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KILLING TENSORS AND EINSTEIN–WEYL GEOMETRY

BY

W LODZIMIERZ J E L O N E K (KRAKÓW)

Abstract. We give a description of compact Einstein–Weyl manifolds in terms of
Killing tensors.

0. Introduction. In this paper we investigate compact Einstein–Weyl
structures (M, [g], D). In the first part we consider the Killing tensors on a
Riemannian manifold (M, g). We prove that if a Killing tensor S has two
eigenfunctions λ, µ such that dim ker(S − λI) = 1 and µ is constant then
any section ξ of the bundle Dλ = ker(S−λI) such that g(ξ, ξ) = |λ−µ| is a
Killing vector field on (M, g). We prove that if (M, g) is compact and simply
connected then every Killing tensor field with at most two eigenvalues λ, µ
at each point of M such that µ is constant and dimDλ ≤ 1 admits a Killing
eigenfield ξ ∈ iso(M) (Sξ = λξ). We also show that if the Ricci tensor of an
A-manifold has at most two eigenvalues at each point then these eigenvalues
have to be constant on the whole of M .

In the second part we apply our results concerning Killing tensors and
give a detailed description of compact Einstein–Weyl manifolds as a special
kind ofA⊕C⊥-manifolds first defined by A. Gray ([6]) (see also [1]). We show
that the Ricci tensor of the standard Riemannian structure (M, g0) of an
Einstein–Weyl manifold (M, [g], D) can be represented as S+Λ IdTM where
S is a Killing tensor and Λ is a smooth function on M . We prove that for
compact simply connected manifolds there is a 1-1 correspondence between
A⊕C⊥-Riemannian structures whose Ricci tensor has at most two eigenval-
ues at each point satisfying certain additional conditions and Einstein–Weyl
structures. We also prove that if (M, [g], D) is a compact Einstein–Weyl
manifold with dimM ≥ 4 which is not conformally Einstein then the con-
formal scalar curvature sD of (M, [g], D) is nonnegative and that the center
of the Lie algebra of the isometry group of the standard Riemannian struc-
ture (M, g0) of (M, [g], D) is nontrivial. Our results rely on some results of
P. Gauduchon [3] and H. Pedersen and A. Swann ([9], [10]).
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1. Preliminaries. Let (M, g) be a smooth connected Riemannian man-
ifold. Abusing the notation we sometimes write 〈X,Y 〉 = g(X,Y ). We de-
note by ∇ the Levi-Civita connection of (M, g). For a tensor T (X1, . . . , Xk)
we define another tensor ∇T (X0, X1, . . . , Xk) by ∇T (X0, X1, . . . , Xk) =
∇X0T (X1, . . . , Xk). By a Killing tensor on M (we also call such tensors
A-tensors) we mean an endomorphism S ∈ End(TM) satisfying the follow-
ing conditions:

〈SX, Y 〉 = 〈X,SY 〉 for all X,Y ∈ TM,(1.1)

〈∇S(X,X), X〉 = 0 for all X ∈ TM.(1.2)

We also write S ∈ A if S is a Killing tensor. We call S a proper A-tensor
if ∇S 6= 0. We denote by Φ the tensor defined by Φ(X,Y ) = 〈SX, Y 〉.

We start with:

Proposition 1.1. For an endomorphism S ∈ End(TM), the following
conditions are equivalent :

(a) the tensor S is an A-tensor on (M, g).
(b) for every geodesic γ on (M, g), the function Φ(γ′(t), γ′(t)) is constant

on dom γ;
(c) the condition

(A) ∇XΦ(Y,Z) +∇Y Φ(Z,X) +∇ZΦ(X,Y ) = 0

is satisfied for all X,Y, Z ∈ X(M).

P r o o f. By using polarization it is easy to see that (a) is equivalent
to (c). Let now X ∈ Tx0

M be any vector from TM and γ be a geodesic
satisfying the initial condition γ′(0) = X. Then

(1.3)
d

dt
Φ(γ′(t), γ′(t)) = ∇γ′(t)Φ(γ′(t), γ′(t)).

Hence d
dtΦ(γ′(t), γ′(t))t=0 = ∇Φ(X,X,X). The equivalence (a)⇔(b) follows

immediately from the above relations.

As in [2] define the integer-valued function ES(x) = (the number of dis-
tinct eigenvalues of Sx) and set MS = {x ∈ M : ES is constant in a neigh-
bourhood of x}. The set MS is open and dense in M and the eigenvalues λi
of S are distinct and smooth in each component U of MS . The eigenspaces
Dλ = ker(S − λI) form smooth distributions in each component U of MS .
By ∇f we denote the gradient of a function f (i.e. 〈∇f,X〉 = df(X)) and
by Γ (Dλ) (resp. X(U)) the set of all local sections of the bundle Dλ (resp.
all local vector fields on U). Note that if λ 6= µ are eigenvalues of S then
Dλ is orthogonal to Dµ.

