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CURVATURE HOMOGENEITY OF AFFINE

CONNECTIONS ON TWO-DIMENSIONAL MANIFOLDS

BY

OLDŘICH KOWALSK I (PRAHA), BARBARA OPOZDA (KRAKÓW)

AND ZDENĚK VL Á Š EK (PRAHA)

Abstract. Curvature homogeneity of (torsion-free) affine connections on manifolds
is an adaptation of a concept introduced by I. M. Singer. We analyze completely the
relationship between curvature homogeneity of higher order and local homogeneity on
two-dimensional manifolds.

1. Introduction. The theoretical foundations of this topic have been
given by the second author in [4] and [5]. In this section we present the basic
definition, some motivation and the main result.

Definition 1.1. A smooth connection∇ on a smooth manifoldM is said
to be curvature homogeneous up to order r if, for every p, q ∈ M, there exists
a linear isomorphism F : TpM → TqM such that F ∗(∇kR)q = (∇kR)p for
all k = 0, 1, . . . , r. Here R denotes the curvature tensor of ∇.

In fact, this definition originated in the paper by I. M. Singer [6] for
the Riemannian situation. In the Riemannian case, ∇ is the Levi-Civita
connection and Definition 1.1 must be completed by the assumption that F
always preserves the scalar products.

The concept of curvature homogeneity on Riemannian (and also pseudo-
Riemannian) manifolds has been studied in many papers. There are a lot of
examples of curvature homogeneous Riemannian manifolds of order 0 which
are not locally homogeneous. The 2-dimensional case is trivial (curvature ho-
mogeneity implies constant curvature) and the 3-dimensional case has been
completely classified from the local point of view. For dimensions three and
four, curvature homogeneity up to order 1 implies local homogeneity. (For
dimension larger than four the problem remains open.) See, in particular,
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Chapter 12 of [1] for comprehensive information. Recently P. Bueken and
L.Vanhecke [2] found an example of a 3-dimensional Lorentzian manifold
which is curvature homogeneous up to order 1 but not locally homogeneous.

In contrast to the Riemannian situation, the affine case produces already
in dimension two a rich theory. We are going to prove the following

Main Theorem. Let ∇ be a torsion-free analytic connection on an

analytic two-dimensional manifold M. If the Ricci tensor of ∇ is skew-

symmetric, then the curvature homogeneity up to order 3 implies local ho-

mogeneity , and this bound cannot be improved. If the Ricci tensor of ∇ has

nontrivial symmetrization, then the curvature homogeneity up to order 2
implies local homogeneity , and this bound cannot be improved.

2. General results and formulas. In the following, all manifolds and
connections are smooth, that is, of class C∞, if not stated otherwise. We
limit ourselves to the torsion-free connections. We shall start with the results
which are valid in every dimension.

Let ∇ be a connection on M and let p ∈ M. The Lie algebra of all
endomorphisms of TpM will be denoted by gl(TpM). Let g(p; s) be the Lie
subalgebra of gl(TpM) defined by

(2.1) g(p; s) = {A ∈ gl(TpM) | A·Rp = A·(∇R)p = . . . = A·(∇sR)p = 0},

where A acts as a derivation on the tensor algebra of TpM. (See [6] for the
original definition in the Riemannian case.)

We call the sequence g(p; s) (s = 0, 1, 2, . . .) the curvature sequence. We
say that the curvature sequence stabilizes at level k ≥ 0 if g(p; k+s) = g(p; k)
for every s > 0.

We have

Theorem 2.1. Let ∇ be an analytic connection on an analytic manifold

M. If ∇ is curvature homogeneous up to order m ≥ 1, and g(p;m−1) = (0)
for some p ∈ M, then ∇ is locally homogeneous.

P r o o f. Because the curvature sequence g(p; s) stabilizes at level m− 1
for all p ∈ M, the assertion follows as a special case of Theorem 1.1 in [5].

Theorem 2.2. Let ∇ be an analytic connection on an analytic manifold

M. Assume that ∇ is curvature homogeneous up to order m ≥ 1, and

g(p;m − 1) = g(p;m) for some p ∈ M. If , moreover , the Lie algebra

g(p;m− 1) is reductive in gl(TpM), then ∇ is locally homogeneous.

P r o o f. It is an easy modification of Theorem 1.2 from [5].

