs ⊂ W \ φ−1(p). Put t =

⋃
n∈R tn. Since xn ∈ Hs ∩ Htn for

n ∈ R, compactness of W implies that if r = t ∪ s, then r̂ ∈ W . As r̂ ∈ Hs,
r̂ 6∈ φ−1(p). Put T =

⋃
n<ω dom(sn) =

⋃
n<ω dom(tn). Get m ∈ R such

that dom(s) ∩ T = dom(s) ∩ dom(tm). For k ∈ R, k ≥ m, put rk = sk ∪ s.
As r̂k ∈ Gsk(xk), we have r̂k ∈ φ−1(p). But r̂k → r̂ and φ−1(p) is closed,
therefore r̂ ∈ φ−1(p); a contradiction.

If we put D =
⋃

n<ω Dn, then as xn ∈ Dn, we deduce that D∩φ−1(p) 6=

∅. Thus, p ∈ φ(D). As cf(κ) > ω, we have |φ(D)| < κ; this contradicts
a(p,A) ≥ κ.

Question 4.2. Can cf(κ) > ω be replaced by just κ > ω? That is, if
X is a centered space, κ > ω, p ∈ X and there exists A ⊂ X with p ∈ A
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and a(p,A) ≥ κ, then is p ∈ 2κ ⊂ X? Gerlits has shown this to be true for
polyadic spaces.

Lemma 4.3. Let W be a compact c-set in 2τ and κ > ω be regular. If

A ⊂ Wκ, x ∈ A and s ∈ Jκ(x), then there exists D ⊂ A with |D| < κ and

D ∩Gs(x) 6= ∅.

P r o o f. Put s0 = s. As Hs0 is a closed Gκ-set containing x, choose
D0 ⊂ A and x0 ∈ W such that |D0| < κ and x0 ∈ D0∩Hs0 . By recursion on
n < ω, we construct sn ∈ Jκ(x), Dn ⊂ A with |Dn| < κ and xn ∈ Dn∩Hsn

such that for n > 0, sn−1 ⊂ sn and x−1
n−1(1) ⊂ dom(sn). At stage n + 1,

as xn ∈ Dn, Dn ⊂ Wκ, |Dn| < κ and κ is regular, we have xn ∈ Wκ

from Fact 3.3(1). Put sn+1 = x↾(dom(sn)∪x−1
n (1)). Choose Dn+1 ⊂ A and

xn+1 ∈ W with |Dn+1| < κ and xn+1 ∈ Dn+1 ∩Hsn+1 .

Put D =
⋃

n<ω Dn and t =
⋃

n<ω sn. Then |D| < κ and t̂ ∈ D because

xn → t̂. Hence t̂ ∈ D ∩Gs(x).

Theorem 4.4. Let X be a centered space and κ > ω. There exists p ∈ X

with πχ(p,X) ≥ κ if and only if 2κ ⊂ X. Consequently , for centered spaces

X with uncountable π-character , πχ(X) = sup{κ : 2κ ⊂ X}.

P r o o f. Let W be a compact c-set in 2τ and let φ : W ։ X be a
continuous surjection. The final consequence follows from the equivalence.
For necessity, assume that p ∈ X with πχ(p,X) = µ ≥ κ. If µ is regular,
then by a result of Shapirovskĭı (cf. p. 54 of [8]) we can get A ⊂ X such
that p ∈ A and a(p,A) = µ. Theorem 4.1 gives us p ∈ 2µ ⊂ X. So, assume
cf(µ) = λ < µ and µ =

∑
α<λ µα where µα are regular cardinals < µ for

every α < λ. For α < λ, put Aα = {x ∈ X : πχ(x,X) < µα}.

Case 1: ∃β < λ with p ∈ Aβ . Then Fact 3.4(1) implies Aβ ⊂ φ(Wµβ
).

