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Abstract. Let R be a subring of the rationals. We want to investigate self splitting
R-modules G, that is, such that Extr (G, G) = 0. For simplicity we will call such modules
splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper
[8]). Our investigation continues [5]. In [5] we answered an open problem by constructing
a large class of splitters. Classical splitters are free modules and torsion-free, algebraically
compact ones. In [5] we concentrated on splitters which are larger than the continuum and
such that countable submodules are not necessarily free. The “opposite” case of Ni-free
splitters of cardinality less than or equal to X; was singled out because of basically different
techniques. This is the target of the present paper. If the splitter is countable, then it must
be free over some subring of the rationals by Hausen [7]. In contrast to the results of [5]
and in accordance with [7] we can show that all N;-free splitters of cardinality R; are free
indeed.

1. Introduction. Throughout this paper R will denote a subring of the
rationals Q and we will consider R-modules in order to find out when they
are splitters. “Splitters” were introduced in Schultz [10]. They also come
up under different names as mentioned in the abstract.

DEFINITION 1.1. An R-module G is a splitter if and only if Exth(G, G)
= 0 or equivalently if Exty(G,G) = 0, which is the case if and only if any
R-module sequence

0G5 X560
splits.

Throughout we set Ext(A, B) = Exty(A, B).

A short exact sequence

05B-250 %450
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represents 0 in Ext(A, B) if and only if there is a splitting map v : A — C
such that yae = id4. Here maps are acting on the right.
Recall an easy basic observation (see [4]):

If Ext(A,B)=0,A" C A and B’ C B, then Ext(A’, B/B’) =0 as well.

The first result showing freeness of splitters is much older than the notion
of splitters and is due to Hausen [7]. It says that any countable, torsion-free
abelian group is a splitter if and only if it is free over its nucleus. The nucleus
is the largest subring R of Q which makes the abelian group canonically into
an R-module. More precisely:

DEFINITION 1.2. The nucleus R of a torsion-free abelian group G # 0
is the subring R of Q generated by all 1/p (p any prime) for which G is
p-divisible, i.e. pG = G.

The fixed ring R mentioned at the beginning will be the nucleus R =
nuc G of the associated abelian group G.

The following result reduces the study of splitters among abelian groups
to those which are torsion-free and reduced modules over their nuclei.

THEOREM 1.3 ([10]). Let G be any abelian group and G = D & C a
decomposition of G into the mazimal divisible subgroup D and a reduced
complement C'. Then the following conditions are equivalent.

(i) G is a splitter.
(i) (a) D is torsion (possibly 0) and C'is a torsion-free (reduced) splitter
with pC = C' for all p-primary components D, # 0 of D; or
(b) D is not torsion and C is cotorsion.

Many splitters are constructed in [5], in fact we are also able to prescribe
their endomorphism rings. This shows that uncountable splitters are not
classifiable in any reasonable way, a result very much in contrast to classical
well-known (uncountable) splitters which are the torsion-free algebraically
compact (or cotorsion) groups.

The classical splitters come up naturally among many others when con-
sidering Salce’s work [9] on cotorsion theories: A cotorsion theory is a pair
(F, ) of classes of R-modules which are maximal, closed under extensions,
the torsion-free class § is closed under subgroups, the cotorsion class € is
closed under epimorphic images and Ext(F,C) =0 for all F € § and C € €.
The elements in § N € are splitters and in the case of Harrison’s classical
cotorsion theory these are the torsion-free, algebraically compact groups.
For the trivial cotorsion theory these are free R-modules.

Hausen’s [7] theorem mentioned above can be slightly extended without
much effort (see [5]).
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THEOREM 1.4. If R = nuc G is the nucleus of the torsion-free group G
and G is a splitter of cardinality < 280, then G is an Ny -free R-module.

Recall that G is an Ni-free R-module if any countably generated R-
submodule is free. The algebraic key tool of this paper can be found in Sec-
tion 2. We consider torsion-free R-modules M of finite rank which are min-
imal in rank and non-free. They are (by definition) n-free-by-1 R-modules
if rk M = n + 1; the name is self explanatory: They are pure extensions
of a free R-module of rank n by an R-module of rank 1. Similar to sim-
ply presented groups, n-free-by-1 groups are easily represented by free gen-
erators and relations. Using these minimal R-modules we will show the
following

MAIN THEOREM 1.5. Any Ry-free splitter of cardinality Ny is free over
its nucleus.

The proof will depend on the existence of particular chains of Ni-free
R-module of cardinality X; which we use to divide the N;-free R-modules of
cardinality N; into three types (I, II, IIT). This may be interesting indepen-
dently and we would like to draw attention to Section 3. In Sections 4-7
we use our knowledge about these chains to show freeness of splitters. The
proof is divided into two main cases depending on the continuum hypothesis
CH (Section 5) and its negation (Section 4). In the appendix Section 8 we
present a proof of the main result of Section 5 under the weaker set-theoretic
assumption WCH 280 < 281 a weak form of CH which will be interesting
(only) for splitters of cardinality > N;. The results in Section 6 and 7 on
splitters of type II and III do not use the case distinction by additional
axioms of set theory.

For general aspects of the discussed problem we also suggest to consult
the work in [1], [2], [6], [13], [11], [12].

2. Solving linear equations. Let R be a subring of Q. Then R-modules
of minimal finite rank which are not free will lead to particular infinite
systems of linear equations. Consider the Baer—Specker R-module R of all
R-valued functions f : w — R on w, also denoted by f = (fm)mew-

LEMMA 2.1. Let p = (pm)mew, ki = (kim)mew € R (i < n) where no
Pm 1S a unit of R. Then we can find a sequence $ = (Sm)mew € RY such

that the following system (S) of equations has no solution T = (xg,...,Z,) €
Rn+1a Ym € R
(‘/S\) Yo = Tn, Ym+1Pm = Ym + szkzm + Sm (m S w).

<n
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Proof. We use Cantor’s argument which shows that there are more real
numbers than rationals. First we enumerate all elements in R"t! as

W=W={z"=(af,...,2") : m € w}

n

and construct s € R¥ inductively.
It is interesting to note that the set of bad elements

B={s€R*:37 € R"", (ym)mew € R¥ solving (3)} C R

is a submodule of R“ but |B| is uncountable in many cases. Hence enumer-
ating B would not help.