Let us recall that a subalgebra h is reductive in a Lie algebra g if there
is a decomposition g = m + h (where m is a vector subspace) such that
[m, h] ⊂ m.
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From now on, let dimM = 2 and denote by Ric the Ricci tensor of ∇
on M. Then the curvature tensor R is uniquely determined by Ric via the
formula

(2.2) R(X,Y )Z = Ric(Y,Z)X − Ric(X,Z)Y,

where X,Y,Z ∈ TqM, q ∈ M. Hence in Definition 1.1 one can replace
R,∇R, . . . by Ric,∇Ric, . . . respectively, and the same is true for the defi-
nition of the curvature sequence (2.1). (See [5], p. 193, for more details.)

Choose a system (u, v) of local coordinates in a domain U ⊂ M and
denote by U, V the corresponding coordinate vector fields ∂u, ∂v. In U , the
connection ∇ is uniquely determined by six functions A, . . . , F given by the

(2.3) ∇UU = AU +BV, ∇UV = CU +DV = ∇V U, ∇V V = EU + FV.

One can easily calculate

(2.4)

Ric(U,U) = Bv −Du +D(A−D) +B(F − C),

Ric(U, V ) = Dv − Fu + CD −BE,

Ric(V,U) = Cu −Av + CD −BE,

Ric(V, V ) = Eu − Cv + E(A−D) + C(F − C).

Finally, the following fact will be useful:

Proposition 2.3. If ∇ is curvature homogeneous up to order 1 on M
and Ricp = 0 or (∇Ric)p = 0 at some p ∈ M, then ∇ is locally homogeneous

on M.

P r o o f. We easily see that ∇ is then either flat or locally symmetric.

Because our main theorem requires curvature homogeneity up to order
at least one, it is legitimate to make the following

Convention. We always assume that Ric 6= 0 and ∇Ric 6= 0 on the

whole M if not stated otherwise.

3. The case of skew-symmetric Ricci tensor. Choose a coordinate
neighborhood U of a basic point p ∈ M and any coordinate system (u, v) in
U . From the skew-symmetry of Ric and our convention we have

(3.1) Ric(U,U) = Ric(V, V ) = 0, ̺ = Ric(U, V ) = −Ric(V,U), ̺ 6= 0.

This can be rewritten, by (2.4), in the form

(3.2)

Cu = Av +BE − CD − ̺,

Du = Bv +D(A−D) +B(F − C),

Eu = Cv + E(D −A) + C(C − F ),

Fu = Dv +CD −BE − ̺,
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where

̺ = Dv − Fu + CD −BE 6= 0.

For the first covariant derivatives of Ric we have (with the notation (2.3))

(∇U Ric)(U, V ) = −(∇U Ric)(V,U) = ̺u − (A+D)̺,

(∇V Ric)(U, V ) = −(∇V Ric)(V,U) = ̺v − (C + F )̺,
(3.3)

(∇X Ric)(U,U) = (∇X Ric)(V, V ) = 0 for X = U, V.(3.4)

Put now

(3.5) r = ̺(p) 6= 0

for the initial value of ̺. Further, define

M = [̺u/̺− (A+D)]r, N = [̺v/̺− (C + F )]r,(3.6)

m =M(p), n = N(p).(3.7)

This notation gives, by (3.3) and (3.6),

(3.8) (∇U Ric)(U, V )(p) = m, (∇V Ric)(U, V )(p) = n.

Next, (3.3) can be rewritten in the form

(3.9) (∇U Ric)(U, V ) =M(̺/r), (∇V Ric)(U, V ) = N(̺/r).

We exclude the case M = N = 0 when ∇ is locally symmetric. Thus we
assume in the sequel N 6= 0 in the given neighborhood and n 6= 0. (If N = 0,
M 6= 0, we obtain the previous situation by interchanging u, v.)

From (3.6) we get

(3.10) ̺u = ̺((A+D) +M/r), ̺v = ̺((C + F ) +N/r).

Next, set

(3.11) HXY = (∇2
XY Ric)(U, V )

for X,Y ∈ {U, V }. Using (3.9) and (3.10) we easily obtain the following
formulas for the tensor ∇2Ric :

(3.12)

HUU =
̺

r

[

Mu +
M2

r
−AM −BN

]

,

HUV =
̺

r

[

Nu +
MN

r
− CM −DN

]

,

HV U =
̺

r

[

Mv +
MN

r
− CM −DN

]

,

HV V =
̺

r

[

Nv +
N2

r
−EM − FN

]

,
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and

(3.13)
(∇2

XY Ric)(V,U) = −(∇2
XY Ric)(U, V ),

(∇2
XY Ric)(U,U) = (∇2

XY Ric)(V, V ) = 0

for X,Y ∈ {U, V }.