Theorem 1.2. Let S be an A-tensor on M and U be a component of
MS and λ1, . . . , λk ∈ C∞(U) be eigenfunctions of S. Then for all X ∈ Dλi



KILLING TENSORS AND EINSTEIN–WEYL GEOMETRY 7

we have

(1.4) ∇S(X,X) = −1

2
(∇λi)‖X‖2

and Dλi
⊂ ker dλi. If i 6= j and X ∈ Γ (Dλi

), Y ∈ Γ (Dλj
) then

(1.5) 〈∇XX,Y 〉 =
1

2

Y λi
λj − λi

‖X‖2.

P r o o f. Let X ∈ Γ (Dλi
) and Y ∈ X(U). Then SX = λiX and

(1.6) ∇S(Y,X) + (S − λiI)(∇YX) = (Y λi)X

and consequently,

(1.7) 〈∇S(Y,X), X〉 = (Y λi)‖X‖2.
Taking Y = X in (1.7) we obtain 0 = Xλi‖X‖2 by (1.2). Hence Dλi ⊂
ker dλi. Thus from (1.6) it follows that ∇S(X,X) = (λiI−S)(∇XX). Con-
dition (A) implies 〈∇S(X,Y ), Z〉 + 〈∇S(Z,X), Y 〉 + 〈∇S(Y,Z), X〉 = 0,
hence

(1.8) 2〈∇S(X,X), Y 〉+ 〈∇S(Y,X), X〉 = 0.

Thus, (1.8) yields Y λi‖X‖2+2〈∇S(X,X), Y 〉=0. Consequently, ∇S(X,X)
= − 1

2 (∇λi)‖X‖2. Let now Y ∈ Γ (Dλj
). Then

(1.9) ∇S(X,Y ) + (S − λjI)(∇XY ) = (Xλj)Y.

It is also clear that 〈∇S(X,X), Y 〉 = 〈∇S(X,Y ), X〉 = (λj − λi)〈∇XY,X〉.
Thus,

Y λi‖X‖2 = −2(λj − λi)〈∇XY,X〉 = 2(λj − λi)〈Y,∇XX〉
and (1.5) holds.

Corollary 1.3. Let S,U, λ1, . . . , λk be as above and i ∈ {1, . . . , k}. Then
the following conditions are equivalent :

(a) For all X ∈ Γ (Dλi
), ∇XX ∈ Dλi

.
(b) For all X,Y ∈ Γ (Dλi

), ∇XY +∇YX ∈ Dλi
.

(c) For all X ∈ Γ (Dλi
), ∇S(X,X) = 0.

(d) For all X,Y ∈ Γ (Dλi
), ∇S(X,Y ) +∇S(Y,X) = 0.

(e) λi is a constant eigenvalue of S.

Note that if X,Y ∈ Γ (Dλi
) then

(1.10) ∇S(X,Y )−∇S(Y,X) = (λiI − S)([X,Y ])

since from Theorem 1.2 it follows that Xλi = Y λi = 0. Hence the dis-
tribution Dλi

is integrable if and only if ∇S(X,Y ) = ∇S(Y,X) for all
X,Y ∈ Γ (Dλi

). Consequently, we obtain

Corollary 1.4. Let λi ∈ C∞(U) be an eigenvalue of an A-tensor S.
Then on U the following conditions are equivalent :
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(a) Dλi
is integrable and λi is constant.

(b) For all X,Y ∈ Γ (Dλi
), ∇S(X,Y ) = 0.

(c) Dλi is autoparallel.

P r o o f. This follows from (1.4), (1.10), Corollary 1.3 and the relation
∇XY = ∇YX + [X,Y ].

A Riemannian manifold (M, g) is called an A-manifold (see [6]) if the
Ricci tensor % of (M, g) satisfies the condition

(A1) ∇X%(X,X) = 0

for all X ∈ TM , i.e. if % is a Killing tensor. By an A⊕C⊥-manifold we mean
a Riemannian manifold (M, g) whose Ricci tensor satisfies the condition

(A2) ∇X%(X,X) =
2

n+ 2
Xτg(X,X)

for all X ∈ TM where n = dimM and τ denotes the scalar curvature of
(M, g). We have

Lemma 1.5. Let (M, g) be a Riemannian manifold. Then (M, g) ∈ A⊕C⊥
if and only if there exists a function s ∈ C∞(M) such that

(1.11) ∇X%(X,X) = Xsg(X,X).

If (1.11) holds then d
(
s− 2

n+2τ
)

= 0.

P r o o f. From (1.11) we get

CX,Y,Z∇X%(Y,Z) = CX,Y,ZXsg(Y,Z)

where C denotes the cyclic sum. Hence

(1.12) 2∇X%(X,Y ) +∇Y %(X,X) = 2Xsg(X,Y ) + Y sg(X,X).

Define δ%(Y ) = trg∇·%(·, Y ). Then δ% = 1
2dτ (see for example [1]). On the

other hand, taking account of (1.12) we have

(1.13) 2δ%(Y ) + tr∇Y %(·, ·) = 2g(∇s, Y ) + nYs.