Choose x ∈ φ−1(p)∩φ−1(Aβ) ∩Wµβ
. Either p ∈ 2µ ⊂ X, or by Corollary 3.2

we can choose s ∈ Jµ(x) with Gs(x) ⊂ φ−1(p). In the latter case, by taking
the maximum of µβ and |dom(s)| we may as well assume that |dom(s)| ≤ µβ ;
then, by invoking Lemma 4.3 (with κ = µβ), we choose D ⊂ φ−1(Aβ)∩Wµβ

with |D| < µβ such that D ∩ Gs(x) 6= ∅. Therefore, p ∈ φ(D), φ(D) ⊂ Aβ

and |φ(D)| < µβ . It follows that πχ(p,X) < µβ < µ; a contradiction. So,
p ∈ 2µ ⊂ X.

Case 2: p 6∈
⋃

α<λ Aα. Choose a closed Gλ+ -set Z ∋ p such that
πχ(x,X) ≥ µ for every x ∈ Z. Since λ < µ, it follows that πχ(x,Z) ≥ µ for
every x ∈ Z. By a theorem of Shapirovskĭı [13], we haveX ։ Iµ. Fact 3.3(2)
tells us that Wµ 6։ X. By Fact 3.4(1), if q ∈ X \ φ(Wµ), then q ∈ 2µ ⊂ X.

For sufficiency, assume that 2κ⊂X. As above, Wκ 6։ X. By Fact 3.4(1),
if q ∈ X \ φ(Wκ), then πχ(q,X) ≥ κ.
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Remark. Certainly, a major simplification of Theorem 4.4 can be ob-
tained if it were known that for each point x in a compact space X, there is
Y ⊂ X with πχ(x,X) = a(x, Y ). However, to our knowledge, this is still not
fully resolved. The statement does appear in [9] but there is a simple gap
in the sketch of proof supplied. One of the authors of [9] has acknowledged
this gap and has indicated that a repair has not been found.

Theorems 4.1 and 4.4 give us

Corollary 4.5. If X is a centered space of uncountable tightness, then
πχ(X) = t(X) = sup{κ : 2κ ⊂ X}.

Question 4.6. If X is a centered space and πχ(p,X) = µ > ω, then
must p ∈ 2µ ⊂ X?

Looking at the proof of Theorem 4.4, it is seen that we have a positive
answer to Question 4.6 except for the case when µ is singular and Case 2 of
that proof ensues. However, ifX is simply a compact c-set, then the singular
cardinal difficulties can be overcome.

Corollary 4.7. Let W be a compact c-set in 2τ , κ > ω and p ∈ W . If

πχ(p,W ) = κ, then p ∈ 2κ ⊂ W . Consequently , πχ(p,W ) ≤ t(p,W ) for all

points p in a compact c-set W .

P r o o f. Assume that πχ(p,W ) = κ. In the proof of Theorem 4.4, it
is only Case 2 (with µ replaced by κ) where we do not achieve our goal.
Assume that cf(κ) = λ < κ and that Z is a closed Gλ+ -set of W such that
p ∈ Z and πχ(x,W ) ≥ κ for every x ∈ Z. Get s ∈ Jλ+ such that p ∈ W s =
Hs∩W ⊂ Z. Put R = {x ∈ W s : p ∈ G(x)}. As R is closed in W , get q ∈ R

such that q−1(1) is maximal under inclusion among all points x in R. Then
{q} = W s ∩

⋂
q(α)=1{x ∈ W : x(α) = 1}, so χ(q,W ) ≤ λ + |q−1(1)|. Since

πχ(q,W ) ≥ κ, we have |q−1(1)| ≥ κ. So, p ∈ G(q) ≈ 2ν where κ ≤ ν.

5. Cardinal functions of centered spaces. We consider relations
between the 9 cardinal functions w, π, χ, t, πχ, dχ, dπχ, d, and c.

The classical theory of dyadic spaces gives rise to the following partial
order. Of course, all dyadic spaces satisfy c = ω.

Dyadic �� w = � = � = t = �� = d� = d��d
Gerlits’ investigations [7] into polyadic spaces give rise to the following

partial order. The fact that he proved that max{c, t} = w renders the join
semi-lattice structure correct.
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Polyadic
���

��@@@� � � �w = � = �t = �� = d� = d��dc
In this section we show that centered spaces satisfy the following par-

tial order. The join semi-lattice structure (between the 2 branches) is more
complicated than in the polyadic case.