Let now P,Q,R, S, PS−QR 6= 0, be smooth functions on a neighborhood
V ⊂ U of p and define a family Φ = {Φx : TxM → TpM | x ∈ V} of linear
isomorphisms by

(3.14) Φ(U) = PUp +QVp, Φ(V ) = SUp + TVp (Up, Vp ∈ TpM).

Set

(3.15) K = PT −QS 6= 0.

We first see that the isomorphism field Φ preserves the Ricci tensor Ric
if and only if

(3.16) K = ̺/r.

Further, Φ preserves in addition the tensor field ∇Ric if and only if

(3.17) Pm+Qn =M, Sm+ Tn = N.

This follows at once from (3.3), (3.4), (3.8), (3.9) and (3.16). Hence we
obtain

(3.18) Q =
M −mP

n
, T =

N −mS

n

and (3.15)–(3.17) imply

(3.19) P =
n̺/r +MS

N
.

We thus have

Proposition 3.1. The isomorphism field Φ preserves Ric and ∇Ric
if and only if S is arbitrary and P,Q, T are given by (3.18) and (3.19)
(assuming N 6= 0).

Corollary 3.2. Every connected smooth affine 2-manifold (M,∇) with
a skew-symmetric Ricci tensor is curvature homogeneous up to order 1 in a

neighborhood of each point from an open dense subset.

P r o o f. We call a point p ∈ M regular if either

(a) (M,∇) is locally symmetric around p, or

(b) (∇Ric)p 6= 0 and Ricp 6= 0.

It is obvious that the subset of all regular points is open and dense. Hence
the result follows easily.
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To express the second order Φ-invariance, set

(3.20) i = HUU(p), j = HUV (p), k = HV V (p).

From (3.2)1,4 we get

(3.21) Cu + Fu −Av −Dv = −2̺.

Then the formulas (3.6) imply

(3.22) Nu −Mv = 2r̺

and finally, from (3.12) we obtain

(3.23) HUV −HV U =
̺

r
(Nu −Mv) = 2̺2 = 2[Ric(U, V )]2.

At the initial point p we get

(3.24) HV U (p) = HUV (p)− 2[̺(p)]2 = j − 2r2.

A routine calculation gives the following

Proposition 3.3. The isomorphism field Φ preserves the tensor fields

Ric, ∇Ric and ∇2 Ric if and only if we have (3.16), (3.17) and

(3.25)

iP 2 + (2j − 2r2)PQ+ kQ2 = (r/̺)HUU ,

iPS + jPT + (j − 2r2)QS + kQT = (r/̺)HUV ,

iS2 + (2j − 2r2)ST + kT 2 = (r/̺)HV V .

P r o o f. According to (3.23) it is sufficient to express the Φ-invariance of
∇2 Ric using only the Φ-invariance of HUU ,HUV and HV V . Here we use the
notation (3.20). Finally, we divide both sides of each equation by K = ̺/r
to obtain (3.25).

Recall now the formulas (3.3) and (3.4). For any x ∈ M consider the
linear form τx : Z 7→ (∇Z Ric)(X,Y ) where X,Y ∈ TxM are arbitrary but
such that X ∧ Y 6= 0. Then τx is defined up to a nonzero factor. Because
∇Ric 6= 0, τx has a one-dimensional kernel, which is independent of the
choice of X and Y . Ker τ is a well-defined 1-dimensional distribution on M,
which we denote by D. Define a special local coordinate system (u, v) such
that U = ∂/∂u belongs to D everywhere. We have

(3.26) ∇Ric(U,U, V ) = 0, ∇Ric(V,U, V ) 6= 0

on a neighborhood U of p. According to (3.9) we get M = 0, N 6= 0, m = 0,
n 6= 0. Then (3.12) simplifies to

(3.27)

HUU = −
̺

r
BN, HUV =

̺

r
(Nu −DN),

HV U = −
̺

r
DN, HV V = −

̺

r

(

Nv +
N2

r
− FN

)

,
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and (3.18), (3,19) simplify to

(3.28) Q = 0, T =
N

n
, P =

n̺

rN
.

Now, let us calculate the (joint) isotropy group of Ric, ∇Ric, ∇2Ric at
the basic point p. From (3.5), (3.7) and (3.28) we get

(3.29) P (p) = T (p) = 1, Q(p) = 0, S(p) = s (arbitrary parameter).

