ON SYSTEMS OF NULL SETS
BY

K. P. S. BHASKARA RAO (BANGALORE) and

R. M. SHORTT (MIDDLETOWN, CT)

Abstract

The collection of all sets of measure zero for a finitely additive, groupvalued measure is studied and characterised from a combinatorial viewpoint.

Let X be a non-empty set and let \mathbf{A} be a class of subsets of X. Then \mathbf{A} is a field if $X \in \mathbf{A}$ and \mathbf{A} is closed under the operations of (finite) union and complementation, i.e. \mathbf{A} is a Boolean algebra of subsets of X. If \mathbf{A} is any class of subsets of X, then $a(\mathbf{A})$ denotes the smallest field containing A. A collection \mathbf{U} of subsets of X is a u-system if $\emptyset \in \mathbf{U}$ and \mathbf{U} is closed under the operation of proper difference: $U_{1} \backslash U_{2} \in \mathbf{U}$ whenever $U_{1} \supseteq U_{2}$ for $U_{1}, U_{2} \in \mathbf{U}$. It is easy to show that if \mathbf{U} is a u-system such that $X \in \mathbf{U}$, and $U_{1}, U_{2} \in \mathbf{U}$ with $U_{1} \cap U_{2}=\emptyset$, then $U_{1} \cup U_{2} \in \mathbf{U}$: a u-system containing X is closed under formation of disjoint unions (and also complements).

Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{n} be finite sequences of not necessarily distinct subsets of a set X. For any $k \geq 1$, we define

$$
A(k)=\bigcup A_{i_{1}} \cap \ldots \cap A_{i_{k}}, \quad B(k)=\bigcup B_{i_{1}} \cap \ldots \cap B_{i_{k}},
$$

in each case intending the union of all k-fold intersections: the $\left(i_{1}, \ldots, i_{k}\right)$ are k-tuples of distinct indices i_{j}. Then we have

$$
\begin{array}{ll}
A(1)=A_{1} \cup \ldots \cup A_{m}, & A(m)=A_{1} \cap \ldots \cap A_{m}, \\
B(1)=B_{1} \cup \ldots \cup B_{n}, & B(n)=B_{1} \cap \ldots \cap B_{n},
\end{array}
$$

and by convention, we put $A(k)=\emptyset$ for $k>m$ and $B(k)=\emptyset$ for $k>n$. A collection \mathbf{M} of subsets of X is an m-system if $\emptyset \in \mathbf{M}$ and whenever A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{n} are sets in \mathbf{M} such that

$$
\begin{equation*}
A(k+1) \subseteq B(k) \subseteq A(k) \quad \text { for all } k \geq 1 \tag{*}
\end{equation*}
$$

then

$$
\begin{equation*}
\bigcup_{k=1}^{N}[A(k) \backslash B(k)] \in \mathbf{M}, \quad \text { where } N \geq m, n . \tag{**}
\end{equation*}
$$

[^0]Clearly, every field is an m-system, and every m-system is a u-system. The converse implications do not hold, as is shown in an example given later. If \mathbf{A} is a class of subsets of X, then $u(\mathbf{A})$ and $m(\mathbf{A})$ denote, respectively, the smallest u-system and m-system containing \mathbf{A}. Then $u(\mathbf{A}) \subseteq m(\mathbf{A})$.

Given a non-empty set X, let \mathbb{Z}^{X} be the additive group of all functions from X to the integers \mathbb{Z}. If $A \subseteq X$, then the indicator of A is the function $1_{A}: X \rightarrow \mathbb{Z}$ such that $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ if $x \notin A$. Given a collection A of subsets of X, we define $S(\mathbf{A})$ as the subgroup of \mathbb{Z}^{X} generated by all the indicators 1_{A} for $A \in \mathbf{A}$.

Lemma 1. If \mathbf{A} and \mathbf{B} are collections of subsets of X, then $S(\mathbf{A} \cup \mathbf{B})=$ $S(\mathbf{A})+S(\mathbf{B})$.