Centered
���

��@@@@@� � � � � �
w = � = �t = ��d� d��dc

That w = π = χ was proved in Bell [4] and t = πχ is the content of
Corollary 4.5.

Proposition 5.1. If X is a centered space, then dχ(X) ≤ t(X).

P r o o f. Let W be a compact c-set in 2τ , φ : W ։ X be a continuous
surjection and t(X) = κ. Since X 6⊃ 2κ

+

, by Fact 3.4(1) we get X = φ(Wκ+)
and therefore Fact 3.4(2) implies that X is κ+-monolithic. It remains to
apply Theorem 2.2.4 of Arkhangel’skĭı [3] which implies that ifX is compact,
t(X) = κ and X is κ+-monolithic, then dχ(X) ≤ κ.

Example 5.2 (A centered X with dχ(X) < t(X)). Define a graph G on
the set ω1 × {0, 1} as follows: {(α, i), (β, j)} ∈ G if and only if (i = j = 0)
or (i = 0, j = 1 and α < β) or (i = 1, j = 0 and β < α). Put X = G∗. For
α < ω1, Bα = (α, 1)+ is a clopen and second countable subspace of X. As⋃

α<ω1
Bα is dense in X, we have dχ(X) = ω. As {A × {0} : A ⊂ ω1} is a

subspace of X which is homeomorphic to 2ω1 , we obtain t(X) = ω1.

Example 5.3 (A centered X with dπχ(X) < dχ(X)). For a tree (T,<)
and t ∈ T , ht(T ) denotes the height of T , ht(t) denotes the height of t in T ,
succ(t) = {s ∈ T : t < s and ht(s) = ht(t) + 1}, L(t) = {s ∈ T : s ≤ t}, and
Fin(t) = {F ⊂ L(t) : F is finite}.

Let T be a tree of height ω1, with no countable maximal chains and such
that |succ(t)| = ω1 for every t ∈ T . For each t ∈ T , choose a countably infi-
nite Ct ⊂ succ(t) and let φt be an infinite-to-one surjection φt : Ct → Fin(t).
Define a graph G on T as follows: {s, t} ∈ G if and only if (either s < t or
t < s) and (if max{s, t} ∈ Cr for some r ∈ T , then min{s, t} 6∈
φr(max{s, t})). Put X = G∗. It is easily checked that every maximal com-
plete subset of T has cardinality ω1; so, if x ∈ X and m is a maximal
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complete subset of T with x ⊂ m, then x ∈ {y : y ⊂ m} ≈ 2ω1 ⊂ X. Thus
X has uniform character ω1 and dχ(X) = ω1.

Put D = {x ∈ X : x is countable}. Then D is dense in X. Let x ∈ D.
Choose r ∈ T such that t < r for every t ∈ x. Let P be the set of all
t+ ∩A+ ∩ φr(t)

− where t ∈ Cr, A is a finite subset of x and φr(t) ∩A = ∅.
Then P is a countable π-base for x. To see this, let x ∈ A+∩B− where A is a
finite subset of x, B is a finite subset of T and A∩B = ∅. Put E = B∩L(r)
and F = B \ L(r). Since Cr is infinite and φr is infinite-to-one, we can
choose t ∈ Cr such that φr(t) = E, and {s, t} 6∈ G for every s ∈ F . Then
∅ 6= t+ ∩A+ ∩ φr(t)

− ⊂ A+ ∩B−. Thus, dπχ(X) = ω.

As for the join semi-lattice structure for centered spaces, we have:

Theorem 5.4. If X is a centered space, then max{d(X), t(X)} = w(X).

P r o o f. In every space X, we have max{d(X), πχ(X)} = π(X). The
theorem follows because for centered spaces X, we have w(X) = π(X) and
t(X) = πχ(X).

In [4] and [11] consistent examples of centered spaces X are presented
which satisfy max{c(X), t(X)} < w(X). Here is an “honest” example.