If we express (3.25) explicitly at the point p, and then use (3.5), (3.20) and
(3.29), we see that the last two equations of (3.25) reduce to

(3.30) is = 0, s(j − r2) = 0.

We now have two possibilities:
A. i 6= 0 or j − r2 6= 0. Then s = 0 and the joint isotropy subgroup

of Ric,∇Ric and ∇2 Ric at p reduces to {Id}. This means that g(p; 2) =
(0). Now, if ∇ is analytic and curvature homogeneous up to order 3 then,
according to Theorem 2.1, it is locally homogeneous.

B. i = 0 and j − r2 = 0. Assume from now on that ∇ is curvature
homogeneous up to order two. Then using M = Q = 0 we get from (3.25)1

(3.31) HUU = 0.

Further, from (3.25)2 we deduce jPT = (r/̺)HUV and from (3.28) we get
HUV = ̺2j/r2 = ̺2. Finally, from (3.23) we obtain

(3.32) HUV = −HV U = ̺2.

From the first equation of (3.27) we get B = 0 and hence ∇UU = AU , which
means that the distribution D is totally geodesic. After a suitable change
of local coordinates, u = Φ(u, v), v = v, we find that U = ∂/∂u still belongs
to the distribution D and ∇UU = 0. Hence we can assume A = 0 in the
whole neighborhood.

Now, on a neighborhood V ′ of p the equations (3.2) simplify to

(3.33)
Cu + CD = −̺, Du +D2 = 0,

Eu − ED = Cv + C(C − F ), Fu = Dv + CD − ̺.

We first show that D 6= 0 on V ′. Indeed, from (3.32) we get HV U 6= 0
and the rest follows from the third formula of (3.27). Hence the second
equation of (3.33) gives the general solution

(3.34) D(u, v) = 1/(u+ f(v)),

where f(v) is an arbitrary function. Substituting A = 0 and M = 0 in the
first equation of (3.6), we obtain ̺u/̺ = D and hence

(3.35) ̺(u, v) = ϕ(v)(u + f(v)),

where ϕ(v) is an arbitrary function.
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Now, let us introduce new local coordinates u, v by u = u + f(v), v =T
ϕ(v) dv. Then Ric(U, V ) = (1/ϕ(v))Ric(U, V ) and ̺ = u. Hence we can

assume ϕ(v) = 1 and f(v) = 0, without loss of generality. Next, from (3.27)
and (3.32) we get HV U = −(̺/r)DN = −̺2 and hence N = ̺r/D, i.e.,

(3.36) N(u, v) = ru2.

From the first equation of (3.33) we get, by an easy calculation,

(3.37) C(u, v) = − 1
3u

2 + ψ(v)/u,

where ψ(v) is another arbitrary function.
Finally, from (3.25)3 we obtain kT 2 = (r/̺)HV V , and using (3.27),

(3.28) we get

(3.38) k
N2

n2
= Nv +

N2

r
− FN.

Hence

(3.39) F =
Nv

N
+
λ

r
N = λu2,

where λ = 1− kr/n2 is a constant.
Now we make substitutions in the last equation of (3.33) using (3.34)

and (3.35) (with ϕ = 1, f = 0), (3.37) and (3.39) to get

(3.40) 2λu = ψ(v)/u2 − 4
3
u.

Hence λ = −2/3, ψ(v) = 0 and we can write

C = − 1
3u

2, D = 1/u,(3.41)

F = − 2
3
u2.(3.42)

Finally, we calculate E from the third equation of (3.33):

(3.43) E = − 1
36
u5 + ue(v),

where e(v) is a new arbitrary function.
We now want to prove that, in case B, if ∇ is curvature homogeneous

up to order 2, then it is locally homogeneous in a coordinate neighborhood
of p. For this purpose we calculate the corresponding affine Killing vector
fields X, which are characterized by the equation

(3.44) [X,∇Y Z]−∇Y [X,Z] = ∇[X,Y ]Z

to be satisfied for arbitrary vector fieldsY,Z (see [3]). It is sufficient to satisfy
(3.44) for (Y,Z)∈

{

(U,U), (U, V ), (V,U), (V, V )
}

. Moreover, we easily check
from the basic identities for the torsion and the Lie brackets that the choice
(Y,Z) = (V,U) gives the same condition as (Y,Z) = (U, V ).

