COLLOQUIUM MATHEMATICUM

VOL. 81

1999

NO. 1

ON SYSTEMS OF NULL SETS

$_{\rm BY}$

K. P. S. BHASKARA RAO (BANGALORE) and R. M. SHORTT (MIDDLETOWN, CT)

Abstract. The collection of all sets of measure zero for a finitely additive, group-valued measure is studied and characterised from a combinatorial viewpoint.

Let X be a non-empty set and let A be a class of subsets of X. Then A is a *field* if $X \in \mathbf{A}$ and A is closed under the operations of (finite) union and complementation, i.e. A is a Boolean algebra of subsets of X. If A is any class of subsets of X, then $a(\mathbf{A})$ denotes the smallest field containing A. A collection U of subsets of X is a *u*-system if $\emptyset \in \mathbf{U}$ and U is closed under the operation of proper difference: $U_1 \setminus U_2 \in \mathbf{U}$ whenever $U_1 \supseteq U_2$ for $U_1, U_2 \in \mathbf{U}$. It is easy to show that if U is a *u*-system such that $X \in \mathbf{U}$, and $U_1, U_2 \in \mathbf{U}$ with $U_1 \cap U_2 = \emptyset$, then $U_1 \cup U_2 \in \mathbf{U}$: a *u*-system containing X is closed under formation of disjoint unions (and also complements).

Let A_1, \ldots, A_m and B_1, \ldots, B_n be finite sequences of not necessarily distinct subsets of a set X. For any $k \ge 1$, we define

$$A(k) = \bigcup A_{i_1} \cap \ldots \cap A_{i_k}, \quad B(k) = \bigcup B_{i_1} \cap \ldots \cap B_{i_k},$$

in each case intending the union of all k-fold intersections: the (i_1, \ldots, i_k) are k-tuples of distinct indices i_j . Then we have

$$A(1) = A_1 \cup \ldots \cup A_m, \quad A(m) = A_1 \cap \ldots \cap A_m,$$

$$B(1) = B_1 \cup \ldots \cup B_n, \quad B(n) = B_1 \cap \ldots \cap B_n,$$

and by convention, we put $A(k) = \emptyset$ for k > m and $B(k) = \emptyset$ for k > n. A collection **M** of subsets of X is an *m*-system if $\emptyset \in \mathbf{M}$ and whenever A_1, \ldots, A_m and B_1, \ldots, B_n are sets in **M** such that

(*)
$$A(k+1) \subseteq B(k) \subseteq A(k)$$
 for all $k \ge 1$,

then

(**)
$$\bigcup_{k=1}^{N} [A(k) \setminus B(k)] \in \mathbf{M}, \quad \text{where } N \ge m, n.$$

1991 Mathematics Subject Classification: 28A05, 28B10.

[1]

Clearly, every field is an *m*-system, and every *m*-system is a *u*-system. The converse implications do not hold, as is shown in an example given later. If **A** is a class of subsets of X, then $u(\mathbf{A})$ and $m(\mathbf{A})$ denote, respectively, the smallest *u*-system and *m*-system containing **A**. Then $u(\mathbf{A}) \subseteq m(\mathbf{A})$.

Given a non-empty set X, let \mathbb{Z}^X be the additive group of all functions from X to the integers \mathbb{Z} . If $A \subseteq X$, then the *indicator* of A is the function $1_A : X \to \mathbb{Z}$ such that $1_A(x) = 1$ if $x \in A$ and $1_A(x) = 0$ if $x \notin A$. Given a collection **A** of subsets of X, we define $S(\mathbf{A})$ as the subgroup of \mathbb{Z}^X generated by all the indicators 1_A for $A \in \mathbf{A}$.

LEMMA 1. If **A** and **B** are collections of subsets of X, then $S(\mathbf{A} \cup \mathbf{B}) = S(\mathbf{A}) + S(\mathbf{B})$.

LEMMA 2. Let **A** be a collection of subsets of X. For any $E \subseteq X$, we have $E \in m(\mathbf{A})$ if and only if $1_E \in S(\mathbf{A})$.

Proof. Suppose that $1_E \in S(\mathbf{A})$. Then there are sets A_1, \ldots, A_m and B_1, \ldots, B_n in \mathbf{A} such that $1_E = 1_{A_1} + \ldots + 1_{A_m} - 1_{B_1} - \ldots - 1_{B_n}$. We see that the sets A_i and B_j satisfy condition (*) in the definition of an *m*-system, so that E, which is the set in (**), must belong to $m(\mathbf{A})$.

Now let \mathbf{M} be the collection of all sets $F \subseteq X$ such that $1_F \in S(\mathbf{A})$. It is easy to verify that \mathbf{M} is an *m*-system containing \mathbf{A} , so that $u(\mathbf{A}) \subseteq \mathbf{M}$.

The proof gives indication of a useful alternative definition of *m*-system: if A_i and B_j are sets in \mathbf{M} , and $\mathbf{1}_E = \mathbf{1}_{A_1} + \ldots + \mathbf{1}_{A_m} - \mathbf{1}_{B_1} - \ldots - \mathbf{1}_{B_n}$, then $E \in \mathbf{M}$.

LEMMA 3. Let **A** be a collection of subsets of X. Then $S(m(\mathbf{A})) = S(u(\mathbf{A})) = S(\mathbf{A})$.