Since tr∇Y %(·, ·) = Y τ we finally obtain 2dτ = (n+ 2)ds.

2. A-tensors with two eigenvalues. In this section we characterize
certain A-tensors with two eigenvalues. We start with:

Theorem 2.1. Let S be an A-tensor on (M, g) with exactly two eigen-
values λ, µ and a constant trace. Then λ, µ are constant on M . The distri-
butions Dλ, Dµ are both integrable if and only if ∇S = 0.

P r o o f. Note first that p = dim ker(S − λI), q = dim ker(S − µI) are
constant on M as MS = M . We also have pλ+qµ = trS and trS is constant
on M . Hence

(2.1) p∇λ+ q∇µ = 0
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on M . Note that ∇λ ∈ Γ (Dµ), ∇µ ∈ Γ (Dλ) (see Th. 1.2) thus ∇λ =
∇µ = 0 since TM = Dλ ⊕ Dµ. Now suppose that Dλ is integrable. We
show that ∇S(X,Y ) = 0 and ∇XY ∈ Dµ if X ∈ Dλ and Y ∈ Dµ. We
have ∇S(X,Y ) = (µI − S)(∇XY ) ∈ Dλ as Dλ is orthogonal to Dµ. Let
Z ∈ Γ (Dλ); then for any X ∈ Γ (Dλ), Y ∈ X(M) we have

〈∇S(X,Y ), Z〉 = 〈Y,∇S(X,Z)〉 = 0

since ∇S(X,Z) = 0 (see Corollary 1.4). Hence ∇S(X,Y ) = 0 and ∇XY ∈
Dµ if X ∈ Dλ and Y ∈ Dµ. If Dµ is also integrable then in view of
Corollary 1.4, ∇S = 0.

We have also proved in passing:

Corollary 2.2. Let S be an A-tensor on (M, g) with two constant
eigenvalues λ, µ. If Dλ is integrable then ∇S(X,Y ) = 0 for all X ∈ Γ (Dλ),
Y ∈ Γ (Dµ).

Corollary 2.3. Let (M, g) be an A-manifold whose Ricci tensor S has
exactly two eigenvalues λ, µ. Then λ, µ are constant.

P r o o f. It is well known that if (M, g) is an A-manifold then S has
constant trace trS = τ (see [6] or Lemma 1.5).

From now on we investigate A-tensors with two eigenvalues λ, µ satis-
fying additional conditions: µ is constant and dimDλ = 1. It follows that
Dλ is integrable. We also assume that Dλ is orientable (this happens for
example if π1(M) has no subgroups of index 2). Otherwise we may con-
sider a manifold (M, g) and an A-tensor S on M such that there exists a
two-fold Riemannian covering p : M → M for which dp ◦ S = S ◦ dp and
Dλ = ker(S − λI) is orientable. Let ξ ∈ Γ (Dλ) be a global section of Dλ

such that 〈ξ, ξ〉 = 1. Then we have:

Lemma 2.4. Let (M, g) be a Riemannian manifold and S ∈ A. Assume
that S has exactly two eigenfunctions λ, µ such that µ is constant and λ ∈
C∞(M). Let ξ ∈ Γ (Dλ) be a unit vector field. Then the section

√
|λ− µ|ξ

is a Killing vector field on (M, g). On the other hand , if a Riemannian
manifold (M, g) admits a Killing vector field ξ then it admits an A-tensor
S such that ξ is an eigenfield of S.

P r o o f. Denote by T the endomorphism of TM defined by TX = ∇Xξ.
If Φ(X,Y ) = 〈SX, Y 〉 then Φ(ξ,X) = λ〈ξ,X〉. Hence

(2.2) ∇Φ(Y, ξ,X) + Φ(TY,X) = λ〈TY,X〉+ Y λ〈ξ,X〉.
Take X = Y ∈ Dµ in (2.2). Since ∇S(X,X) = 0 (µ is constant) we obtain
Φ(TX,X) = λ〈TX,X〉. On the other hand, SX = µX. Consequently,
Φ(TX,X) = µ〈TX,X〉. Hence

(2.3) 〈TX,X〉 = 0, X ∈ Dµ.
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We also have

〈∇ξξ,X〉 =
1

2

Xλ

µ− λ
= −1

2
X(ln |µ− λ|).

We now show that the field η =
√
|µ− λ|ξ is Killing. From (2.3) it

follows that 〈∇Xη,X〉 = 0 for X ∈ Dµ. Notice that

〈∇ηη,X〉 =
1

2

Xλ

µ− λ
〈η, η〉 =

1

2
Xλε

where ε = sgn(µ − λ). Since 〈η, η〉 = |µ − λ| we get 2〈∇Xη, η〉 = −Xλε.
Consequently, for X ∈ Γ (Dµ),

〈∇ηη,X〉+ 〈∇Xη, η〉 = 0.