Lemma 2. Let \mathbf{A} be a collection of subsets of X. For any $E \subseteq X$, we have $E \in m(\mathbf{A})$ if and only if $1_{E} \in S(\mathbf{A})$.

Proof. Suppose that $1_{E} \in S(\mathbf{A})$. Then there are sets A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{n} in \mathbf{A} such that $1_{E}=1_{A_{1}}+\ldots+1_{A_{m}}-1_{B_{1}}-\ldots-1_{B_{n}}$. We see that the sets A_{i} and B_{j} satisfy condition (*) in the definition of an m-system, so that E, which is the set in $(* *)$, must belong to $m(\mathbf{A})$.

Now let \mathbf{M} be the collection of all sets $F \subseteq X$ such that $1_{F} \in S(\mathbf{A})$. It is easy to verify that \mathbf{M} is an m-system containing \mathbf{A}, so that $u(\mathbf{A}) \subseteq \mathbf{M}$.

The proof gives indication of a useful alternative definition of m-system: if A_{i} and B_{j} are sets in \mathbf{M}, and $1_{E}=1_{A_{1}}+\ldots+1_{A_{m}}-1_{B_{1}}-\ldots-1_{B_{n}}$, then $E \in \mathbf{M}$.

Lemma 3. Let A be a collection of subsets of X. Then $S(m(\mathbf{A}))=$ $S(u(\mathbf{A}))=S(\mathbf{A})$.

Proof. Clearly, $S(\mathbf{A})] \subseteq S(u(\mathbf{A})) \subseteq S(m(\mathbf{A}))$. The inclusion $S(m(\mathbf{A})) \subseteq$ $S(\mathbf{A})$ follows from the preceding lemma.

Example. We show that the concepts of u-system and m-system are in general distinct. Put

$$
\begin{gathered}
Y=\{0,1\}^{3}, \quad X=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in Y: a_{1}+a_{2} \geq a_{3}\right\}, \\
A_{i}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in X: a_{i}=1\right\} \quad \text { for } i=1,2,3 .
\end{gathered}
$$

Then the collection

$$
\mathbf{U}=\left\{\emptyset, A_{1}, A_{2}, A_{3}, X \backslash A_{1}, X \backslash A_{2}, X \backslash A_{3}, X\right\}
$$

is a u-system, but $m(\mathbf{U})$ contains the additional set

$$
E=\{(1,1,1),(1,0,0),(0,1,0)\} ;
$$

we have $1_{E}=1_{A_{1}}+1_{A_{2}}-1_{A_{3}}$.
Let \mathbf{A} be a field of subsets of a set X and let G be an Abelian group. A function $\mu: \mathbf{A} \rightarrow G$ is a (G-valued) charge if $\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)$
whenever A_{1}, A_{2} are disjoint sets in \mathbf{A}. Every G-valued charge μ induces a unique homomorphism $\varphi: S(\mathbf{A}) \rightarrow G$ such that $\varphi\left(1_{A}\right)=\mu(A)$ for every $A \in$ \mathbf{A}; using the same equation, we see that each homomorphism $\varphi: S(\mathbf{A}) \rightarrow G$ is induced by a charge $\mu: \mathbf{A} \rightarrow G$. Zero sets of group-valued charges are characterised in the

TheOrem. Let \mathbf{M} be a collection of subsets of a non-empty set X and define $\mathbf{A}=a(\mathbf{M})$. The following conditions are equivalent:
(i) there is an Abelian group G and a charge $\mu: \mathbf{A} \rightarrow G$ such that $\mathbf{M}=\{A \in \mathbf{A}: \mu(A)=0\} ;$
(ii) \mathbf{M} is an m-system.

