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KILLING TENSORS AND EINSTEIN-WEYL GEOMETRY

BY

WLODZIMIERZ JELONEK (KRAKOW)

Abstract. We give a description of compact Einstein—Weyl manifolds in terms of
Killing tensors.

0. Introduction. In this paper we investigate compact Einstein—Weyl
structures (M, [g], D). In the first part we consider the Killing tensors on a
Riemannian manifold (M, g). We prove that if a Killing tensor S has two
eigenfunctions A, u such that dimker(S — M) = 1 and p is constant then
any section £ of the bundle Dy = ker(S — AI) such that g(§,&) = |A—p|is a
Killing vector field on (M, g). We prove that if (M, g) is compact and simply
connected then every Killing tensor field with at most two eigenvalues A, u
at each point of M such that p is constant and dim Dy < 1 admits a Killing
eigenfield & € iso(M) (S¢ = A§). We also show that if the Ricci tensor of an
A-manifold has at most two eigenvalues at each point then these eigenvalues
have to be constant on the whole of M.

In the second part we apply our results concerning Killing tensors and
give a detailed description of compact Einstein—-Weyl manifolds as a special
kind of A@Ct-manifolds first defined by A. Gray ([6]) (see also [1]). We show
that the Ricci tensor of the standard Riemannian structure (M, go) of an
Einstein—-Weyl manifold (M, [g], D) can be represented as S+ AIdpy where
S is a Killing tensor and A is a smooth function on M. We prove that for
compact simply connected manifolds there is a 1-1 correspondence between
A@C+-Riemannian structures whose Ricci tensor has at most two eigenval-
ues at each point satisfying certain additional conditions and Einstein—Weyl
structures. We also prove that if (M, [g], D) is a compact Einstein—Weyl
manifold with dim M > 4 which is not conformally Einstein then the con-
formal scalar curvature s of (M, [g], D) is nonnegative and that the center
of the Lie algebra of the isometry group of the standard Riemannian struc-
ture (M, go) of (M, [g], D) is nontrivial. Our results rely on some results of
P. Gauduchon [3] and H. Pedersen and A. Swann ([9], [10]).
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1. Preliminaries. Let (M, g) be a smooth connected Riemannian man-
ifold. Abusing the notation we sometimes write (X,Y) = g(X,Y). We de-
note by V the Levi-Civita connection of (M, g). For a tensor (X1, ..., Xj)
we define another tensor VT'(Xy, X1,...,X;) by VI'(Xo, X1,...,Xk) =
Vx,T(X1,...,Xk). By a Killing tensor on M (we also call such tensors
A-tensors) we mean an endomorphism S € End(T'M) satisfying the follow-
ing conditions:

(1.1) (SX,Y) = (X,SY) forall X,Y € TM,
(1.2) (VS(X,X),X)=0 forall X e TM.

We also write S € A if S is a Killing tensor. We call S a proper A-tensor
if VS # 0. We denote by @ the tensor defined by #(X,Y) = (SX,Y).
We start with:

PROPOSITION 1.1. For an endomorphism S € End(T'M), the following
conditions are equivalent:

(a) the tensor S is an A-tensor on (M, g).

(b) for every geodesic vy on (M, g), the function @(~'(t),~'(t)) is constant
on dom~y;

(¢) the condition

(A) Vxd(Y,Z) + Vyd(Z,X) + V,8(X,Y) =0
is satisfied for all X,Y,Z € X(M).

Proof. By using polarization it is easy to see that (a) is equivalent
to (c). Let now X € T,,M be any vector from T'M and ~ be a geodesic
satisfying the initial condition 7/(0) = X. Then

d

(1.3) 22077 (1) = Vo iy @(' (), 7 (1))-

Hence £&(v'(t),7(t))i=0 = V&(X, X, X). The equivalence (a)<>(b) follows
immediately from the above relations. m

As in [2] define the integer-valued function Fg(x) = (the number of dis-
tinct eigenvalues of S,.) and set Mg = {z € M : Eg is constant in a neigh-
bourhood of z}. The set Mg is open and dense in M and the eigenvalues \;
of S are distinct and smooth in each component U of Mg. The eigenspaces
Dy = ker(S — AI) form smooth distributions in each component U of Mg.
By Vf we denote the gradient of a function f (i.e. (Vf,X) = df(X)) and
by I'(Dy) (resp. X(U)) the set of all local sections of the bundle D) (resp.
all local vector fields on U). Note that if A # u are eigenvalues of S then
D) is orthogonal to D,,.