Note that ξ
√
|µ− λ| = 0 (since Dλ ⊂ kerλ). Thus it is clear that 〈∇ηη, η〉

= 0. It follows that η is a Killing vector field and η ∈ iso(M).
Assume now that on a manifold (M, g) there exists a Killing vector

field ξ and let α = 〈ξ, ξ〉. Let µ be any real number and define a function
λ ∈ C∞(M) by

λ = µ+ εα

where ε ∈ {−1, 1}. Then |λ − µ| = 〈ξ, ξ〉. Define a (1, 1)-tensor S on M as
follows:

(a) Sξ = λξ,
(b) SX = µX if 〈X, ξ〉 = 0.

Then S ∈ A. Note that the distribution D = {X : 〈X, ξ〉 = 0} is geodesic,
i.e. if X ∈ Γ (D) then ∇XX ∈ Γ (D). It follows that ∇S(X,X) = 0 if
X ∈ Γ (D).

Note also that

∇S(ξ, ξ) = − 1
2∇α〈ξ, ξ〉.

Indeed, since ξα = 0, we have

∇S(ξ, ξ) + (S − (µ+ εα) Id)(∇ξξ) = 0.

Since ∇ξξ = − 1
2∇α and ξα = 0 we have ∇ξξ ∈ Γ (D). Hence ∇S(ξ, ξ) −

εα∇ξξ = 0 and consequently ∇S(ξ, ξ) = − 1
2εα∇α.

It is clear that S is self-adjoint. Note that ∇S(X, ξ)+(S−λ Id)(∇Xξ) =
εXαξ. Thus

2〈∇S(ξ, ξ), ξ〉+ 〈∇S(X, ξ), ξ〉 = −εαXα+ εαXα = 0.

If X,Y ∈ Γ (D) then ∇S(X,Y ) + (S − µ Id)(∇XY ) = 0. Hence

〈∇S(X,Y ), ξ〉+ 〈∇S(ξ,X), Y 〉+ 〈∇S(Y, ξ), X〉
= εα〈∇XY, ξ〉+ εα〈∇YX, ξ〉 = εα〈∇XY +∇YX, ξ〉 = 0.

It is also clear that 〈∇S(ξ, ξ), ξ〉 = 0 and CX,Y,Z∇S(X,Y, Z) = 0 for
X,Y, Z ∈ Γ (D). Hence S is a Killing tensor.
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In the sequel we need several facts concerning Killing vector fields. The
first is well known.

Lemma 2.5. Let X ∈ iso(M). If c is a geodesic in (M, g) then g(X, ċ) is
constant on dom c.

Corollary 2.6. Let X ∈ iso(M) and let c be a geodesic in (M, g) such
that limt→t0 X ◦ c(t) = 0 for a certain t0 ∈ dom c. Then g(Xc(t), ċ(t)) = 0
for all t ∈ dom c.

Lemma 2.7. Let (M, g) be complete and X ∈ X(M), X ∈ iso(M − U)
where U is an open subset of M . If X|∂U = 0 then X|M−U = 0.

P r o o f. Let x0 ∈ U and let x1 ∈M −U be such that Xx1
6= 0. Consider

a geodesic c(t) such that c(0) = x1 and c(1) = x0. From Corollary 2.6 it
follows that g(ċ(0), Xx1

) = 0. Let V ⊂ U be a neighbourhood of x0. Since
expx1

ċ(0) = x0 it follows that there exists a neighbourhood W of ċ(0) in
Tx0M such that expx1

(W ) ⊂ V . Take a vector Y ∈W such that

(2.4) g(Y,Xx1
) 6= 0.

The geodesic d(t) = exp tY intersects ∂U , hence g(ḋ(t), Xd(t)) = 0 if d(t) ∈
M − U , a contradiction with (2.4).

Next we prove:

Theorem 2.8. Let (M, g) be a compact Riemannian manifold , U ⊂ M
be an open, nonempty subset of M and X ∈ iso(U) be a Killing vector
field on U . Assume also that there exists a function φ ∈ C∞(M) such that
φ|U = g(X,X) and N := M − U = {x : φ(x) = 0}. Then intN = ∅ and X
extends to a Killing vector field X ∈ X(M) such that g(X,X) = φ.

P r o o f. If V = intN 6= ∅ then X ∈ iso(M − V ) and X|∂V = 0. From
Lemma 2.7 it then follows that X|M−V = 0. Hence intN = ∅.

The set M −N is connected. If M −N = U1∪U2 where U1∩U2 = ∅ and
Ui are open in M −N hence in M then ∂Ui ⊂ N . If Ui 6= ∅ for i = 1, 2 then
∂Ui 6= ∅ and we would have a contradiction with Lemma 2.7. Note that X
extends to a continuous vector field X on M such that X|N = 0.