Suppose sq, ..., Sn_1 € R are chosen and we must find s,,. We calculate
Y0y - - -y Ym from Sg, ..., Sm—1 and yo = z', z7", ..., 2", and equation (5)

up to m — 1. The values are uniquely defined by torsion-freeness and in
particular

(2.1) Z=Ym+ Z:):;”km €R
<n
is uniquely defined. Recall that p,, is not a unit and either p,, does not

divide z, then we set s,,, = 0, or we can choose some s,, € R\ {0} such that
Pm does not divide z + s,,,. In any case

(2.2) YPm = 2+ S, has no solution in R

and s,, is defined.
Suppose that (3) has a solution € R"*!. Then T = z™ for some m by
our enumeration. We calculate y,,+1 from () substituting Z, hence

Ym+1Pm = Ym + Z m;nkzm + Sm =2+ Sm
i<m
is solvable by (2.1), which contradicts (2.2). m
If G’ C G is a pure R-submodule of some R-module G which is of finite
rank, not a free R-module, and such that all pure R-submodules of G’ of
smaller rank are free, then we will say that G’ is minimal non-free. Such

modules are “simply presented” in the sense that there are z;,v,, € G’
(1 <m, m € w) such that

(2.3) G'=(B,ymR:mecw) with B=HzR

and the only relations in G’ are
(2.4) Ymi1Dm = Ym + Y Tikim (M € w)
i<n

for some coefficients py,, ki € R. The submodule B is pure in G'. If G is
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not Ni-free, then the existence of minimal non-free submodules is immediate
by Pontryagin’s theorem. Non-freeness of G’ implies that the Baer type of

G'/B=TCQ

is strictly greater than the type of R (see Fuchs [4, Vol. 2, pp. 107-112]).
In more detail, B is a pure submodule of G’, hence G’/ B is torsion-free of
rank 1 and since G’ is not a free R-module, G’ /B = T cannot be isomorphic
to R. If ¢ : G’ — Q is the canonical homomorphism taking B to 0 and yq to
1 € Q, then Im ¢ C Q represents the type of (yo + B). = G’/B. There are
Pm € N, not units in R, such that T' = J,),,, ¢, 7 C Qand ¢, = [Licom pi-
In order to derive the crucial equations as in the above definition we choose

preimages y,, € G’ of ¢! such that

ye=w=1 yup=¢, (MeEwW).
Using ¢m+1 = ¢mpPm we find elements k;,,, € R (i < n) and g,, € G’ such
that (2.3) and (2.4) hold. We will constantly use the representations (2.3)
and (2.4) which are basic for the following pushout.

PROPOSITION 2.2. Let G, C Gau1 be a countable free resolution of G’
as in (2.3) and let the relations (2.4) be expressed in Go41 by

Y 1Pm = Y + > @ Kim + Gm
i<n
for some g, € Gy let zp, (m € w) be non-trivial elements of an Wi -free
R-module H° of cardinality ¥, and

0—-H' > H, "~ a,—=0

be a short exact sequence. Then we can find an R-module
H =(H,® By, :m € w)

with B = @

ien TiR and g,,h = gm such that the only relations in H' are

y;n+1pm = y;n + Zx;kzm + Zm + Gm (m € w)-

i<n
The map h extends to h' by xih' =z, y., k' =y}, such that the new diagram
with vertical maps inclusions commutes:

0 — HY — H, G, — 0

Lo !

O—>H0—>H’LI>Ga+1—>0
Proof. Let
Foy1=H, @@@R@ @?mR

<n mew
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and define
Not1 = <(§m+1pm — Y, — Zfi/ﬁm — Zm — §m>R tmE w>.
i<n
Hence H' = F,+1/N4+1 and let
2; =Ti + Nat1,  Ym = U + Nat1, 2" =T+ Noja.
First we see that

(a) a2 (x € H,) defines an embedding H, — H' and then we identify
H,, with its image in H’.

It remains to show that H,NNyy1 = 0 viewed in Fi, 1. If 2 € HyNNg 41,
then there are k,,, € R for m <[ and some [ € w such that

1
Z (merlpm ~Ym — Z@k@m — Zm —?m) km = x € Hy,.

m=0 <n
We get
I l
== (2m+Gm)km, (ymﬂpm — G — Z@k,m>km = 0.
m=0 m=0 i<n

The coefficient of 7, is piky = 0, hence k; = 0 and going down we get
km = 0 for all m <[, hence x = 0 and (a) holds. From N, ; we have the
useful system of equations in H':

<n
In view of (a) we also have
(c) H =(H,® By, :mcw) with B'=H2jRC H'.
i<n
Next we claim that

(d) If |Hy = h, ik = z; and y,,h' = ym (i < n, m € w), then
h : H — G411 is a well-defined homomorphism with

(e) kerh' = H°, Imh' = Gay1.

As b/ is defined on non-free generators, we must check that the relations
between them are preserved when passing to the proposed image. The rela-
tions are given by N,41 or equivalently by (b). Using the definition (d) we
see that the relations (b) are mapped summand-wise under h’ as follows:
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YnirPm + U D Tikim 4 Zm 4 O

<n
\ \ 4 4 4
Ym+1Pm ? Ym + Zi'zkzm + 0 + 9m
<n

and inspection of (2.4) and the relations in G,+1 shows that 7 is an equality
sign. Hence A’ is well defined. Notice that H,h/ = H,h = G, therefore b’/
induces a homomorphism

H//Ha —)Ga+1/Ga

and the last argument and g,,, € G, show that this is an isomorphism. Hence
when passing from h to the extended map h’ the kernel cannot grow, we
have H? = ker b’ = ker h and Imh’ = G 1 is obvious, so (d) and (e) and
the proposition are shown. =

3. The main reduction lemma—types I, II and III. The Chase
radical vG of a torsion-free R-module G is the characteristic submodule

vG = (U € G: G/U is Ny-free}.

Since G/vG is also N;-free, the Chase radical is the smallest submodule with
N;-free quotient. If U is a submodule of G we write vy G = G’ for the Chase
radical of G over U which is defined by v(G/U) = G'/U.

Given any Rj-free R-module G of cardinality |G| = N, we fix an Nj-

filtration
¢=J &

a<wi
which is an ascending, continuous chain of countable, free and pure
R-submodules G? of G with G§ = 0.
We want to find a new ascending, continuous chain of pure R-submodules
G, (not necessarily countable) such that G = G.. However, we do
require that

a<wi

(3.1) G/G, is Ny-free if o is not a limit ordinal.

We will use the new chain to divide the X;-free R-modules of cardinality Ny
into three types. This distinction helps to show that Wi-free splitters of
cardinality N; are free.

Suppose Gg C G is constructed for all 8 < a. Next we want to define G.
If « is a limit ordinal, then

Go= | G5

B<a
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Hence we may assume that o = 8+ 1 and we must define G, = Gg41. In

order to ensure G = (J,¢,,, Ga we let

(3.2) Gao = (Gs+GL). € G

be the pure R-submodule generated by Gz + G2. In any case we want

to ensure that (3.1) holds, hence vg, ,G C G,. Therefore we construct an

ascending, continuous chain of pure R-submodules

(3.3) {Gaj :j < wi} with Gq,jt+1/Gq; = 0 or minimal non-free for each
0<j<w

such that G, = Ujew1 G ;- Suppose that G is defined for all i < j < wy. If

J is a limit ordinal we take G; = UK]. Gui, and if j =i+ 1 we distinguish

two cases:

(3.4) IfG/Gq;is Ni-free, then Go; = Go; hence G, = G and |G /Ga—1]
= Ng.