Proof. (i) \Rightarrow (ii). Let $\varphi: S(\mathbf{A}) \rightarrow G$ be the homomorphism induced by μ. If A_{i} and B_{j} are sets in \mathbf{A} with $\mu\left(A_{i}\right)=\mu\left(B_{j}\right)=0$ and $1_{E}=$ $1_{A_{1}}+\ldots+1_{A_{m}}-1_{B_{1}}-\ldots-1_{B_{n}}$, then $\mu(E)=\varphi\left(1_{E}\right)=0$. The collection $\mathbf{M}=\{A \in \mathbf{A}: \mu(A)=0\}$ is thus closed under the operation that defines m-systems.
(ii) \Rightarrow (i). Define $G=S(\mathbf{A}) / S(\mathbf{M})$ and let $\varphi: S(\mathbf{A}) \rightarrow G$ be the standard projection onto the quotient. Define $\mu: \mathbf{A} \rightarrow G$ by $\mu(A)=\varphi\left(1_{A}\right)$. By Lemma $2, \mathbf{M}=\{A \in \mathbf{A}: \mu(A)=0\}$.

Quotient groups of the form $S(a(\mathbf{A} \cup \mathbf{B})) /[S(\mathbf{A})+S(\mathbf{B})]$, where \mathbf{A} and \mathbf{B} are fields, arise naturally in and have been studied for their connection with the problem of joint extensions of group-valued charges (see [1], [2]). With this application in mind, we now prove that the u-system and the m-system generated by the union of two fields coincide.

Theorem. Let \mathbf{A} and \mathbf{B} be fields of subsets of a set X. For $E \subseteq X$, we have $1_{E} \in S(\mathbf{A})+S(\mathbf{B})$ if and only if $E \in u(\mathbf{A} \cup \mathbf{B})$. Then $u(\mathbf{A} \cup \mathbf{B})=$ $m(\mathbf{A} \cup \mathbf{B})$.

Proof. From Lemma 2 and the inclusion $u(\mathbf{A} \cup \mathbf{B}) \subseteq m(\mathbf{A} \cup \mathbf{B})$, we see that $1_{E} \in S(\mathbf{A} \cup \mathbf{B})=S(\mathbf{A})+S(\mathbf{B})$ whenever $E \in u(\mathbf{A} \cup \mathbf{B})$. Now suppose that $1_{E} \in S(\mathbf{A} \cup \mathbf{B})$. Then $1_{E}=h+k$ for functions $h \in S(\mathbf{A})$ and $k \in S(\mathbf{B})$. Since constant functions in \mathbb{Z}^{X} belong to $S(\mathbf{A}) \cap S(\mathbf{B})$, it involves no loss of generality to assume that $h \geq 0$ and $k \leq 0$. Then we have

$$
E=\bigcup_{i=0}^{\infty}\{x: k(x) \geq-i\} \backslash\{x: h(x) \leq i\}
$$

a finite disjoint union of proper differences of sets of \mathbf{B} with sets of \mathbf{A}. Thus $E \in u(\mathbf{A} \cup \mathbf{B})$.

We have shown that $1_{E} \in S(\mathbf{A} \cup \mathbf{B})$ if and only if $E \in u(\mathbf{A} \cup \mathbf{B})$. Lemma 2 then implies that $u(\mathbf{A} \cup \mathbf{B})=m(\mathbf{A} \cup \mathbf{B})$.

REFERENCES

[1] K. P. S. Bhaskara Rao and R. M. Shortt, Group-valued charges: common extensions and the infinite Chinese remainder property, Proc. Amer. Math. Soc. 113 (1991), 965-972.
[2] R. Göbel and R. M. Shortt, Algebraic ramifications of the common extension problem for group-valued measures, Fund. Math. 146 (1994), 1-20.

Indian Statistical Institute
Wesleyan University
Bangalore 560059, India
E-mail: kpsbrao@isibang.ernet.in
E-mail: rshortt@wesleyan.edu

[^0]: 1991 Mathematics Subject Classification: 28A05, 28B10.