Let ε be the radius of injectivity of (M, g). Assume that ε′ < ε and
let x0 ∈ Ni. Since intN = ∅ there exists a point x1 ∈ M − N such that
d(x1, x0) < ε′. Note that expx1

: V →M where V := {v ∈ Tx1
M : ‖v‖ < ε}

is a diffeomorphism. Assume that x0 = expx1
v. Then ‖v‖ < ε′ and there

exists η > 0 such that V1 := {u ∈ Tx1M : ‖u− v‖ < η} ⊂ V .
If U1 = expx1

V1 then (U1, exp−1x1
) is a local chart on M . For u ∈ V1,

denote by Ju(t) the Jacobi vector field along the geodesic cu(t) = expx1
tu

and satisfying the initial conditions

(2.5) Ju(0) = Xx0 , J ′u(0) = (∇uX)x0 .
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Define a vector field Y on U1 by Y (expu) = Ju(1). Since Ju(1) depends
smoothly on the parameter u (Ju is the solution of the differential equation
∇2
ċJ + R(J, ċ)ċ = 0 with initial conditions (2.5) depending smoothly on u)

it follows that Y is a smooth vector field Y ∈ X(U1).

We show that Y = X|U1
. If a geodesic cu does not intersect N it is

clear that Y ◦ cu = X ◦ cu. In the other case, since M − N is connected
and intN = ∅ we can approximate a geodesic intersecting N by geodesics
cu disjoint from N , which proves the result in general. Since x0 was an
arbitrary point from N it follows that X is a smooth extension of X. It is
also clear that X ∈ iso(M).

Lemma 2.9. Assume that (M, g) is a compact , connected Riemannian
manifold and φ ∈ C∞(M) is a function on M which is not identically 0.
Let N = {x : φ(x) = 0} and let D be the 1-dimensional distribution over
M − N . Assume also that for any unit local section ξV ∈ Γ (D|V ) of D
with dom ξV = V the field ηV =

√
|φ|ξV is Killing , i.e. ηV ∈ iso(V ). Let

U+ = {x : φ(x) > 0} and U− = {x : φ(x) < 0}. Then intN = ∅ and either
U+ = ∅ or U− = ∅.

P r o o f. Assume for example that U+ 6= 0. We show that intN∪U− = ∅.
Let c : I = [a, b]→M be a geodesic on M such that im c ⊂M−N . Then we
can find open sets {U1, . . . , Uk} such that im c ⊂

⋃
Ui and c([ti, ti+1]) ⊂ Ui

where a = t1 < . . . < tk < tk+1 = b and there exist local sections ξi = ξUi of
D such that ‖ξi‖ = 1. We can assume that ξi = ξi+1 on Ui ∩ Ui+1. Define
local Killing vector fields ηi =

√
|φ|ξi. Note that φ has constant sign along

c and ηi|Ui∩Ui+1
= ηi+1|Ui∩Ui+1

.

Define a vector field J along c by J |c([ti,ti+1]) = ηi ◦ c. Then J is a
well-defined Jacobi vector field along c. In particular, g(J, ċ) = const and
‖J‖2 = |φ|. On the other hand, let c : [a, b] → M be a geodesic on M
such that c(a) ∈ M −N and g(ċ(a), ηV (a)) 6= 0 where ηV is a local Killing
vector field on V ⊂ M − N constructed as above. Then im c ∩ N = ∅.
Otherwise we would have an increasing sequence {ti} of real numbers such
that limi→∞ c(ti) ∈ N and c([a, ti]) ⊂ M − N . The Jacobi vector field J
constructed as above would then satisfy two conditions:

(a) g(J, ċ) = g(J(a), ċ(a)) 6= 0, and

(b) ‖J(ti)‖2 = |φ ◦ c(ti)| → 0,

which gives a contradiction.

Assume now that U+ 6= ∅. Let x0 ∈ U+. Note that ∂(N ∪ U−) ⊂ N .
Assume that intN ∪ U− 6= ∅ and let x1 ∈ intN ∪ U−. Let η = ηV be a
local Killing vector field defined in the neighbourhood of the point x0 and
let X = ηx0 ∈ Tx0M . Then, as in the proof of Lemma 2.7 we find a geodesic
d : I = [0, 1]→M and an open neighbourhood V1 of the point x1 such that
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g(ḋ(0), X) 6= 0 and d(1) ∈ V1 ⊂ intN ∪ U−. In particular, im d ∩ N 6= ∅,
which gives a contradiction with the above considerations.

Our present aim is to prove :

Theorem 2.10. Assume that (M, g) is a compact manifold and S is
a Killing tensor on M with two eigenfunctions λ, µ such that µ ∈ R and
λ ∈ C∞(M). Assume also that on the set U = {x ∈ M : λ(x) 6= µ} the
distribution Dλ = ker(S − λI) satisfies the condition dimDλ|U = 1. Then
there exists a two-fold Riemannian covering p : (M ′, g′) → (M, g) and a
Killing vector field X ′ ∈ iso(M ′) such that S′X ′ = (λ ◦ p)X ′ where S′ is the
lift of S to M ′. If Dλ|U is orientable or if M is simply connected then there
exists a Killing vector field X ∈ iso(M) such that X ∈ Γ (Dλ). Furthermore,
the function φ = λ− µ has constant sign on U and U is dense in M .