Otherwise G/G,; is not Nj-free, and by Pontryagin’s theorem we can find

a finite rank minimal non-free pure R-submodule M/G,; of G/G,;. Since

G = Ujcw, G and 0 # M\ Go; < G, there is also a least ordinal y =

Y(M) =~v(M/Gyi) < wi such that

(3.5) (M\ Ga) N(G41\ GY) # 0.

Among the candidates M we choose one with the smallest (M) and take
it for M =G i4+1. This completes the construction of the G;’s. Notice that
either the construction of G, stops as in case (3.4) or we arrive at the second
possibility:

(3.6)  Ga,it1/Gai is minimal non-free for each i < w; and |Go/Ga—1|
= Nj.

It remains to show that in case (3.6) the following holds:
(3.7) vG.,G = G4 or equivalently G/G,, is Np-free.

Suppose that G/G, is not Rj-free and let X be a non-free submodule of
minimal finite rank in G/G, which exists by Pontryagin’s theorem. Repre-
senting X in G we have

G" = (i, ym,Go 11 <n, mew), with G"/G, =X
(see also Gobel-Shelah [5]). There are elements g, € G, (m € w) such that

Ym+1Pm = Ym + Z Tikim + gm
i<n
for some py,, kim € R (py, not units of R). We take
G'= <xivymvgm i<n, me OJ>* - G,
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hence X = G'+ G, /G, was our starting point. Since G’ is obviously count-
able, there is a v* € w; with G’ C Gg*. If {Goj 1 j < wi} is the chain
constructed above, we also find i € wy with g,, € Gg; for all m € w. If
i <j € wq, then G'+G,,;/G,; is an epimorphic image of X, hence minimal
non-free or 0. The second case leads to the immediate contradiction:

G' CGaj CGa but X #0.

Hence G'+Gj/Gqaj#0 was a candidate for constructing G ;41 for any i <
Jj€wi. Has it been used? We must compare the y-invariant v(G'+Gq;/Ga;)
with the various 7(Ga,j41/Gaj). From G' € GY. we see that thereis v/ < ~*
such that

(G' + Gaj \ Gaj) N (G31+1 \ G?,J) # 0.
By minimality of 7; =: 7(Ga,j+1/Ga;) We must have v, <~/ < v* and
(Gajs1\ Gaj) N (G5, 11\ G7) #0

and (Go; NGY-) (j € wi) is a strictly increasing chain of length w; of the
countable module Gg*, which is impossible. Hence G/G, is Nj-free and
(3.7) is shown.

We have a useful additional property of the constructed chain which
reflects (3.7).

COROLLARY 3.1. If 0 # a € wy is not a limit ordinal, then Go, = vgo G.

Proof. We concentrate on the case (3.6) and only note that the case
(3.4) is similar.

Recall from (3.7) that G/G,, is Ny-free, hence the statement of the corol-
lary is equivalent to saying that any submodule X of G, must be G, if only
GY C X with G, /X Ni-free.

Let o > 0 and suppose G¥ C X C G, and 0 # G,/X is N;-free. First
we claim that

GgCX forall B<a.

If this is not the case, then let § < a be minimal with Gg € X. Recall that
[ cannot be a limit ordinal and we can write 8 = v+ 1 for some v < 8. We

have Gg = U,¢,,, Gpj, hence

iﬁ :mln{j € wi: Gﬁj gX} € wq

exists. If 15 = 0, then G% CG% C X froma>pBand Ggg € X. We
get Ggo = (GV,G%>* Z X and G% C X requires G, ¢ X, contradicting
minimality of 8. Hence ig > 0 and ig = j + 1. We have Gg;;, € X and
Gp; € X from j < ig and minimality of ig. However G j1/Gp; is minimal
non-free, and 0 # Gg ;41 + X/X C G/X is an epimorphic image, hence
non-free as well. Therefore G/X is not N;-free, a contradiction showing our
first claim.
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From the first claim we derive (J s<aGp © X. Now there must be a
minimal
lo = mln{j : Gaj Z X} € wi,
which cannot be a limit ordinal, and again i, > 0, hence i, = j+1. We find
Gaj C X,Gq j+1 € X and G /X cannot be R;-free, a final contradiction. m

We now distinguish cases for G depending on the existence of particular
filtrations. Let G = |, . G, be the filtration constructed from the Ni-
filtration G = |J,_,, G2

If there is an ordinal 5 < w; (which we assume to be minimal) such that
G = Gg, then let C' = G%, which is a countable, free and pure R-submodule
of G. From Corollary 3.1 we see that vocG = G. Hence, beginning with
C we get a new Xj-filtration (we use the same notation) {G4 : a € wy} of
countable, pure and free R-submodules of GG such that Gy = C and each
Gat1/Go (a0 > 0) is minimal non-free. In this case we say that G and the
filtration are of type I

In the opposite case the chain only terminates at the limit ordinal w,
i.e. Gg # G for all § < w;. We have a proper filtration G = Ua<w1 G, such
that Corollary 3.1 holds. If for each a € w; for some i < w; case (3.4) occurs,
then the constructed chain {G, : @ € w1} is an R;-filtration of countable,
pure and free R-submodules with the properties of Corollary 3.1 and (3.1).
We say that the chain and G are of type II.

If G is not of type I or of type II we say that G is of type III. In this case,
there is a first a € wy such that G411/G, is uncountable. We may assume
that o = 0. With the new enumeration we see that the following holds for
type III:

(III) G = Ua<w1 Ga, Go = O, ‘G1| = Nl and (31) hOldS, G1 = UjEun GOj
is an Ny-filtration of pure submodules of Gy with each Gy j+1/Go;
minimal non-free.

We have

REDUCTION LEMMA 3.2. Any N1 -free module G of cardinality ¥y is either
of type I, II or III.

4. Splitters of cardinality X; < 2% are free. In this section we do
not need the classification of Nij-free R-modules of cardinality ¥; given in
Lemma 3.2. Moreover, we note that N;-freeness of splitters of cardinality
N; < 2% follows by Theorem 1.4. In fact we will present a uniform proof
showing freeness of splitters up to cardinality X; < 2%, which extends
Hausen'’s result [7] concerning countable splitters. We begin with a trivial
observation:
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PROPOSITION 4.1. Let G = Uaew1 G, be an Ny -filtration of pure and free
R-submodules G, of G. Then nucG, = R for all a € wy.