Example 5.5 (A centered X with max{c(X), t(X)} < w(X)). We begin
with a boolean space K and a cardinal κ ≥ ω such that c(K) = κ and
K does not have precaliber κ+, i.e. there exists P ⊂ CO(K) such that
|P| = κ+ and P does not have a centered subcollection of cardinality κ+.
An example of such a space K and cardinal κ appears in Corollary 3 of
Todorčević [15]. Our example is X = Cen(P). Since w(Cen(S)) = |S|, we
have w(X) = |P| = κ+. Since c(Cen(Y )) = c(Y ) for any boolean space Y ,
we see that c(Cen(K)) = κ. Since the intersection map is a retraction of
Cen(K) onto X, we find that c(X) ≤ κ. Since P does not have a centered
subcollection of cardinality κ+, Cen(P) can be embedded into Σκ+ ⊂ 2P as
characteristic functions. As t(Σκ+) = κ, we have t(Cen(P)) ≤ κ.

Example 5.6 (A centered X with max{d(X), dχ(X)} < w(X)). We
begin with a separable boolean space K which has no isolated points and
which has an uncountable π-base P of clopen sets and a dense setD such that
{b ∈ P : d ∈ b} is a countable base at d in K for every d ∈ D. Note that
D cannot be countable. Such a space K appears in Example 3.6 of Bell [5].
Our present example is X = Cen(P). We have w(X) = |P| > ω. Turzański
[16] has shown that d(Cen(Y )) = d(Y ) for any boolean space Y ; it follows
that d(Cen(K)) = ω. Since the intersection map is a retraction of Cen(K)
onto X, we have d(X) = ω. For each d ∈ D, put x(d) = {b ∈ P : d ∈ b} ∈ X.
We observe that if y is a co-finite subset of x(d), then χ(y,X) = ω. To see
this, let F be a finite subset of x(d) with y = x(d) \ F . Then, because d is
a non-isolated point of K and x(d) is a countable base at d in K, we have
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{y} =
⋂

b∈y b
+ ∩

⋂
b∈F b−; so y is a point of first countability in X. We now

show that these points are dense in X, so that dχ(X) = ω. Let F and G be
disjoint finite subsets of P such that F+ ∩G− 6= ∅. Therefore,

⋂
F 6= ∅. As

P is a π-base for K, choose a non-empty b ∈ P such that b ⊂
⋂

F . As D is
dense in K, choose d ∈ D ∩ b. Then x(d) \G ∈ F+ ∩G−.

6. Zerosets in centered spaces. As both the dyadic and polyadic
properties are preserved by zerosets (i.e., closed Gδ-sets in compact spaces),
a natural question (see [4], [11], [12] and [16]) is whether the same is true
for the centered property. Our next example shows that this is not the case.

Example 6.1 (A centered X with a zeroset Z ⊂ X such that Z is not
centered). Let T be the tree

⋃
α≤ω 2α ordered by s ≤ t if and only if t extends

s. Define a graph G on T as follows: {s, t} ∈ G if and only if s < t or t < s.
Put X = G∗. For each n < ω, put Bn = {x ∈ X : x ∩ 2n 6= ∅}. Each Bn

is a clopen subset of X and so Z =
⋂

n<ω Bn is a zeroset of X. Further,
Z consists of xα’s and yα’s for α ∈ 2ω, where xα = {α↾n : n < ω} and
yα = xα ∪ {α}. The yα’s form a discrete subspace and Z is homeomorphic
to the Alexandrov duplicate of the Cantor set 2ω, a space of uncountable
weight and countable character. But centered spaces Z satisfy w(Z) = χ(Z),
hence Z is not centered.
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[10] W. Kulpa and M. Turzań sk i, Bijections onto compact spaces, Acta Univ. Carolin.
Math. Phys. 29 (1988), 43–49.

[11] G. Plebanek, Compact spaces that result from adequate families of sets, Topology
Appl. 65 (1995), 257–270.

[12] —, Erratum to “Compact spaces that result from adequate families of sets”, ibid. 72
(1996), 99.



CENTERED SPACES 307

[13] B. Shap irovsk i ı̆, Maps onto Tikhonov cubes, Russian Math. Surveys 35 (1980),
no. 3, 145–156.

[14] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110
(1979), 407–438.
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