THEOREM 1.2. Let S be an A-tensor on M and U be a component of
Mg and Ai,..., A € C(U) be eigenfunctions of S. Then for all X € Dy,
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we have
(1.4) VS(X, X) =~ (VA) X
and Dy, Ckerd);. If i #j and X € I'(Dy,), Y € I'(Dy,) then
(1.5 (VxX.Y) = 5K

Proof. Let X € I'(D,,) and Y € X(U). Then SX = \; X and
(1.6) VSY, X))+ (S=NI)(VyX) = (Y )X
and consequently,

(L.7) (VS(Y, X),X) = (Y X)X
Taking Y = X in (1.7) we obtain 0 = X\;||X||? by (1.2). Hence D,, C
ker d\;. Thus from (1.6) it follows that V.S(X, X) = (AI —5)(VxX). Con-
dition (A) implies (VS(X,Y),Z) + (VS(Z,X),Y) + (VS(Y,Z2),X) = 0,
hence
(1.8) 2(VS(X,X),Y)+(VS(Y,X), X) =0.
Thus, (1.8) yields Y ;|| X |2 +2(VS(X, X),Y)=0. Consequently, VS(X, X)
—2(VX)||X||% Let now Y € I'(Dy,). Then
(1.9) VS(X,Y)+ (S —\I)(VxY) = (X)\;)Y.
It is also clear that (V.S(X,X),Y) =(VS(X,Y),X) = (A; — \)(VxY, X).
Thus,
YANX]P = =20y = M)(VxY, X) = 200 — X)(Y, Vx X)
and (1.5) holds. m
COROLLARY 1.3. Let S,U, A1, ..., A\, be as above andi € {1,...,k}. Then
the following conditions are equivalent:
(a) For all X € I'(Dy,), VxX € Dy,.
(b) For all X,Y € I'(Dy,), VxY + Vy X € D,,.
(¢) For all X € I'(Dy,), VS(X,X) =0.
(d) For all X,Y € I'(Dy,), VS(X,Y)+ VS(Y,X)=0.
(e) A\; is a constant eigenvalue of S.
Note that if X,Y € I'(D,,) then
(1.10) VS(X,Y) — VS(Y, X) = (AT — S)([X, Y))
since from Theorem 1.2 it follows that X\; = Y \; = 0. Hence the dis-
tribution Dj, is integrable if and only if VS(X,Y) = VS(Y,X) for all
X,Y € I'(D,,). Consequently, we obtain

COROLLARY 1.4. Let \; € C*(U) be an eigenvalue of an A-tensor S.
Then on U the following conditions are equivalent:
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(a) Dy, is integrable and \; is constant.

(b) For all X, Y € I'(Dy,), VS(X,Y) =0.

(c) Dy, is autoparallel.

Proof. This follows from (1.4), (1.10), Corollary 1.3 and the relation
VxV =VyX +[X,Y]. u

A Riemannian manifold (M, g) is called an A-manifold (see [6]) if the
Ricci tensor g of (M, g) satisfies the condition
(A1) Vxo(X,X)=0
for all X € TM, i.e. if pis a Killing tensor. By an A®C-manifold we mean
a Riemannian manifold (M, g) whose Ricci tensor satisfies the condition

2

A2 X, X)=——X79(X, X
(42 Vo(X,X) = 2 Xrg(X, X)
for all X € TM where n = dim M and 7 denotes the scalar curvature of
(M, g). We have

LEMMA 1.5. Let (M, g) be a Riemannian manifold. Then (M, g) € A®C*
if and only if there exists a function s € C°(M) such that

(1.11) Vxo(X,X) = Xsg(X, X).
If (1.11) holds then d(s — %HT) =0.