Proof. Choose any basic element b € G, for some a € wy. If r € Q
divides b in G, then r divides b in GG, by purity, hence r € R from bRHC =
G, and nucG = R. n

COROLLARY 4.2 (R; < 2%, If G is a splitter of cardinality < N; and
nucG = R, then there is an Xy-filtration G = Ua@)1 G of pure and free
R-submodules G, such that nuc G, = R for all a € w1.

Proof. From ®; < 2% and Gébel-Shelah [5] (see Theorem 1.4) it follows
that G is an X;-free R-module and G has an N;-filtration as in the hypothesis
of Proposition 4.1. m

DEFINITION 4.3. Let G be a torsion-free abelian group with nucG = R
and X an R-submodule of G. Then X is contra- Whitehead in G if the
following holds. There are z,, € G and py,, kim € R (i < n, m € w) such
that the system of equations

Vin1Pm = Yin + > Xikiim + 2m mod X (m € w)
i<n
has no solutions y,,a; € G (for Y,,, X; respectively) with €,_,, (a; + X)R
free of rank n and pure in G/X. Otherwise we call X pro- Whitehead in G.

For X C G as in the definition let 23 be the set of all finite sequences
a = (ag,a1,...,a,) such that

(i) a; € G (i < n),
(ii) D,.,,(a; + X)R is pure in G/ X,
(iii) ((a; + X)R:i < mn), is not a free R-module in G/X.
In particular G5 = @, _,, a;R X is a pure submodule of Gz = (X, a; R :
i <n), and of G, and the module Gz/X is an n-free-by-1 R-module. From
(2.4) we find pgz,n € N not units in R and elements kg, € R (i < n),
gam € Gg such that

(41) Ya,m+1Pam = Yam + Z aiktiim + Yam (m S w)‘
<n
The equations (4.1) are the basic systems of equations to decide whether
G is a splitter or not. We will also consider an “inhomogeneous counterpart”
of (4.1) and choose a sequence zZ = (z,, : m € w) of elements z,, € G. The
z-inhomogeneous counterpart of (4.1) is the system of equations

(4.2) Yint1Pam = Ym + Z Xikgim + z2m mod X (m € w).

i<n
According to the above definition we also say that @ € 20 is contra-White-
head if (4.2) has no solutions y,, (m € w) in G (hence in Gg) for some z and
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X; = a;. Otherwise we say that @ is pro-Whitehead. If G = Uaew1 G, is
an Np-filtration of G, then we define 25, for X = G, and let S = {a € wy :
there exists @ € 2, contra-Whitehead}.

ProvposiTION 4.4. If G =
then G is not a splitter.

. Go and S as above is stationary in wi,

Before proving this proposition we simplify our notation. If a € S we

ChOOSG Z% S Gv a = (agua?)”'aag)u Pam = Pam, Gam = g'?;n kaim -
koim, Yam = Y5, so that equations (4.1) and (4.2) become, for X = G,,
(43) ygl—i-lpam = y% + Z a?kaim + gran (m € w)

<n

with Z“-inhomogeneous counterpart

(44)  YisiPam =Y + Y Xikiaim + 25 mod G, (m € w).

<n
Hence (4.3) is a system of equations with solutions y%, a$, g% in Guot1,
while (4.4) with variables Y,,, X; (m € w, i < n) has no solutions in G,
as discussed in Definition 4.3 for X = G,. The set of limit ordinals is a
cub, hence we may restrict S to this cub and assume that .S consists of limit

ordinals only. If a € S we may also assume that
Gat1 = (Go,aiR:i <n)y = (Gu,aiR,yp R:m € wy, i < n).

Proof of Proposition 4.4. We will use the last remarks to construct h:
H — G such that

(%) 0-H > H-%aG—0
does not split, hence Ext(G, H?) # 0. We will have H® = G, hence
Ext(G, G)

# 0 and G is not a splitter.

Choose an isomorphism v : G — H° which carries the R;-filtration
{Go 1 a € wi} to H® = Uye,, HY, and 23, to 2,,,. Inductively we want to
define short exact sequences

(8) 0 H Y H, Gy =0 (B<a)
which are increasing continuously. Let
(0) 0— H % Hy %00

be defined for Hy = H® with hg the zero map and suppose (3) is defined for
all 8 < a < wy with a a limit ordinal. We take unions and («) is defined.
If « € wy \ S, we extend () trivially to get (a4 1) and if « € S we must
work for (o + 1): We apply Proposition 2.2 to find H, C H,41 with

Ha+1 = <Haa€amamam tmE w, 1 < Tl>



ALMOST FREE SPLITTERS 205

and relations

(45) €Ca,m+1Pam = €am + Z xaikaim + Yam + Z(/lm (m S w)

<n
with yamha = g5, € Go. We want to extend the homomorphism h,, : H, —
Go to hat1 : Hyv1 — Goy1, and set eqmhat1 = Yo, and xq4iha+1 = af. By
Proposition 2.2 the map h,41 is a well defined homomorphism. It is clearly
surjective with kernel HY. Hence (a + 1) is well defined for all o € w; and
h =Uqaew, Mo shows (x).

Finally we must show that (%) does not split. Suppose that o : G — H
is a splitting map for (x). Hence ch=idg and H = H° ® Imo and g2, =
Yamha = Yamh, 80 (Yam — g&,0)h = 0 implies yam — 920 € H? for all a € S.
The set

C = {a € w; : a a limit ordinal, Yo, — gSc € H.}
—by a back-and-forth argument—is a cub and hence S N C is stationary

in w;. We can find « € C'N S and consider the associated equations. In G
we have (4.3):

yran-‘rlpam = yfﬁl + Z a?kaim + g%
<n
and o moves these equations to H:
(ygz—f—lo')pam = (ymo) + Z(a?g)kaim + (9mo)s
<n
which we subtract from (4.5). Hence
(egz—i-l - ygl-i-lo')pam = (6% - ygﬂ) + Z(xoei - aiao')kaim
<n
+ (yam - gg@ J) + Z/am'
Put
fam = 62‘1 - 9%0_7 Vi = Tavi — af‘a, Wam = Yam — gfrlLo-
and note that
famh = eamh — Q%Uh = gg@ - g?n =0,
hence fom € ker h = H?. Similarly wam, Vam € H°. The last equation turns
into
fa,m—&—lpozm = fam + Z vcximkaim + Wam + Z(/lm (m € W),
<n
which, as just seen, is a system of equations in H°. From o € C we have
Wam € H.,. The isomorphism v~! moves the last equation back into G and
WamY ' € Gy. Using

1 / 1

!/ _ — _ — / _ -1
fam - fozm’y ) Weopy = Wam™Y 3 Vai = Vai”
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we derive
f&,erlpam - f&m + Z v/aikaim + w:xm + ZZL (m € w)
i<n
with w!,,, € G, and 27" as in (4.4), which is impossible if « € S is contra-
Whitehead, where we have chosen 2]}’ suitably. m

THEOREM 4.5. Let G be a splitter of cardinality < 2% with nucG = R.
If X is a pure, countable R-submodule of G which is pro-Whitehead in G,
then G/X is an Wy-free R-module.