P r o o f. Note that for every point x0 ∈ U there exists an open neigh-
bourhood V of x0 such that Dλ|V is spanned by a unit vector field ξV . From
Lemma 2.4 it follows that XV =

√
|λ− µ| ξV is a Killing vector field on V

and XV ∈ Γ (Dλ|V ). Note that −XV is also a Killing vector field satisfying
the last condition. If x0 ∈ N := M − U = {x : λ(x) = µ} then we can
define X|V on a neighbourhood V of x0 as in the proof of Theorem 2.8:
X(expu) = Ju(1) where expx1

u = x0 and V = expV1, since we need X to
be defined only in an arbitrary small neighbourhood of the point x1. We also
obtain in this way two possible Killing vector fields XV ,−XV on V . Hence
for every x0 ∈ M we have a neighbourhood V of x0 and two Killing vec-
tor fields XV ,−XV defined on V such that XV |U =

√
|λ− µ| ξ|V ∩U where

ξ ∈ Γ (Dλ) and ‖ξ‖ = 1.

Consider the set of germs M ′ = {[XV ]x : x ∈ M} of local Killing
vector fields (V,XV ) with the usual topology. Then p : M ′ → M where
p([X]x) = x is a two-fold topological covering. We lift the structure of
Riemannian manifold on M ′ from M . Then p is a Riemannian submersion
(and a local isometry) and p : (M ′, g′) → (M, g) is a two-fold Riemannian
covering. We define a field X ′ on M ′ by X ′[XV ]x

= X l
x where X l

x denotes

the lift of XV (x) ∈ TxM to T[X]xM
′. It is clear that X ′ ∈ iso(M ′) and

that (S′ − λ ◦ p Id)X ′ = 0. If Dλ|U is orientable then we can take in the
above construction the germs of fields which agree with the orientation and
then p : M ′ → M is an isometry. If M is simply connected then M ′ is
a union of two components each of them isometric to M , which concludes
the proof.

3. Einstein–Weyl geometry and Killing tensors. We start with
some basic facts concerning Einstein–Weyl geometry. For more details see
[10], [9], [4], [3].
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Let M be an n-dimensional manifold with a conformal structure [g] and
a torsion-free affine connection D. This defines an Einstein–Weyl (E–W)
structure if D preserves the conformal structure, i.e. there exists a 1-form
ω on M such that

(3.1) Dg = ω ⊗ g

and the Ricci tensor %D of D satisfies the condition

%D(X,Y ) + %D(Y,X) = Λg(X,Y ) for every X,Y ∈ TM

for some function Λ ∈ C∞(M). P. Gauduchon proved ([5]) the fundamental
theorem that if M is compact then there exists a Riemannian metric g0 ∈ [g]
for which δω0 = 0 and g0 is unique up to homothety. We call g0 the standard
metric of the E–W structure (M, [g], D). Let % be the Ricci tensor of (M, g)
and denote by S the Ricci endomorphism of (M, g), i.e. %(X,Y ) = g(X,SY ).
We recall two important theorems (see [9]):

Theorem 3.1. A metric g and a 1-form ω define an E–W structure if
and only if there exists a function Λ ∈ C∞(M) such that

(3.2) %∇ + 1
4Dω = Λg

where Dω = (∇Xω)Y + (∇Y ω)X + ω(X)ω(Y ). If (3.2) holds then

(3.3) Λ = 2Λ+ divω − 1
2 (n− 2)‖ω]‖2.

Theorem 3.2. Let M be a compact E–W manifold and let g be the
standard metric with the corresponding 1-form ω. Then ω] is a Killing
vector field on M .

The above theorems yield

Theorem 3.3. Let (M, [g]) be a compact E–W manifold and let g be the
standard metric on M . Then (M, g) is an A ⊕ C⊥-manifold. The man-
ifold (M, g) is Einstein or the Ricci tensor %∇ of (M, g) has exactly two
eigenfunctions λ0 ∈ C∞(M), λ1 = Λ satisfying the following conditions:

(a) (n− 4)λ1 + 2λ0 = C0 = const,

(b) λ0 ≤ λ1 on M ,

(c) dim ker(S − λ0 Id) = 1, dim ker(S − λ1 Id) = n − 1 on U = {x :
λ0(x) 6= λ1(x)}.

In addition, λ0 = (1/n)ScalDg where ScalDg = trg %
D denotes the confor-

mal scalar curvature of (M, g,D).

P r o o f. Note that ω(X) = g(ξ,X) where ξ ∈ iso(M) and

(3.4) %∇ + 1
4 (n− 2)ω ⊗ ω = Λg
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(see [10], p. 101 and [3]). It is also clear that ∇Xω(X) = g(∇Xξ,X) = 0.
Thus ∇X(ω ⊗ ω)(X,X) = 0. From (3.4) it follows that

(3.5) ∇X%(X,X) = XΛg(X,X).