Proof. From (1.11) we get
Cxy,zVxo(Y,Z) =Cx v,z Xsg(Y, Z)

where € denotes the cyclic sum. Hence
(1.12) 2Vxo(X,Y) 4+ Vyo(X, X) =2Xsg(X,Y) + Ysg(X, X).
Define 60(Y) = try V.o(+,Y). Then §p = dr (see for example [1]). On the
other hand, taking account of (1.12) we have
(1.13) 200(Y) +trVyo(-,-) =29(Vs,Y) +nYs.
Since tr Vy o(-,-) = Y7 we finally obtain 2d7 = (n + 2)ds. =

2. A-tensors with two eigenvalues. In this section we characterize
certain A-tensors with two eigenvalues. We start with:

THEOREM 2.1. Let S be an A-tensor on (M,g) with exactly two eigen-
values A\, p and a constant trace. Then X\, u are constant on M. The distri-
butions Dy, D,, are both integrable if and only if V.S = 0.

Proof. Note first that p = dimker(S — A\I), ¢ = dimker(S — pl) are
constant on M as Mg = M. We also have pA4+qu = tr .S and tr .S is constant
on M. Hence

(2.1) PVA+qVu =0



KILLING TENSORS AND EINSTEIN-WEYL GEOMETRY 9

on M. Note that VX € I'(D,), Vi € I'(Dy) (see Th. 1.2) thus VX =
Vi = 0 since TM = Dy @ D,. Now suppose that D, is integrable. We
show that VS(X,Y) =0 and VxY € D, if X € Dy and Y € D,. We
have VS(X,Y) = (ul — S)(VxY) € Dy as Dy is orthogonal to D,,. Let
Z € I'(Dy); then for any X € I'(D,), Y € X(M) we have

(VS(X,Y), Z) = (Y,VS(X,Z)) =0

since VS(X, Z) = 0 (see Corollary 1.4). Hence VS(X,Y) =0 and VxY €
D,if X € Dyand Y € D,. If D, is also integrable then in view of
Corollary 1.4, VS =0. =

We have also proved in passing:

COROLLARY 2.2. Let S be an A-tensor on (M,g) with two constant
eigenvalues A, . If Dy is integrable then VS(X,Y) =0 for all X € I'(D,),
Y € I'(D,,).

COROLLARY 2.3. Let (M, g) be an A-manifold whose Ricci tensor S has
exactly two eigenvalues A\, u. Then A\, are constant.

Proof. It is well known that if (M, g) is an A-manifold then S has
constant trace tr S = 7 (see [6] or Lemma 1.5). =

From now on we investigate A-tensors with two eigenvalues A, u satis-
fying additional conditions: g is constant and dim Dy = 1. It follows that
D, is integrable. We also assume that D, is orientable (this happens for
example if 71 (M) has no subgroups of index 2). Otherwise we may con-
sider a manifold (M,g) and an A-tensor S on M such that there exists a
two-fold Riemannian covering p : M — M for which dpo S = S o dp and
Dy = ker(S — M) is orientable. Let £ € I'(D,) be a global section of D)
such that (£,&) = 1. Then we have:

LEMMA 2.4. Let (M, g) be a Riemannian manifold and S € A. Assume
that S has exactly two eigenfunctions X\, p such that p is constant and A €
C>®(M). Let £ € I'(Dy) be a unit vector field. Then the section \/|\ — p|&
is a Killing vector field on (M,g). On the other hand, if a Riemannian
manifold (M, g) admits a Killing vector field £ then it admits an A-tensor
S such that £ is an eigenfield of S.

Proof. Denote by T the endomorphism of 7'M defined by T X = Vx&.
IfP(X,Y)=(SX,Y) then (£, X) = A&, X). Hence

(2.2) V(Y& X) + B(TY, X) = MTY, X) + Y ME X).

Take X =Y € D,, in (2.2). Since VS(X, X) = 0 (u is constant) we obtain
O(TX,X) = MTX,X). On the other hand, SX = puX. Consequently,
O(TX,X)=p(TX,X). Hence

(2.3) (TX,X)=0, XeD,.
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We also have
1 XA 1
X)=-——=—=X(In|pu—A).
(Vet, X) = 52 = =5 X(Infu = A)
We now show that the field n = /|p — A|¢ is Killing. From (2.3) it
follows that (Vxn, X) =0 for X € D,,. Notice that

1 XA
X)=- 22
<VT]777 > 2 ,U _ )\
where £ = sgn(u — \). Since (n,n) = |u — A| we get 2(Vxn,n) = —X)e.
Consequently, for X € I'(D,,),
(Vn, X) +(Vxn,n) = 0.
Note that /| — A| = 0 (since Dy C ker \). Thus it is clear that (V,n,n)
= 0. It follows that 7 is a Killing vector field and 7 € iso(M).
Assume now that on a manifold (M, g) there exists a Killing vector

field £ and let o = (€,&). Let p be any real number and define a function
A€ C®(M) by

1
(n,m) = 5 XAe

A=p+ea

where ¢ € {—1,1}. Then |\ — u| = (&,€). Define a (1, 1)-tensor S on M as
follows:

(a) S& = AL,

(b) SX = pX if (X, &) = 0.
Then S € A. Note that the distribution D = {X : (X,&) = 0} is geodesic,
ie. if X € I'(D) then VxX € I'(D). It follows that VS(X,X) = 0 if
X € I'(D).