Proof. First we assume that nuc(G/X) = R and suppose for contra-
diction that G/X is not an W;-free R-module. By Pontryagin’s theorem we
can find an R-submodule Y C G/X of finite rank which is not free. We may
assume that Y is of minimal rank. Hence

Y =(B,ymR:mew), B=EPxnR
i<n

with the only relations

Ym+1Pm = Ym + Z fzkzm (’I?’L € w)
<n
as in Section 2 such that no p, € R is a unit of R for m € w. Choose
x; € G such that x; + X = Z; for each i < n. We can also choose a

sequence of elements z,, € G such that z,, + X is not divisible by pp,_1
from nuc(G/X) = R (m € w). If n € “2, then let

Z" = (n(e)ze 1 e € w) = (7).
Recall that X is pro-Whitehead in G, hence the system of equations
(n) UpiiDm = Y+ Y 2 kim + 2], mod X (m € w)
i<n
has solutions ],y € G for each n € “2. Note that
(@l i< m)M(yl) :n € “2} < |G < 2%,

We can find n # v € “2 such that z] = z¥ for all i < n and y] = y§. From
1 # v we find a branching point j € w such that n(j) # v(j) but nlj = v|j.
We may assume 7(j) = 1 and v(j) = 0 and put w,, = y}l, —y~,. Subtracting
the equations (v) from (1) we infer from z! — 2V = 0 that

7
Win1Pm = Wm + (27, — 2,) mod X

and wo = yg —y§ = 0 as well. For m < j we have 2]l — 2/, = 0 and

z] — 2¥ = z;, hence w,, = 0 for m < j by torsion-freeness and

i
wjpj—1 = z; mod X,

which contradicts our choice of z,,’s and p,,’s.
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If nuc(G/X) = Q, then G/ X is divisible, hence X is dense and pure in G,
we have X C, G C, X where X is the Z-adic completion of X, and X is a
free R-module of countable rank. Hence G/X C, X /X = Do Q and there
are 2% independent elements in X /X. These independent elements can be
expressed as unique solutions of certain systems of equations—rewrite the Z-
adic limits accordingly. The equations must be solvable by pro-Whitehead.
Hence |G| = | X| = 2% > Xy, which is a contradiction.

So we find p,, € R and z,, € G such that p,,_1 does not divide z,, + X
in G for all m € w. The above argument applies again for n = 0 and leads
to a contradiction. m

COROLLARY 4.6. Any splitter of cardinality at most Xy < 2%0 is free over
its nucleus.

Proof. Let G = |J,¢,, Ga be an Ry-filtration of the splitter G. By
Corollary 4.2 we may assume that each G, is a pure and free R-submodule
of G with R = nucG. If S denotes the set

{a € w1 : G4 is contra-Whitehead in G},

then S is not stationary in wy by Proposition 4.4. We may assume that all
G, are pro-Whitehead in G and each G,11/G, is countable, hence free by
Theorem 4.5. We see that G must be free as well. m

5. Splitters of type I under CH. In view of Section 4 we may assume
CH to derive a theorem in ZFC showing freeness for W;-free splitters of
cardinality Ny of type I. The advantage of the set-theoretical assumption
is—compared with the proof based on the weak continuum hypothesis WCH
in Section 8—that the proof given here is by no means technical. Recall that
Gisof typelif G = UOCEW1 G, for some N;-filtration {G, : @ € wy} of pure
submodules G, such that each Go4+1/Go (o > 0) is a minimal non-free
R-module. In this section we want to show the following

PROPOSITION 5.1 (ZFC + CH). Modules of type I are not splitters.

Combining Proposition 5.1 and Corollary 4.6 we can remove CH and
have the immediate consequence which holds in ZFC.

COROLLARY 5.2. Any Ry-free splitter of type I (and cardinality Ny) is
free over its nucleus.

The proof of Proposition 5.1 is based on an observation strongly related
to type I concerning splitting maps. Then we want to prove a step lemma
for applications of CH. Finally we use CH to show Ext(G,G) # 0 in Theo-
rem 5.1. In Section 1 we noticed that if

05 B0 A0
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is a short exact sequence, hence representing an element in Ext(A, B), then
this element is 0 if and only if there is a splitting map ~ : A — C such that
~va = id 4. This simple fact is the key for the next two results.

OBSERVATION 5.3. Let G = |J Go be a filtration of type I. For
o € wy, let

(a) 0 H"— Hy— Gy —0

acEwr

be a continuous, increasing chain of short exact sequences with union
(w1) 0-+H"-H—-G—=0

and let HY = G be R;-free. Then any splitting map of () for « = 1 has at
most one extension to a splitting map of (w1).

Proof. We may assume that the splitting map o : G; — H; of (1) has
two extensions o, 0’ : G — H which split. Since w; is a limit ordinal, there is
some f < wy minimal with (o —o¢’)[Gpg # 0. Clearly 3 is not a limit ordinal
and o — ¢’ induces a non-trivial map ¢ : Gg/Gz—1 — Hg. The domain of
this map is minimal non-free, while its range is X;-free, hence § must be 0,
a contradiction. m

STEP LEMMA 5.4. Let G = G be a filtration of type I and let

acwi

0 H" 5 H, " a,—0

be a short exact sequence with H® = G. If o : G, — H, is a splitting map,
then there is an extension of this sequence such that o does not extend to a
splitting map o’ of the new short exact sequence:

h
0O — H — H, =@ G, — 0

e

b

’

0—>H0—>H’¢,Ga+1—>0

o

Moreover, the vertical maps in the diagram are inclusions and if Goy1/Ga
is n-free-by-1, then B}, ,, is a free R-module of rank n and

H' = (Hao ® Bly1, Yom : M E W)
and B}, is mapped under h' mod G, onto a free mazimal pure R-sub-

module of Gat1/Ga.