Express the vector field X in the coordinate form

(3.45) X = a(u, v)U + b(u, v)V.
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If we use the identity ∇UU = 0, we easily see that (3.44) reduces to six
linear partial differential equations for the unknown functions a, b:

(3.46)

auu + 2Cbu = 0,

buu + 2Dbu = 0,

auv −Dav + Cbv + Ebu + Cua+ Cvb = 0,

buv +Dau + (F −C)bu +Dua+Dvb = 0,

avv + 2Cav + 2Ebv − Eau − Fav + Eua+ Evb = 0,

bvv + 2Dav + 2Fbv − Ebu − Fbv + Fua+ Fvb = 0.

Here C, D, E and F are functions defined by (3.41), (3.43) and (3.42) re-
spectively. From (3.46)1 and (3.46)2 we get easily

a(u, v) = 1
3p(v)u

2 + r(v)u+ s(v),(3.47)

b(u, v) = −p(v)/u+ q(v),(3.48)

where p(v), q(v), r(v) and s(v) are unknown functions of v to be determined.
Next we substitute the explicit expressions for C, D, E, F and a, b in the re-
maining equations (3.46)3–6. Then each equation decomposes into a number
of “coefficient equations” (involving only functions of v) which correspond
to distinct powers of u. Here the highest power u6 occurs only in two terms
of (3.46)5, with the total coefficient − 1

36
p(v). Hence p(v) = 0 and we can

simplify

(3.49) a(u, v) = r(v)u+ s(v), b(u, v) = q(v).

Then (3.46)3 implies

(3.50) r(v) = − 1
2q

′(v), s(v) = 0.

Now, substituting (3.50) (and the corresponding expressions for the deriva-
tives of r(v) and s(v)) in the whole system (3.46), we see that all equations
are identically satisfied except for (3.46)5 which gives a new (and final)
condition

(3.51) q′′′(v)− 4e(v)q′(v)− 2e′(v)q(v) = 0.

Here e(v) is the arbitrary function from (3.43).
For every particular solution q(v) of (3.51) we get an affine Killing vector

field

(3.52) X = q′(v)u
∂

∂u
− 2q(v)

∂

∂v
.

If q1, q2, q3 are three linearly independent particular solutions of (3.51),
then the corresponding Wronskian is nonzero everywhere and so the ma-
trix (qi, q

′

i) has rank two everywhere. Hence, at each point of the given
coordinate neighborhood, at least two of the corresponding Killing vector
fields Xi are linearly independent, and the local homogeneity follows.
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Remark. The Lie bracket of two Killing vector fields (3.52) is again a
Killing vector field. This is equivalent to the following statement: if q1 and
q2 are two particular solutions of (3.51), then so is q1q

′

2 − q′1q2. This is a
special case of a well-known theorem on linear homogeneous ODEs of third
order.

Now we can conclude:

Proposition 3.4. Let ∇ be an analytic connection with skew-symmetric

Ricci tensor on an analytic two-dimensional manifold M. If ∇ is curvature

homogeneous up to order three, then it is locally homogeneous.

In the last part of this section we show that this proposition cannot be
improved. To this end we present an example of an affine connection of the
required type which is curvature homogeneous up to order 2 but nowhere
locally homogeneous.

Consider the plane R
2[u, v] with affine connection ∇ such that in (2.3)

we have

(3.53) A = B = D = 0, C = F = evu, E = 1
2e

vu2.

We first look for the affine Killing vector fields. We repeat the previous
procedure. From (3.46)1 and (3.46)2 we calculate

(3.54) a(u, v) = − 1
3p(v)e

vu3 + r(v)u+ s(v), b(u, v) = p(v)u+ q(v).

By a similar observation as before we see from (3.46)5 that p(v) = 0. Hence

(3.55) a(u, v) = r(v)u+ s(v), b(u, v) = q(v).

Now, substituting the expressions for C, D, E, a, b into (3.46)3 we get

(3.56) q′(v) + q(v) + r(v) = 0, r′(v) + evs(v) = 0,

the equation (3.46)4 is identically satisfied, and from (3.46)5 we deduce

(3.57)

2r′(v) + 2q′(v) + r(v) + q(v) = 0,

r′′(v) + ev(s(v) + s′(v)) = 0,

s′′(v) = 0.

No new conditions come from (3.46)6.

From the first equations of (3.56) and (3.57) we deduce at once

(3.58) r(v) + q(v) = ce−v/2, q′(v) = −ce−v/2, r′(v) = 1
2
ce−v/2,

where c is a constant. From the second equation of (3.56) we see that s(v) =
− 1

2e
−3v/2, which contradicts the condition s′′(v) = 0 unless c = 0. Hence

s(v) = 0 and r(v) = −q(v) = constant.
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Our affine manifold admits just a 1-dimensional space of affine Killing
vector fields generated by

(3.59) X = u
∂

∂u
−

∂

∂v
.