Note also that

VS(§,€) = —3Va(&,e).
Indeed, since £ = 0, we have
VS(& &) + (S — (n+ea)1d)(Vel) = 0.

Since V¢& = —3Va and {a = 0 we have V& € I'(D). Hence VS(&,€) —
eaVe¢€ =0 and consequently VS(€,€) = —%saVoz.

It is clear that S is self-adjoint. Note that VS(X, &)+ (S—AId)(Vx¢) =
eXa&. Thus

2(VS(,€),8) + (VS(X,6),§) = —eaXa +eaXa =0.
If XY € I'(D) then VS(X,Y) + (S — p1d)(VxY) = 0. Hence
(VS(X,Y), &) +(VS(£, X),Y) +(VS(Y,§), X)
=ea(VxY, &) +ea(Vy X, §) =ea(VxY + Vy X, &) = 0.

It is also clear that (VS(£,£),§) = 0 and €xy zVS(X,Y,Z) = 0 for
X,Y,Z € I'(D). Hence S is a Killing tensor. m
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In the sequel we need several facts concerning Killing vector fields. The
first is well known.

LEMMA 2.5. Let X € iso(M). If ¢ is a geodesic in (M, g) then g(X,¢) is
constant on domc.

COROLLARY 2.6. Let X € iso(M) and let ¢ be a geodesic in (M, g) such
that lim; ¢, X o c(t) = 0 for a certain to € dome. Then g(X.),¢(t)) =0
for allt € dome.

LEMMA 2.7. Let (M, g) be complete and X € X(M), X € iso(M —U)
where U is an open subset of M. If X|sy =0 then X|,, 7 =0.

Proof. Let 2o € U and let z; € M — U be such that X, # 0. Consider
a geodesic ¢(t) such that ¢(0) = x; and ¢(1) = xp. From Corollary 2.6 it
follows that g(¢(0), Xz, ) = 0. Let V' C U be a neighbourhood of (. Since
exp,, ¢(0) = xo it follows that there exists a neighbourhood W of ¢(0) in
Ty M such that exp, (W) C V. Take a vector Y € W such that

(2.4) 9(¥.X,,) # 0.
The geodesic d(t) = exptY intersects OU, hence g(d(t),Xd(t)) =0if d(t) €

M — U, a contradiction with (2.4). m
Next we prove:

THEOREM 2.8. Let (M, g) be a compact Riemannian manifold, U C M
be an open, nonempty subset of M and X € iso(U) be a Killing vector
field on U. Assume also that there exists a function ¢ € C°°(M) such that
dlv=9(X,X) and N:=M —U ={z: ¢(x) =0}. Then int N =0 and X
extends to a Killing vector field X € X(M) such that g(X,X) = ¢.

Proof. If V =int N # ) then X € iso(M — V) and X|sy = 0. From
Lemma 2.7 it then follows that X|,, = = 0. Hence int N = ().

The set M — N is connected. If M — N = U, UU, where U; NU; = () and
U; are open in M — N hence in M then OU; C N. If U; # () for i = 1,2 then
OU; # () and we would have a contradiction with Lemma 2.7. Note that X
extends to a continuous vector field X on M such that X|N = 0.

Let ¢ be the radius of injectivity of (M,g). Assume that &’ < ¢ and
let zg € N;. Since int N = () there exists a point 1 € M — N such that
d(x1,z0) < €’. Note that exp, : V — M where V :={v €T, M : |v|| < e}
is a diffeomorphism. Assume that 2o = exp,, v. Then [jv|| < ¢’ and there
exists 7 > 0 such that Vi :={u e T,, M : |[lu—v| <n} C V.