Proof. We will use special elements s, € R (m €w) to kill extensions. It
will help the reader to pose precise conditions on the choice of the s,,’s only
when needed, which will be at the end of the proof. Readers familiar with
such proofs will know that we are working to produce a p-adic catastrophe.
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First we use the fact that G’ = G,4+1/G, is minimal non-free, say n-
free-by-1. By (2.3) and (2.4) we have

G = <@xiR,ymR:m€w>

<n

with the only relations

Ym+1Pm = Ym + Z Tikim (m € w)

<n
and coefficients p,,, ki € R. By the last equations we can find g € Ga
and Zai, Yam € Gar1 such that

(%) Gat1 = {(Ga,ZaiR,YamR : i < n,m € w) with the relations
Ya,m+1Pm = Yam + Z xaikim + Gam (m € w)‘
<n
The action of ¢ is known to us on G, hence we can choose a pure element
0# 2z € H° and let z,, = zs,,. Then H°/zR is R;-free by purity of z in

an Ni-free R-module. We also choose preimages §g,,,, = gam0 € H,, hence

TomP = gam-. We are now in a position to apply Proposition 2.2. Let

H' = (Ho® By, Yhy i mEw) with B, =P, RCH
i<n
be the extension given by the proposition with the useful relations
(5-1) yg,m-ﬁ-lpm = y(/):m + Z xgikim + 28m + gam0O (m € w)
i<n
and an extended homomorphism A’ : H — G, with
W1Hy=h, 200 =20, yYi.h' =Yam (i<n, meuw)

such that kerh’ = H® and Imh’ = Gq41. It remains to show the non-
splitting property of the lemma.

Suppose that o’ : G,41 — H’ is an extension of o : G, — H such that
o'l =idg,,,. Now we want to derive a contradiction by choosing the s,,’s
suitably (independent of ¢’ !). We apply ¢’ to (*) and get the equations
in H:

(*OJ) ya,m+10/pm = yamo', + Z xaialkim + gamUI-
<n
If dom = Yty — Yam0o’ and eq; = 2!, — x4;0" then dom € HO since
dcxmh, - (ygm - yamU,)h/ - ygmh/ - yamalh, = Yam — Yam = 0
and ker b’ = HY. Similarly we argue with en; and get dom, €as € H.
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Subtracting (*¢’) from (5.1) now leads to a system of equations in HY:

da,m+1pm = dam + Z eaikim + 28m-
<n
We consider the submodule

W = (dam + 2R, eqi + zR:i <n, m € wyp C H°/zR.

The last displayed equations tell us that W is an epimorphic image of a
minimal non-free R-module, hence 0 or non-free of finite rank. On the other
hand H®/zR is R;-free as noted above, hence W = 0 or equivalently

(dam,€ai - m Ew, i <n)gr C zR=R.

The original equations

(5'2) da,m—f—lpm = dam + Z Caikim + Sm

i<n
still hold, but this time require solutions dg.m,,eq; € R. We get to an end:
just choose rational numbers s, € R such that (5.2) has no solutions. The
existence of such s,,’s follows from Lemma 2.1. Finally note that dealing
with (5.2) is independent of the particular choices of the extensions of o as
required in the lemma. =

Proof of Proposition 5.1. Let H? = G = Uaew1 G, be a module of type I.
We must show that Ext(G, HY) # 0 and need a non-splitting short exact
sequence

(5.3) 0 H 5 H " a-o,

which we construct inductively as an ascending, continuous chain of short
exact sequences

0= H° > H, ' G, =0

with union (5.3). Let
0 H 5 H, M5 Gy -0

be the first step with G; a free R-module of countable rank. By Observa-
tion 5.3 and CH we can enumerate all possible splitting maps o : G — H of
extensions h as in (5.3) of all hy’s by wy, and let {0, : G — H : @ € w1} be
such a list. Using Step Lemma 5.4 and the uniqueness in Observation 5.3
we can discard any o, at stage a when constructing

ha+1
0— H° = Hyiy — Goqpq — 0.

The resulting extension (5.3) cannot split. m
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6. Splitters of type II. An R-module G is of type II if G has an N;-
filtration G = Ua€w1 G, of pure submodules G, such that G/G,, is N;-free
for all non-limit ordinals o € w;y (see Section 3). In this section we want to
show our second main

THEOREM 6.1. If G is of type II, then G is a splitter if and only if G is
free over its nucleus R.

REMARK. Theorem 6.1 includes the statement that strongly N;-free R-
modules are never splitters, except if trivially the module is free. This was
very surprising to us.

Proof (of Theorem 6.1). If S = {a € wy : G/G, is not Ny-free}, then
S is a set of limit ordinals by (3.1), and if & € S we may also assume that
Ga+1/Gq is minimal non-free (compare §3).

We get a [-invariant I'(G) defined by S modulo the ideal of thin sets
(see e.g. [3]). If I'(G) = 0, then we find a cub C C wy with CNS =0
and G = U, Ga- Let g = minC. Then G = G, @ F for some free
R-module F, and G, is a countable submodule of G which must be free
over R by Hausen’s [7] result (see also [5]). Hence G is free. Note that the
hypothesis of G being R;-free is not used in this case! If I'(G) # 0 we want
to show that Ext(G, G) # 0. Theorem 6.1 can be rephrased as

(6.1) If G is of type II, then G is a splitter if and only if I'(G) = 0.
Now assume that S is stationary in w;. We want to construct some

H " G = 0 with kerh = HY @G isomorphic to H® by ~, which does not
split. If G4y = H), (o € wy), then

H = | ] H,
acwr
is a (canonical) R;-filtration of H® copied from G. First we pick elements
2o € HOY such that z,R = R and Ho/zaR is Ni-free, e.g. take any basis
element from a layer H, o\ H,,, of the filtration of H°. Then we define
inductively a continuous chain of short exact sequences (« € wy)

B) 0 HO - HP a0,
countable, free submodules Hg C, H 8 and ordinals 8 < ' < w,

subject to various conditions. At the end we want in particular H =

UaElea

_ «
acwi

If 3 =0, then Gy = 0 and we take the zero map hg : H° = Gy — 0 with
kernel H°.

Suppose () is constructed for all 8 < a. If a is a limit, we take unions
ha = Ugca s Ho = Ugo, Hp and H* = g, H? assuming that at



212 R. GOBEL AND S. SHELAH

inductive steps sequences extend (naturally) by inclusions. Then visibly («)
holds.

We may assume that («) is known, and we want to construct (o + 1).

If « ¢ S, then we extend () trivially: Put H*™! = H* @ F, with
F, a free R-module of the same rank as the free R-module G,41/Gqs. As
Got1 = F, ® G, we may choose an isomorphism b’ : F, — F! and
extend hy to hat1 bY hay1 = ho ® B'. Clearly kerho 1 = kerh, = H°
and Imhq41 = Ga1-

If o« € S, then we must work. We have Go41/Go = (Blyy1, Y, - M € W)
from (2.3) and (2.4). Hence

(62) Ga+1 = <Ga7 Ba+17yamR Tm e w>7 a+1 @xaz

Z<7’L
with relations

(63) Yoa,m+1Pm = Yam + Z xaikim + Gam (m € w))

<n
where gom € Go. Let EQH = @Kn Zoi R be a copy of By41. Then we pose
the following additional conditions on (a + 1):

) H*"'hayr = Hayihatr = Gaq1,

Ba+1 g Ha—‘rla

HOt JHY = Gy /G,

Hot /Hg + H is free for all B < a, B ¢ S and v € wy,
Hot /Hg + H’ is Ni-free for all 8 < «, v € wy,

Hlyoy © Hopr MHO = HY, ...