Hence (R2,∇) is not locally homogeneous.

Next, we inspect the curvature homogeneity. If we put ̺ = −ev , then
all equations (3.2) are satisfied and Ric is skew-symmetric. Take the origin
(0, 0) for p. Then we easily calculate that

(3.60)
r = −1, M = 0, m = 0, N = 2evu− 1,

n = −1, T = 1− 2evu, PT = ev, Q = 0.

Further, (3.27) implies

(3.61) HUU = 0, i = 0, HUV = 2e2v , j = 2, HV U = 0.

We see that (3.25)1–2 are satisfied. Next, HV V is determined by the last
formula of (3.27) and we easily see that k = r = −1. To satisfy (3.25)3 we
calculate

(3.62) S =
uev(3− 2uev)

2(1− 2uev)
.

We know that our space is curvature homogeneous up to order 2 in any
domain where S is correctly defined (see Proposition 3.3). We can choose
for this domain the connected component of the origin in R

2 cut out by the
graph u = 1

2
e−v. This gives the desired example.

4. The case where Sym(Ric) has rank one. Here we have, in a
convenient system (u, v) of local coordinates,

(4.1)
̺ = Ric(U, V ) = −Ric(V,U) 6= 0,

Ric(U,U) = 0, µ = Ric(V, V ) 6= 0.

From (2.4) we get

Bv −Du +D(A−D) +B(F − C) = 0,

Cu −Av +Dv − Fu + 2DC − 2BE = 0,
(4.2)

̺ = Dv − Fu + CD −BE = Av − Cu +BE −CD 6= 0,

µ = Eu − Cv + E(A−D) +C(F − C) 6= 0.
(4.3)
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Further, we have the following formulas for ∇Ric:

(4.4)

(∇U Ric)(U, V ) = ̺u − (A+D)̺−Bµ =M,

(∇U Ric)(V,U) = −M − 2Bµ,

(∇V Ric)(U, V ) = ̺v − (C + F )̺−Dµ =M,

(∇V Ric)(V,U) = −M − 2Dµ,

(∇X Ric)(U,U) = 0 for all X,

(∇U Ric)(V, V ) = µu − 2Dµ = N,

(∇V Ric)(V, V ) = µv − 2Fµ = N.

Here we have introduced new auxiliary functions M,M,N,N .

A family Φ of linear isomorphisms given by (3.14) preserves Ric if and
only if

(4.5) Q = 0, i.e., Φ(U) = PUp, Φ(V ) = SUp + TVp

and

(4.6) µ = T 2µ(p), ̺ = PT̺(p), PT 6= 0.

Further, Φ preserves ∇Ric if and only if

(4.7)

M = P 2Tm, M = PT (Sm+ Tm),

N = PT 2n− 2PSTB(p)µ(p),

N = T 3n+ ST 2(n− 2D(p)µ(p))− 2S2TB(p)µ(p)

and

(4.8) Bµ = P 2TB(p)µ(p), Dµ = PT 2D(p)µ(p),

where M,M,N and N are defined by (4.4) and

(4.9) m =M(p), m =M(p), n = N(p), n = N(p).

From (4.6) and (4.7) we see that Φp preserves Ricp and (∇Ric)p if and
only if

(4.10) P (p) = T (p) = 1

and for s = S(p) we have

(4.11) ms = 0, B(p)s = 0, (n− 2D(p)µ(p))s = 0.

We have two cases:

A. One of the numbers m,B(p) and n−2D(p)µ(p) is nonzero. Then s=0
and the joint isotropy subgroup of Ric and ∇Ric at p reduces to {Id}. This
means that g(p; 1) = (0). Now, if ∇ is analytic and curvature homogeneous
up to order 2 then, according to Theorem 2.1, it is locally homogeneous.
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B. Suppose now that

(4.12) m = 0, B(p) = 0, n− 2D(p)µ(p) = 0

and that ∇ is curvature homogeneous up to order 1. Then according to (4.7)
and (4.8) we have, in a neighborhood V of p,

(4.13) M = 0, B = 0, N − 2Dµ = 0.

In particular, the 1-dimensional distribution D determined by U is totally
geodesic. Taking a new local coordinate system(u, v)as in case B of Section 3
we can assume that A = 0 in a neighborhood of p.