This means that (M, g) ∈ A ⊕ C⊥ and d
(
Λ − 2

n+2τ
)

= 0, where τ is the
scalar curvature of (M, g). From (3.5) it follows that the tensor T = S−Λ Id
is a Killing tensor. Denote by ξ the Killing vector field dual to ω. Note that
%(ξ, ξ) =

(
Λ− 1

4 (n− 2)‖ξ‖2
)
‖ξ‖2 and if X ⊥ ξ then SX = ΛX. Hence the

tensor S has two eigenfunctions λ0 = Λ − 1
4 (n − 2)‖ξ‖2 and λ1 = Λ. This

proves (b).
Note that

τ = λ0 + (n− 1)λ1 = nΛ− 1
4 (n− 2)‖ξ‖2

and 2τ − (n + 2)Λ = C0 = const. Thus C0 = (n − 2)Λ − 1
2 (n − 2)‖ξ‖2.

However, (n− 4)λ1 + 2λ0 = (n− 2)Λ− 1
2 (n− 2)‖ξ‖2, which proves (a).

Note also that (see for example [10], p. 100 and [3], p. 8)

(3.6)
1

n
sDg = Λ− n− 2

4
‖ξ‖2 = λ0,

which finishes the proof.

On the other hand, the following theorem holds.

Theorem 3.4. Let (M, g) be a compact A⊕ C⊥-manifold. Assume that
the Ricci tensor % of (M, g) has exactly two eigenfunctions λ0, λ1 satisfying
the conditions:

(a) (n− 4)λ1 + 2λ0 = C0 = const,
(b) λ0 ≤ λ1 on M ,
(c) dim ker(S − λ0 Id) = 1, dim ker(S − λ1 Id) = n − 1 on U = {x :

λ0(x) 6= λ1(x)}.
Then there exists a two-fold Riemannian covering (M ′, g′) of (M, g) and

a Killing vector field ξ ∈ iso(M ′) such that (M ′, [g′]) admits two different
E–W structures with the standard metric g′ and the corresponding 1-forms
ω∓ = ∓ξ]. The condition (b) may be replaced by the condition

(b1) there exists a point x0 ∈M such that λ0(x0) < λ1(x0).

P r o o f. Let τ be the scalar curvature of (M, g). Then τ = (n−1)λ1+λ0
and C0 = (n− 4)λ1 + 2λ0. It follows that

(3.7) λ1 =
2τ − C0

n+ 2
, λ0 =

(n− 1)C0 − (n− 4)τ

n+ 2
.

In particular, λ0, λ1 ∈ C∞(M). Let S be the Ricci endomorphism of (M, g)
and define the tensor T := S−λ1 Id. Since from (3.7) we have dλ1 = 2

n+2dτ
it follows that T is a Killing tensor with two eigenfunctions: µ = 0 and
λ = λ0 − λ1. Note that on the set U = {x : λ 6= µ} we have dimDλ|U = 1.
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Thus we can apply Theorem 2.10. Hence there exists a two-fold Riemannian
covering p : (M ′, g′) → (M, g) and a Killing vector field ξ ∈ iso(M ′) such
that S′ξ = (λ0 ◦ p)ξ where S′ is the Ricci endomorphism of (M ′, g′). Note
also that ‖ξ‖2 = |λ− µ| = |λ0 − λ1|. Define the 1-form ω on M ′ by ω = cξ]

where

c = 2

√
1

n− 2
.

It is easy to check that with such a choice of ω equation (3.4) is satisfied and
δω = 0. Thus (M ′, g′, ω) defines an E–W structure and g′ is the standard
metric for (M ′, [g′]). Note that (M, g′,−ω) gives another E–W structure
corresponding to the field −ξ.

Corollary 3.5. Let (M, g) be a compact simply connected manifold
satisfying the assumptions of Theorem 3.4. Then (M, [g]) admits two E–W
structures with the standard metric g.

Next we give a slight generalization of a result of K. P. Tod (see [9],
Corollary 6.2).

Corollary 3.6. Let (M, [g], D) be a compact E–W manifold which is not
conformally Einstein and let g be the standard metric on M . Then the center
of the Lie algebra of the isometry group of (M, g) is at least one-dimensional.
The component of identity of the isometry group of (M, g) coincides with the
component of the identity Ge of the symmetry group G of (M, [g], D).

P r o o f. The field ξ = ω] is a Killing vector field and on the open and
dense subset U = {x : ξx 6= 0} of M the distribution Dλ = ker(S − λ Id)
is spanned by ξ. We shall show that ξ ∈ z(iso(M)) where z(g) denotes the
center of the Lie algebra g. Let η ∈ iso(M). Since ητ = 0 from (3.7) it
follows that η(λ0 − λ1) = 0. Hence ηg(ξ, ξ) = 0. It follows that

(3.8) g([ξ, η], ξ) = 0.