We choose preimages g,,, € H, such that g,,,ha = gam and apply
Proposition 2.2 to define the extension

b
d

~— —

(a
(
(c
(
(e
(f

\/\_/

H® C Hot = (H” ® Baq1, YomB :m € W)
with relations
(64) §a7m+1pm = ?ocm + Z faik‘im + ZamSam + ?am
<n
where
a+1 @ Z; R
<n

as required in (b). Similarly, by Proposition 2.2 the map h,, extends to an
epimorphism hqy1 : HM — Goyq. It is now easy to check that (c) holds
and it is also easy to see that ker h,yq = H?. Next we extend H, C Hy 1
carefully such that (o + 1), (a), (b), (d), (e) and (f) hold.

Imhyr1 = Gag1 is a countable module of the Ni-free R-module G,
hence free and h,4q1 must split. There is a splitting map o : Go41 —
H*! such that ocha1 = idg hence H*t! = H° @ Goy10. Let mp :

a+1?



ALMOST FREE SPLITTERS 213

Hotl — HY and mp : H*! — Ga410 be the canonical projections with
7o + ™1 = idgas1. Recall that B,y; € H*H'. Choose 8 € w; large enough

such that B ¢ S, B > o/,a + 1 and (Bay1 + Ha)mo C Hp. This is easy

because w \ S is unbounded and (By41 + H, )7 is countable. Put Hy, 41 =
Hj & (Gat10) and B = (a+ 1)". Note that

Ga+1 = Ha+1ha+1 2 Ha+1ha+1 2 Ga+1‘7ha+1 = Ga-i-l

and (a) follows.

If v < (a+1), then Hyy1 + Hy = Hoyq and if v > (a+ 1), then
Hot1 + H, = H) @ Gat10 and (d) follows. We see immediately Ham C
Goy10 and Homg C HEaJrl)” hence

Ha g Haﬂ-() + Hozﬂ-l g HaJrl

and (a + 1) holds; similarly Byy1 € Hay1 for (c). From H(’a+1), C HO and
the modular law we have H, 1 N HY = Hipi1y ® (Gay1oN HY) = Hioi1y
and (f) holds.

Finally we choose H = J H h=U,equ, ha and

acwi

(6.5) 05 H - H-G—0

is established; it remains to show that (6.5) does not split. Suppose for
contradiction that o : G — H is a splitting map for h. We have N;-filtrations
H = Ua@)1 H,and G = UaEwl G- Using the above properties of the H,’s,
it follows by a back and forth argument that

E={acw :H,NnH"=H,, Goo0 C Hy}

is a cub. On the other hand S is stationary in w; and we find « € SN E.
From (6.3) and (6.4) we have

Ya,m+10Pm = YamT + Z -:Uozia—kim + Jdam0
<n
and
?a,m—&—lpm =Yam T Z Taikim + ZaSam + Jam
i<n
with gam0,Gom € Ho and Goo € Hy. Put dom = Yo — Yam0s fam =
Gom — Jam0, €ai = Tai — Taio and notice that domh = eqih = famh =0,
hence dam, €ai, fam € HC.
Subtracting the last displayed equations we get

(J) da7m+1pm = dam + Z eaikim + fam + ZaSam in HO-
i<n
Recall that fo., € Ho, N H® C H/, by (f) and modulo T' = H!, + 2, R
the equations (j) say that W = (dam,€ai : @ < n, m € w) + T/T is either
minimal non-free or 0. On the other hand H/T is X;-free, hence W = 0 and
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(doms €wiy 2a) € H!, + 2o R. Recall from (e) that H/H! is N;-free. Hence
(j) turns into

da,m—i—lpm = dam + Z eaikim + ZaSam mod H;
<n
Using N;-freeness of H° /za R these equations tell us that we must have
solutions du.,, €q; € R for

(k) da,m+1pm = dam + Z eaikim + Sam-

i<n
In Lemma 2.1 we selected particular sum,’s in R such that (k) has no solution
in R. Now we are ready to make this choice which we should have done right

at the beginning of the proof and hence derive a contradiction; we conclude
Ext(G,G) #0. =

From Theorem 6.1 we see that non-free but strongly Ni-free abelian
groups are never splitters. We find this very surprising. Particular groups
like the Griffith group G below which is a Whitehead group (Ext(G,Z) = 0)
under Martin’s axiom and —CH is not a splitter. Recall a nice and easy
construction of G which is sometimes Whitehead but always fails to be a
splitter in general.

Let P =7 = [I.ex, @Z be the cartesian product of Z. If A € R is a
limit ordinal choose an order preserving map 0y : w — A with sup(wdy) = .
Then along this ladder system we define branch elements

N
Chn = Z(’L(S)\)E

i>n

which are a “divisibility chain” of ¢y modulo @aem aZ., hence

G = < @ aZ,cyn : A€ Ry, A a limit ordinal, n € w>

aENy

is a pure subgroup of P. We see that |G| = 8; and G is Ny-free by N;-
freeness of P; see [4] (Vol. 1, p. 94, Theorem 19.2). Moreover I'g # 0
because Gg = GN[], 5 0Z (B € w1) is an Ry -filtration of G with Gx11/G
divisible for all limit ordinals A. Hence G is not free. It is easy to check that
G is Ny-separable, hence strongly N;-free; see also [3], p. 183, Theorem 1.3.

7. Splitters of type III. If G is of type I1I then we recall from Section 3
that G = UocEwl Ga, GO = 0 with (34)*(36) and Gl = Uj€w1 G()j and
{Goj : j € w1} is an Ny-filtration of pure submodules Gy; such that each
Go,j+1/Go; is minimal non-free. Here we will show:

THEOREM 7.1. Modules of type III are not splitters.
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Proof. Let G' = |J,¢,, G5 be an isomorphic copy of G taking G,
to G!

&, and choose a sequence of elements z, € G, (@ € w;) such that
Ghi1NzaR=0and G, ,/Gl | ® 2, R is Ri-free. This is possible by (III).