If Uy = exp,, V1 then (Ul,expgll) is a local chart on M. For u € V,
denote by J,(t) the Jacobi vector field along the geodesic ¢, (t) = exp,, tu
and satisfying the initial conditions

(2.5) Ju(0) =X, JL(0) = (VX))
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Define a vector field Y on U; by Y(expu) = J,(1). Since J,(1) depends
smoothly on the parameter u (J, is the solution of the differential equation
V2J + R(J,é)é = 0 with initial conditions (2.5) depending smoothly on u)
it follows that Y is a smooth vector field Y € X(Uy).

We show that Y = X|y,. If a geodesic ¢, does not intersect N it is
clear that Y o ¢, = X oc¢,. In the other case, since M — N is connected
and int N = () we can approximate a geodesic intersecting N by geodesics
¢y disjoint from N, which proves the result in general. Since zg was an
arbitrary point from N it follows that X is a smooth extension of X. It is
also clear that X € iso(M). m

LEMMA 2.9. Assume that (M,g) is a compact, connected Riemannian
manifold and ¢ € C(M) is a function on M which is not identically 0.
Let N = {z : ¢(x) = 0} and let D be the 1-dimensional distribution over
M — N. Assume also that for any unit local section &, € I'(D|yv) of D
with dom &y =V the field ny = \/|¢|év is Killing, i.e. nv € iso(V). Let
Uy ={z:¢(x) >0} and U- = {x : ¢(x) < 0}. Then int N = () and either
Uy =0 orU_=0.

Proof. Assume for example that U, # 0. We show that int NUU_ = ().
Let ¢ : I = [a,b] — M be a geodesic on M such that ime C M —N. Then we
can find open sets {Uy, ..., U} such that ime C |JU; and ¢([t;, tit1]) C U;
where a =1 < ... < t, < tp+1 = b and there exist local sections &; = &, of
D such that ||&;|| = 1. We can assume that & = &1 on U; N U;;1. Define
local Killing vector fields n; = \/ﬂéz Note that ¢ has constant sign along
cand ni|u;nui, = Niv1|vinuy, -

Define a vector field J along ¢ by Jl|,,,,)) = M ©c. Then J is a
well-defined Jacobi vector field along c. In particular, g(J,¢) = const and
|7]|?> = |¢|. On the other hand, let ¢ : [a,b] — M be a geodesic on M
such that ¢(a) € M — N and g(¢(a),nv(a)) # 0 where ny is a local Killing
vector field on V. C M — N constructed as above. Then imec N N = ).
Otherwise we would have an increasing sequence {t;} of real numbers such
that lim; ,o ¢(t;) € N and ¢([a,t;]) € M — N. The Jacobi vector field J
constructed as above would then satisfy two conditions:

(a) 9(J;¢) = g(J(a), é(a)) # 0, and
(b) [|(t:)]1> = | o c(ti)| — 0,

which gives a contradiction.

Assume now that Uy # 0. Let xy € U,. Note that 9(NUU_) C N.
Assume that int NUU_ # () and let 27 € int NUU_. Let n = ny be a
local Killing vector field defined in the neighbourhood of the point zg and
let X =ny,, € Ty, M. Then, as in the proof of Lemma 2.7 we find a geodesic
d:I=10,1] - M and an open neighbourhood V; of the point x; such that
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g(d(0), X) # 0 and d(1) € V; C int NUU_. In particular, imd N N # 0,
which gives a contradiction with the above considerations. m

Our present aim is to prove :

THEOREM 2.10. Assume that (M, g) is a compact manifold and S is
a Killing tensor on M with two eigenfunctions A, u such that p € R and
A€ C®(M). Assume also that on the set U = {x € M : N x) # u} the
distribution Dy = ker(S — ) satisfies the condition dim D\|U = 1. Then
there exists a two-fold Riemannian covering p : (M',q') — (M,g) and a
Killing vector field X' € iso(M") such that S’X" = (Aop) X' where S is the
lift of S to M'. If Dy|u is orientable or if M is simply connected then there
exists a Killing vector field X € iso(M) such that X € I'(Dy). Furthermore,
the function ¢ = A — p has constant sign on U and U is dense in M.