From (4.2)1 and (4.4)1 we get

(4.14) Du +D2 = 0, ̺u −D̺ = 0.

Suppose first that D ≡ 0. Then ̺u = 0 and from (4.13) we have N = 0.
Hence (4.4) gives µu = 0 and both ̺ and µ depend on v only. From (4.6) we
see that P and T depend on v only, and (4.7) shows that M = PT 2m and
N = T 3n depend on v only. From (4.4)7 we see that then F depends on v
only, and (4.3)1 shows that ̺ = 0, which is a contradiction. Hence D ≡/ 0.

Then (4.14) implies

(4.15) D(u, v) = 1/(u + f(v)), ̺(u, v) = ϕ(v)(u + f(v)),

where f(v) and ϕ(v) are arbitrary functions. The same coordinate trans-
formation as in (3.35) guarantees that ϕ(v) = 1 and f(v) = 0. The second
equation of (4.3) gives ̺ = −Cu − CD and hence

(4.16) C(u, v) = − 1
3u

2 − ψ(v)/u,

where ψ(v) is an arbitrary function. From (4.2)2 we get by integration

(4.17) F (u, v) = ψ(v)/u− 2
3
u2 + χ(v),

where χ(v) is a new arbitrary function.
From (4.4)6 and (4.13) we obtain µu − 4Dµ = 0 and hence

(4.18) µ = u4κ, N = 2u3κ,

where κ is an arbitrary function of v, κ 6= 0. Next, from (4.4)3 we get

(4.19) M = (1− κ)u3 − uχ

and from (4.7) we infer M = (m/n)N . Substituting M and N from (4.18)2
and (4.19) we get χ = 0 and κ = const.

From (4.4)7 we obtain

(4.20) N = 4
3u

6 − 2ψu3.

From (4.7) we get, by (4.12), N = T 3n and from (4.6) it follows that N2 =
µ3(n2/µ(p)3) = (n2/µ(p)3)κ3u12. Hence ψ = 0. We conclude that

(4.21) C = − 1
3u

2, D = 1/u, F = − 2
3u

2
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and from (4.3)2 we calculate

(4.22) E = − 2
9u

5 + ue(v),

where e(v) is an arbitrary function.

We see that we have the same formulas for D, C, F , E as in Section 3
(cf. (3.41)–(3.43)) except the first coefficient in (4.22).

The calculation of affine Killing vector fields is exactly the same as in the
previous section (see (3.51) and (3.52)) and hence ∇ is locally homogeneous
in the given neighborhood of p.

We conclude:

Proposition 4.1. Let both M and ∇ be analytic. If the symmetric part

of Ric has rank one, then curvature homogeneity up to order 2 implies local

homogeneity.

Finally, we give one example of this type which is curvature homogeneous
up to order 1 but not locally homogeneous. For this purpose we put, on
R

2[u, v],

(4.23) A = B = D = 0, C = F = evu, E = 1
2e

vu2 + h(u, v),

where

(4.24) h(u, v) = − 1
6e

−v(1− 2uev)3.

(Compare with (3.53).) Then (4.2) is satisfied identically and choosing p =
(0, 0) as a basic point in R

2[u, v], we get, from (4.3) and (4.4),

(4.25)

̺ = −Cu = −ev, ̺(p) = −1,

M = 0, m = 0,

µ = h′u = (1− 2uev)2, µ(p) = 1,

N = h′′uu = −4ev(1− 2uev), n = −4,

M = −ev(1− 2uev), m = −1,

N = −2uev(1− 2uev)(3 − 2uev), m = 0.

Here P , Q, T and S are given by the same formulas as in (3.60) and (3.62).
We easily check that all formulas (4.6) and (4.7) are satisfied and the con-
nection ∇ is curvature homogeneous up to order 1 on the same domain of
R

2[u, v] as described at the end of Section 3.

The calculation of the Killing vector fields is an easy modification of the
procedure used in the example of Section 3. We can again express a(u, v)
and b(u, v) in the form (3.55). From (3.46)3 we again obtain (3.56) and
hence we can express r(v) and s(v) through q(v). From (3.46)5 we get, after
making substitutions for C,E,F, r(v), s(v) and their derivatives, the pair of
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equations

(4.26) 2q′′(v) + q′(v) = 0, 2q′′′(v)− 2q(4)(v) − 3q′(v) = 0,

from which we deduce q′(v) = 0. Hence q(v) = −r(v) are constants and
s(v) = 0. We get the 1-dimensional Lie algebra of affine Killing vector fields
spanned by (3.59) and our affine manifold is not locally homogeneous.