Since Sξ = λ0ξ we get S[η, ξ] = λ0[η, ξ]. Hence on the set U the field [η, ξ]
is parallel to ξ. From (3.8) we obtain [η, ξ] = 0 on U . Hence [η, ξ] = 0 on M
and ξ ∈ z(iso(M, g)).

Note that D = ∇−K where 2K(X,Y ) = ω(X)Y + ω(Y )X − g(X,Y )ξ.
If η ∈ iso(M, g) then Lη∇ = 0, LηK = 0, thus LηD = 0. Consequently,
Isoe(M, g) ⊂ Ge. The inclusion Ge ⊂ Isoe(M, g) is proved in [8] (Lemma 2.2,
p. 410). (Note that the Euclidean sphere is conformally Einstein.)

Corollary 3.7. Let (M, g) be a compact simply connected A-manifold
whose Ricci tensor % has two constant eigenvalues λ, µ such that λ ≤ µ and
dimDλ = 1. Then (M, [g]) admits two E–W structures with the standard
metric g.
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Finally, we prove that the conformal scalar curvature of a compact E–W
manifold which is not conformally Einstein is nonnegative. Hence Corol-
lary 4.4 in [10] is not correct.

Theorem 3.8. Let (M, [g]) be a compact E–W manifold and dimM ≥ 4.
If (M, [g]) is not conformally Einstein then sD ≥ 0 on M .

P r o o f. For dimM = 4 the result is known (see [10], p. 103). Let (M, g)
be the standard Riemannian manifold for the E–W manifold (M, [g]) and
assume that dimM > 4. Set sD = sDg . Note that (see [10], p. 101)

(3.9) ∆sD = −n(n− 4)

4
∆‖ω‖2 = −n(n− 4)

4
∆‖ξ‖2

where ξ = ω] and ∆φ = trg Hessφ. Since ξ is a Killing vector field we have

(3.10) −1

2
∆‖ξ‖2 = %(ξ, ξ)− ‖∇ξ‖2 =

1

n
sD‖ξ‖2 − ‖∇ξ‖2.

Consequently, we obtain

(3.11) ∆sD =
n(n− 4)

2

(
1

n
sD‖ξ‖2 − ‖∇ξ‖2

)
.

Let a point x0 ∈M satisfy the condition sD(x0) = inf{sD(x) : x ∈M}.
Then ∆sD(x0) ≥ 0. From (3.11) it follows that

(3.12)
1

n
sD(x0)‖ξx0

‖2 ≥ ‖(∇ξ)x0
‖2.

If ξx0
= 0 then from (3.12) it follows that ∇ξx0

= 0 and consequently ξ = 0
on M . Thus in this case (M, g) is Einstein. If ξx0

6= 0 then from (3.12)
we obtain sD(x0) ≥ 0. Hence if (M, [g]) is not conformally Einstein then
sD ≥ 0.

Corollary 3.9. Let (M, [g]) be a compact E–W manifold with dimM ≥
4 which is not locally conformally Einstein. Then b1(M) = 0.

P r o o f. From Theorem 2.4 of [10] it follows that if sD ≥ 0 and sD is
not identically 0 then b1(M) = 0. It is also well known that if sD = 0 then
(M, [g]) is locally conformally Einstein (see [3]).

Corollary 3.10. Let (M, [g], D) be a compact E–W manifold which is
not locally conformally Einstein. Assume that χ(M) 6= 0. Then the standard
Riemannian structure (M, g0) has nonconstant scalar Riemannian curvature
τ0, in particular cannot be locally homogeneous.

P r o o f. Note that an A⊕C⊥-manifold (M, g0) has constant scalar curva-
ture if and only if is an A-manifold. Note also that if the standard structure
(M, g0) is an A-manifold which is not locally conformally Einstein then
χ(M) = 0 (since it admits a global one-dimensional distribution Dλ). This
contradiction shows that τ0 is nonconstant.
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Remark. Note that every four-dimensional compact E–W manifold
which is not locally conformally Einstein has nonzero Euler characteristic,
hence it does not admit a locally homogeneous standard metric.

Corollary 3.11. A compact E–W manifold which is not conformally
Einstein is locally conformally Einstein if and only if its standard Rieman-
nian structure (M, g) is an A-manifold with two (constant) eigenvalues λ, µ
such that λ = 0 < µ and dim kerS = 1, where S is the Ricci endomorphism
of (M, g). If these conditions on (M, g) are satisfied then the Ricci tensor

of (M, g) is parallel , ∇S = 0 and the universal covering (M̃, g̃) of (M, g)
is (R, dt) × (M1, g1), where M1 is a compact , simply connected Einstein
manifold with positive scalar curvature.

P r o o f. It is clear that then ∇ξ = 0 and ‖ξ‖ = const. Hence the scalar
curvature τ of (M, g) is constant. Thus (M, g) ∈ A. Note that if M is

compact then M̃ is complete. Hence we can apply the results from [7] and
the de Rham theorem.

Remark. This last result was proved by P. Gauduchon (see [3], Th. 3,
p. 10). We wanted here to prove it using only properties of Killing ten-
sors.
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