Proof. Note that for every point zg € U there exists an open neigh-
bourhood V' of z( such that D, |y is spanned by a unit vector field £y . From
Lemma 2.4 it follows that Xy = /| — p| &y is a Killing vector field on V'
and Xy € I'(Dy|v). Note that — Xy is also a Killing vector field satisfying
the last condition. If o € N := M — U = {z : A(z) = p} then we can
define X |y on a neighbourhood V' of zy as in the proof of Theorem 2.8:
X(expu) = Ju(1) where exp, u = xg and V = exp Vi, since we need X to
be defined only in an arbitrary small neighbourhood of the point 1. We also
obtain in this way two possible Killing vector fields Xy, —Xy on V. Hence
for every o € M we have a neighbourhood V of zy and two Killing vec-
tor fields Xy, — Xy defined on V such that Xy |y = /| — p| {|vnu where
§ € I'(Dy) and [|¢]| = 1.

Consider the set of germs M’ = {[Xv], : © € M} of local Killing
vector fields (V) Xy) with the usual topology. Then p : M’ — M where
p([X]z) = = is a two-fold topological covering. We lift the structure of
Riemannian manifold on M’ from M. Then p is a Riemannian submersion
(and a local isometry) and p : (M’,¢") — (M, g) is a two-fold Riemannian
covering. We define a field X’ on M’ by X/ , = X! where X! denotes
the lift of Xy () € T, M to Tix), M'. Tt is clear that X' € iso(M’) and
that (S — Ao pld)X’ = 0. If D,|U is orientable then we can take in the
above construction the germs of fields which agree with the orientation and
then p : M’ — M is an isometry. If M is simply connected then M’ is
a union of two components each of them isometric to M, which concludes
the proof. m

3. Einstein—Weyl geometry and Killing tensors. We start with
some basic facts concerning Einstein—Weyl geometry. For more details see
[10], [9], [4], [3]-
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Let M be an n-dimensional manifold with a conformal structure [g] and
a torsion-free affine connection D. This defines an FEinstein—Weyl (E-W)
structure if D preserves the conformal structure, i.e. there exists a 1-form
w on M such that

(3.1) Dg=w®g
and the Ricci tensor o of D satisfies the condition
oP(X,Y)+ 0P (Y, X) = Ag(X,Y) forevery X,Y € TM

for some function A € C*°(M). P. Gauduchon proved ([5]) the fundamental
theorem that if M is compact then there exists a Riemannian metric go € [g]
for which dwy = 0 and gg is unique up to homothety. We call gq the standard
metric of the E-W structure (M, [g], D). Let p be the Ricci tensor of (M, g)
and denote by S the Ricci endomorphism of (M, g),i.e. o(X,Y) = g(X,SY).
We recall two important theorems (see [9]):

THEOREM 3.1. A metric g and a 1-form w define an E-W structure if
and only if there exists a function A € C*°(M) such that

(3.2) oV + 1Dw = Ag
where Dw = (Vxw)Y + (Vyw)X + w(X)w(Y). If (3.2) holds then
(3.3) A=24+divw — 1(n —2)|w??

THEOREM 3.2. Let M be a compact E-W manifold and let g be the
standard metric with the corresponding 1-form w. Then w¥ is a Killing
vector field on M.

The above theorems yield

THEOREM 3.3. Let (M, [g]) be a compact E-W manifold and let g be the
standard metric on M. Then (M,g) is an A © Ct-manifold. The man-
ifold (M, g) is Einstein or the Ricci tensor o of (M,g) has exactly two
eigenfunctions A\g € C°(M), A1 = A satisfying the following conditions:

(a) (n —4)A1 + 2\ = Cy = const,

(b) Xo < A1 on M,

(c¢) dimker(S — AoId) = 1, dimker(S — A\ Id) =n—-1on U = {z :
Ao(@) # Ar(2)}-

In addition, \g = (1/n)Scalf where ScalgD = tr, o denotes the confor-
mal scalar curvature of (M, g, D).

Proof. Note that w(X) = ¢g(§, X) where £ € iso(M) and
(3.4) oV + 1(n—2)wew=Ag
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(see [10], p. 101 and [3]). It is also clear that Vxw(X) = g(Vx§, X) = 0.
Thus Vx(w® w)(X,X) = 0. From (3.4) it follows that

(3.5) Vxo(X,X) = XAg(X, X).