Proof. Clearly, $S(\mathbf{A})$] ⊆ $S(u(\mathbf{A}))$ ⊆ $S(m(\mathbf{A}))$. The inclusion $S(m(\mathbf{A}))$ ⊆ $S(\mathbf{A})$ follows from the preceding lemma. ■

EXAMPLE. We show that the concepts of u-system and m-system are in general distinct. Put

$$Y = \{0, 1\}^3, \quad X = \{(a_1, a_2, a_3) \in Y : a_1 + a_2 \ge a_3\}, A_i = \{(a_1, a_2, a_3) \in X : a_i = 1\} \quad \text{for } i = 1, 2, 3.$$

Then the collection

$$\mathsf{U} = \{\emptyset, A_1, A_2, A_3, X \setminus A_1, X \setminus A_2, X \setminus A_3, X\}$$

is a *u*-system, but $m(\mathbf{U})$ contains the additional set

$$E = \{(1, 1, 1), (1, 0, 0), (0, 1, 0)\};\$$

we have $1_E = 1_{A_1} + 1_{A_2} - 1_{A_3}$.

Let **A** be a field of subsets of a set X and let G be an Abelian group. A function $\mu : \mathbf{A} \to G$ is a (G-valued) charge if $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$

whenever A_1 , A_2 are disjoint sets in **A**. Every *G*-valued charge μ induces a unique homomorphism $\varphi : S(\mathbf{A}) \to G$ such that $\varphi(1_A) = \mu(A)$ for every $A \in \mathbf{A}$; using the same equation, we see that each homomorphism $\varphi : S(\mathbf{A}) \to G$ is induced by a charge $\mu : \mathbf{A} \to G$. Zero sets of group-valued charges are characterised in the

THEOREM. Let **M** be a collection of subsets of a non-empty set X and define $\mathbf{A} = a(\mathbf{M})$. The following conditions are equivalent:

(i) there is an Abelian group G and a charge $\mu : \mathbf{A} \to G$ such that $\mathbf{M} = \{A \in \mathbf{A} : \mu(A) = 0\};$

(ii) **M** is an m-system.

Proof. (i) \Rightarrow (ii). Let $\varphi : S(\mathbf{A}) \to G$ be the homomorphism induced by μ . If A_i and B_j are sets in \mathbf{A} with $\mu(A_i) = \mu(B_j) = 0$ and $\mathbf{1}_E = \mathbf{1}_{A_1} + \ldots + \mathbf{1}_{A_m} - \mathbf{1}_{B_1} - \ldots - \mathbf{1}_{B_n}$, then $\mu(E) = \varphi(\mathbf{1}_E) = 0$. The collection $\mathbf{M} = \{A \in \mathbf{A} : \mu(A) = 0\}$ is thus closed under the operation that defines *m*-systems.

(ii) \Rightarrow (i). Define $G = S(\mathbf{A})/S(\mathbf{M})$ and let $\varphi : S(\mathbf{A}) \to G$ be the standard projection onto the quotient. Define $\mu : \mathbf{A} \to G$ by $\mu(A) = \varphi(1_A)$. By Lemma 2, $\mathbf{M} = \{A \in \mathbf{A} : \mu(A) = 0\}$.

Quotient groups of the form $S(a(\mathbf{A} \cup \mathbf{B}))/[S(\mathbf{A}) + S(\mathbf{B})]$, where \mathbf{A} and \mathbf{B} are fields, arise naturally in and have been studied for their connection with the problem of joint extensions of group-valued charges (see [1], [2]). With this application in mind, we now prove that the *u*-system and the *m*-system generated by the union of two fields coincide.

THEOREM. Let **A** and **B** be fields of subsets of a set X. For $E \subseteq X$, we have $1_E \in S(\mathbf{A}) + S(\mathbf{B})$ if and only if $E \in u(\mathbf{A} \cup \mathbf{B})$. Then $u(\mathbf{A} \cup \mathbf{B}) = m(\mathbf{A} \cup \mathbf{B})$.

Proof. From Lemma 2 and the inclusion $u(\mathbf{A} \cup \mathbf{B}) \subseteq m(\mathbf{A} \cup \mathbf{B})$, we see that $1_E \in S(\mathbf{A} \cup \mathbf{B}) = S(\mathbf{A}) + S(\mathbf{B})$ whenever $E \in u(\mathbf{A} \cup \mathbf{B})$. Now suppose that $1_E \in S(\mathbf{A} \cup \mathbf{B})$. Then $1_E = h + k$ for functions $h \in S(\mathbf{A})$ and $k \in S(\mathbf{B})$. Since constant functions in \mathbb{Z}^X belong to $S(\mathbf{A}) \cap S(\mathbf{B})$, it involves no loss of generality to assume that $h \geq 0$ and $k \leq 0$. Then we have

$$E = \bigcup_{i=0}^{\infty} \{x : k(x) \ge -i\} \setminus \{x : h(x) \le i\},\$$

~~

a finite disjoint union of proper differences of sets of **B** with sets of **A**. Thus $E \in u(\mathbf{A} \cup \mathbf{B})$.

We have shown that $1_E \in S(\mathbf{A} \cup \mathbf{B})$ if and only if $E \in u(\mathbf{A} \cup \mathbf{B})$. Lemma 2 then implies that $u(\mathbf{A} \cup \mathbf{B}) = m(\mathbf{A} \cup \mathbf{B})$.

REFERENCES

- K. P. S. Bhaskara Rao and R. M. Shortt, Group-valued charges: common extensions and the infinite Chinese remainder property, Proc. Amer. Math. Soc. 113 (1991), 965–972.
- [2] R. Göbel and R. M. Shortt, Algebraic ramifications of the common extension problem for group-valued measures, Fund. Math. 146 (1994), 1–20.

Indian Statistical Institute Bangalore 560059, India E-mail: kpsbrao@isibang.ernet.in Wesleyan University Middletown, CT 06457, U.S.A. E-mail: rshortt@wesleyan.edu

Received 23 May 1994

4