5. The case where Sym(Ric) is nondegenerate. We are going to
prove the following

Proposition 5.1. Let both M and ∇ be analytic, and denote by g the

symmetric part of Ric. If g is nondegenerate, and if ∇ is curvature homo-

geneous up to order 2, then ∇ is locally homogeneous.

P r o o f (an easy adaptation of the proof of Theorem 2.1 in [5]). Choose
p ∈ M. For a linear endomorphism A of TpM and a fixed basis (X,Y ) of
TpM we set AX = αX + βY , AY = γX + δY . One sees that A ·Ric = 0 iff
A · g = 0 and A · ω = 0, where ω denotes the skew-symmetric part of Ric.

Let now (X,Y ) be a g-orthonormal basis of TpM, i.e.,

(5.1) g(X,X) = 1, g(X,Y ) = 0, g(Y, Y ) = ε = ±1.

We have

(5.2) {A ∈ gl(TpM) | A · g = 0} =

{[

0 −εβ
β 0

] ∣

∣

∣

∣

β ∈ R

}

.

Now we have either ω = 0 on M or ω is a volume element. In the second
case the condition A · ω = 0 is equivalent to tr(A) = 0. Hence we always
obtain

(5.3) g(p; 0) =

{[

0 −εβ
β 0

] ∣

∣

∣

∣

β ∈ R

}

.

We now observe that g(p; 0) is reductive in gl(TpM). We have two cases.
Either g(p; 1) = g(p; 0) and then Theorem 2.2 and curvature homogeneity up
to order one imply local homogeneity. Or g(p; 1) = {0} and then Theorem
2.1 and curvature homogeneity up to order two imply local homogeneity, as
well.

We are now going to construct an example of the same type which is
curvature homogeneous up to order one but not locally homogeneous. For
our example we require that (in the standard notation)

(5.4) Ric(U,U) = Ric(V, V ) = 0, Ric(V,U) = Ric(U, V ) 6= 0.

We set again

(5.5) ̺ = Ric(U, V ) 6= 0.
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Then (2.4) implies the system of PDEs

(5.6)

Bv −Du +D(A−D) +B(F −C) = 0,

Eu − Cv + E(A−D) + C(F − C) = 0,

Cu −Av + Fu −Dv = 0.

This system is, in particular, satisfied by the functions

(5.7) A = F = −
2

u+ v
, B = (u+ v)2, C = D = E = 0

defined in the half-plane
{

(u, v) ∈ R
2 | u + v > 0

}

, which we denote by
H. We choose p = (1/2, 1/2) as a fixed point. The formulas (5.5) and (2.4)
imply

(5.8) ̺ =
2

(u+ v)2
.

Next, we calculate ∇Ric. We easily see that

(5.9)
(∇U Ric)(U,U) = −2B̺ = −4,

(∇X Ric)(Y,Z) = 0 if at least one of the arguments is V.

Consider the field Φ = {Φx : TxH → TpH} of linear isomorphisms defined
by

(5.10) Φ(U) = Up, Φ(V ) =
1

(u+ v)2
Vp.

We see at once that, with Φ defined by (5.10), the space (H,∇) becomes
curvature homogeneous up to order 1.

We now prove that (H,∇) is not locally homogeneous. The correspond-
ing system of equations for the affine Killing vector fields X = a(u, v)U +
b(u, v)V can be written, in this case, in the form

(5.11)

auu +Aau −Bav +Aua+Avb = 0,

buu + 2Bau −Abu −Bbv +Bua+Bvb = 0,

auv +Aav = 0,

buv +Bav + Fbu = 0,

avv − Fav = 0,

bvv + Fbv + Fua+ Fvb = 0.

From the integrability condition for (5.11)3 and (5.11)5 we easily see that
av = 0 and hence

(5.12) a = q(u).

Using (5.11)1 we calculate

(5.13) b(u, v) = − 1
2q

′′(u)(u + v)2 + q′(u)(u + v)− q(u).
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The equations (5.11)4 and (5.11)6 are satisfied identically by (5.12), (5.13).
The equation (5.11)5 implies the single condition

(5.14) (q(4)(u)− 6q′(u))(u + v) + 4q′′′(u) = 0.

Hence we get q′(u) = 0 and q(u) is constant. All affine Killing vector fields
are constant multiples of

(5.15) X =
∂

∂u
−

∂

∂v

and the space (H,∇) is not locally homogeneous.
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