This means that (M,g) € A® C* and d(A — %HT) = 0, where 7 is the
scalar curvature of (M, g). From (3.5) it follows that the tensor 7' = S — AId
is a Killing tensor. Denote by & the Killing vector field dual to w. Note that
0(&,€) = (A= 1(n—2)1€1?)I€]|* and if X L & then SX = AX. Hence the
tensor S has two eigenfunctions A\g = A — 1 (n — 2)[|¢[|? and A; = A. This
proves (b).

Note that

T =X+ (n— DA =nd - ;(n—2)[¢]”

and 27 — (n + 2)A = Cy = const. Thus Cy = (n — 2)A — L(n — 2)[|¢]*.
However, (n — 4)A1 + 2Xo = (n — 2)A — 1(n — 2)||¢||?, which proves (a).
Note also that (see for example [10], p. 100 and [3], p. 8)
1 p n—2, 5
. —s, =A— =\
(3 6) nsg 4 H§|| 0

which finishes the proof. =

On the other hand, the following theorem holds.

THEOREM 3.4. Let (M, g) be a compact A ® C+-manifold. Assume that
the Ricci tensor o of (M, g) has exactly two eigenfunctions g, \1 satisfying
the conditions:

(a) (n —4)A1 +2X\g = Cp = const,

(b) Ao < A1 on M,

(c) dimker(S — AoId) = 1, dimker(S — A\ Id) =n—-1on U = {z :
Ao(@) # Ai(z)}-

Then there exists a two-fold Riemannian covering (M',g") of (M,g) and
a Killing vector field £ € iso(M') such that (M’,[¢']) admits two different

E-W structures with the standard metric g’ and the corresponding 1-forms
ws = FE8 The condition (b) may be replaced by the condition

(bl) there exists a point xog € M such that Ao(zo) < A1 (z0).

Proof. Let 7 be the scalar curvature of (M, g). Then 7 = (n—1)A1 + Ao
and Cp = (n — 4)A\1 + 2)g. It follows that
727'—0() (n—l)Co—(n—4)T
on+2 n+2 '
In particular, Ag, Ay € C°°(M). Let S be the Ricci endomorphism of (M, g)
and define the tensor 7' := S — Ay Id. Since from (3.7) we have d\; = n%rsz

it follows that T is a Killing tensor with two eigenfunctions: pu = 0 and
A = Ao — A1. Note that on the set U = {x : A # u} we have dim D, |y = 1.

) )\O:

(3.7) A
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Thus we can apply Theorem 2.10. Hence there exists a two-fold Riemannian
covering p : (M’,¢') — (M, g) and a Killing vector field £ € iso(M') such
that S’¢ = (A\g o p)§ where S’ is the Ricci endomorphism of (M’, ¢’). Note
also that ||£|2 = |\ — | = |Xo — A1|. Define the 1-form w on M’ by w = c&f
where
1
n—2

It is easy to check that with such a choice of w equation (3.4) is satisfied and
dw = 0. Thus (M, ¢’,w) defines an E-W structure and ¢’ is the standard
metric for (M’,[¢’]). Note that (M,g’,—w) gives another E-W structure
corresponding to the field —¢. m

c=2

COROLLARY 3.5. Let (M,g) be a compact simply connected manifold
satisfying the assumptions of Theorem 3.4. Then (M, [g]) admits two E-W
structures with the standard metric g.

Next we give a slight generalization of a result of K. P. Tod (see [9],
Corollary 6.2).

COROLLARY 3.6. Let (M, [g], D) be a compact E-W manifold which is not
conformally Einstein and let g be the standard metric on M. Then the center
of the Lie algebra of the isometry group of (M, g) is at least one-dimensional.
The component of identity of the isometry group of (M, g) coincides with the
component of the identity G. of the symmetry group G of (M, [g], D).

Proof. The field ¢ = w? is a Killing vector field and on the open and
dense subset U = {x : &, # 0} of M the distribution D) = ker(S — A1d)
is spanned by £. We shall show that £ € 3(iso(M)) where 3(g) denotes the
center of the Lie algebra g. Let n € iso(M). Since nT = 0 from (3.7) it
follows that n(Ag — A1) = 0. Hence ng(&, &) = 0. It follows that

(3-8) g9([€,n],€) = 0.

Since S§ = A\o& we get S[n, &] = Ao[n,&]. Hence on the set U the field [n, £]
is parallel to . From (3.8) we obtain [n,£] = 0 on U. Hence [n,&] =0 on M
and £ € 3(iso(M, g)).

Note that D = V — K where 2K (X,Y) = w(X)Y +w(Y)X — g(X,Y)¢.
If n € iso(M,g) then L,V = 0,L,K = 0, thus L,D = 0. Consequently,
Iso.(M, g) C G.. The inclusion G. C Iso.(M, g) is proved in [8] (Lemma 2.2,
p. 410). (Note that the Euclidean sphere is conformally Einstein.) m

COROLLARY 3.7. Let (M, g) be a compact simply connected A-manifold
whose Ricci tensor o has two constant eigenvalues A, i such that A < p and
dim Dy = 1. Then (M,[g]) admits two E-W structures with the standard
meltric g.



KILLING TENSORS AND EINSTEIN-WEYL GEOMETRY 17

Finally, we prove that the conformal scalar curvature of a compact E-W
manifold which is not conformally Einstein is nonnegative. Hence Corol-
lary 4.4 in [10] is not correct.

THEOREM 3.8. Let (M, [g]) be a compact E-W manifold and dim M > 4.
If (M, |g]) is not conformally Einstein then s >0 on M.

Proof. For dim M = 4 the result is known (see [10], p. 103). Let (M, g)
be the standard Riemannian manifold for the E-W manifold (M, [g]) and
assume that dim M > 4. Set s” = s2. Note that (see [10], p. 101)

n(n—4 n(n —4
(39 a5 = MO8 g = MO e
where ¢ = wf and A¢p = try Hess ¢. Since ¢ is a Killing vector field we have
1 1
(3.10) —5 Al = o, &) = [VE]l* = —sPlIg]* = [ Vell*.
Consequently, we obtain
nin—4) (1
(311) aw = "0 (LaPep - vg).

Let a point xg € M satisfy the condition s”(zq) = inf{s?(z) : x € M}.
Then As?(x¢) > 0. From (3.11) it follows that

1
(3.12) —57 (@) [1€o 1* = (VE)as |-
If £, = 0 then from (3.12) it follows that V&, = 0 and consequently £ = 0
on M. Thus in this case (M, g) is Einstein. If &,, # 0 then from (3.12)

we obtain s”(x¢) > 0. Hence if (M, [g]) is not conformally Einstein then
sP>0. m

COROLLARY 3.9. Let (M, [g]) be a compact E-W manifold with dim M >
4 which is not locally conformally Einstein. Then by (M) = 0.

Proof. From Theorem 2.4 of [10] it follows that if s? > 0 and s? is
not identically 0 then by (M) = 0. It is also well known that if s” = 0 then
(M, [g]) is locally conformally Einstein (see [3]). m

COROLLARY 3.10. Let (M, [g], D) be a compact E-W manifold which is
not locally conformally Einstein. Assume that x(M) # 0. Then the standard
Riemannian structure (M, go) has nonconstant scalar Riemannian curvature
70, in particular cannot be locally homogeneous.

Proof. Note that an AGC-manifold (M, go) has constant scalar curva-
ture if and only if is an A-manifold. Note also that if the standard structure
(M, gp) is an A-manifold which is not locally conformally Einstein then
X(M) = 0 (since it admits a global one-dimensional distribution Dy). This
contradiction shows that ¢ is nonconstant. m
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REMARK. Note that every four-dimensional compact E-W manifold
which is not locally conformally Einstein has nonzero Euler characteristic,
hence it does not admit a locally homogeneous standard metric.

COROLLARY 3.11. A compact E-W manifold which is not conformally
Einstein is locally conformally Einstein if and only if its standard Rieman-
nian structure (M, g) is an A-manifold with two (constant) eigenvalues X, it
such that A =0 < p and dimker S = 1, where S is the Ricci endomorphism
of (M,g). If these conditions on (M,g) are satisfied then the Ricci tensor
of (M, g) is parallel, V.S = 0 and the universal covering (M, 9) of (M,q)
is (R,dt) x (My,g1), where My is a compact, simply connected Einstein
manifold with positive scalar curvature.

Proof. Tt is clear that then V& = 0 and ||£|| = const. Hence the scalar
curvature 7 of (M,g) is constant. Thus (M,g) € A. Note that if M is

compact then M is complete. Hence we can apply the results from [7] and
the de Rham theorem. m

REMARK. This last result was proved by P. Gauduchon (see [3], Th. 3,
p. 10). We wanted here to prove it using only properties of Killing ten-
SOTS.
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