By a basic observation from Section 1 it is enough to show that
Ext(G1,G) # 0. Inductively we will construct a non-trivial element in
Ext(G1,G). We consider the following diagram:

0 0 — G — H° % Gp=0 — 0

I J

(5)0—>G’—>Hﬁﬁ> Gog — O

I |

W) 0 — ¢ — H X ¢ — 0

The first row is the trivial extension with G’ = H? and hgy = 0. Vertical
maps and maps between G’ and H’s are inclusions. The sequences (3) are
increasing continuous and suppose () is constructed for all 8 < «. Then

ha = U5<a hg and

0> G — UHBAGOQ—W
B<la

if o is a limit. Next we want to construct (a + 1) from («) and recall that
G’ = Go,a+1/Gon is minimal non-free generated as in (2.3), (2.4). We can
write

(71) GO,oH-l = <G0aa Ba—i—lyyamR tm e (JJ>, Ba+1 = @fnaiR
<n
with relations
(72) Yo,m+1Pm = Yam + Z xaikim + Gam (’I?’L S W), Jam € GOa'
<n
Then we define hq41 : H*™' — Go o41 — 0 by Proposition 2.2. Hence
H' = (H*® Bos1,Jpm R : m € w)
has the relations
(73) @a7m+1pm = @am + Z faikim + ZaSam + gan (m € w)v
i<n
where the s, € R will be specified later on, and g,,, € H*.

Suppose that (wq) splits and consequently o : G; — H is a splitting map
for h. Then let

dﬁm =Ypm — yﬁma €pi = Tpi0 — fﬁia fﬁm = gm0 — gﬂm'
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From splitting we get again
dgm, €pis fom € G (B E€ w1, mew, i <n).
Using G = U,ew, Go for B € wi we find a € w; such that
dgm, €piy fom € Gh,  foralli<n, m € w.
Consider a map 7 : w3 — wy taking any a € w; to
7(a) = min{f € w; : B a limit ordinal,
deams €ais fam € G, a < B, m € w, i <n}
and note that C' = {&a € wy : 7(a) = a} is a cub in w; and a subset of
E ={a € w: « a limit ordinal,
dgm,€pis fom € G, for all < a, i <n, m € w}.

Hence FE is a cub in wy. Next we apply o to (7.2) and subtract (7.3). Hence
we get a system of equations in Ht!:

(74) da,m+1pm = dam + Z eaikim + fam + ZaSam (m € w)
i<n
If « € E, then modulo H® the equations (7.4) turn into

da,m+1pm = dam + Z eaikim + ZaSam (m S W)
<n
and modulo z, R an earlier argument and R;-freeness of G’ /G, ® zo R show
that the last equation requires solutions dum,, eq; € R for

da,erlpm = dam + Z eaikim + Sam (m € w)-
i<n
By a special choice of sq,,’s in Lemma 2.1 this is now excluded, a contra-
diction. Hence (wp) has no splitting map and Theorem 7.1 follows. m

8. Appendix: splitters of type I under 2% < 281, In Section 5 we
have seen a proof that CH implies that modules of type I are never splitters.
A slight but somewhat technical modification of the proof shows that this
result can be extended to WCH, that is, 2% < 281, Due to Section 5 this
is not needed for the main result of this paper dealing with modules of
cardinality Ny but it will be interesting when passing to cardinals > N;. We
outline the main steps, their proofs are suggested by the proofs in Section 5.

THEOREM 8.1 (ZFC + 2% < 28, Modules of type I are not splitters.

STEP LEMMA 8.2. Let G = G, be a filtration of type I and let

acwr

0= K —H, G, —0
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be a short exact sequence with some z € K such that zR = R and K, K/zR
are Ny -free. Then there are two commuting diagrams (¢ = 0,1)

0o — K — H, ™~ ¢, — 0

i \ 3

0—>K€—>H55>Ga+1—>0
with vertical maps inclusions such that any third row with H. N -free,
h/
0 K. - H.—Gsg—0

and any splitting map o of h cannot have two splitting extensions o of h.:

h
O — K — H, = Go, — O
{ { {
0—>K5—>HE£>GQ+1—>O
{ { {

h/

0 — K/ — H = Gz — 0

O¢

Moreover H, = (Ho @ B%, 1,5, : m € w) and B%_ | is mapped under h,

a

mod G onto a free mazimal R-submodule of Got1/Ga (cf. (2.3)).

DEFINITION 8.3. If an extension o, as in (8.2) exists for some € € {0,1}
we say that o splits over (H., h.).

Proof of Lemma 8.2. Compare the proof of Step Lemma 5.4 but note
that at the end we must take once more differences of the elements dom, €q:
for e = 1 and € = 0 respectively. Then we are able to apply Lemma 2.1 to
get a contradiction from splitting. m

We then apply the Step Lemma and weak diamond &,,, to construct a
short exact sequence

0= H' > H- " a=o.

Let v : G — H° be a fixed isomorphism. Later we will use consequences
of &, to show that h does not split.

Proof of Theorem 8.1. If H], = Gov, then H® = {J,,,, H/, is an N;-
filtration if G = (J,¢,, Ga is the given filtration of type I.

Let T'= “1>2 be the tree of all branches 1 : a — 2 for some « € w;. We
call &« =1(n) the length of n. Branches are ordered as usual, hence n < n’ if
7’| Domn = 7. The empty set ) is the bottom element of the tree. If n € T,
then we construct triples (H,,, H", h,) of R-modules H, C H" with H, free
of countable rank and a homomorphism h, : H”7 — G subject to various
natural conditions:
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(i) H® = H°, Hy = Oand hy = 0, hence 0 — H° — Hy % Gy =0 — 0
is short exact.
(it) If < 7/, then (H,, H", h,) C (H,, H"  h,), that is, H, C H,y,
H" C H" and h,, C h,y
(iii) H? = ker hy, and Im hy) = Gy(y) = Hyhy,.
(iv) If o € wy is a limit and 7 € *2, then we take unions

(anHn’hn) = U (Hn[B»H 77[5 < U Hyg, U HY U hnfﬁ)'

B<La B<a f<a B<a
If I(n) = a we put further restrictions on those triples. In this case

G' = Go41/G, is minimal non-free, and G’ can be represented by (2.3),
(2.4). There are elements gom € Go and Zoi, Yam € Gar1 With

Ga+1 - <G0m Ba+17yamR 1m e w>7 a+1 @xaz

<n
and relations

Ya,m+1Pm = Yam + Z Zaikim + Gam-
<n
We choose an isomorphic copy EQH =P icn Ta R of By+1 and now continue
defining the tree with triples.
If ¢ € {0,1}, then we require more from (Hn/\<6>,Hn/\<E>,hnA<8>):

(S 1) @Ba—i-l C H. /\<E>
(Sil) Hy +Hp C. H" e for all ' € ©22, and B € wy.
(Siii) H), C H,NH° C H, for some o’ € [a,wy).

Note that H, N H° = ker(h, [H,). The crucial condition is

(Siv) Suppose o : Go — H, is a homomorphism extending to o :
Gat1 — H""€) . Then not both of them can be splitting maps over (H,.,
hn/\(e>) for e = O, 1.

Before we begin with the inductive construction, we observe from (iii)
that Goq1/Ga = Hyney/H, = H" ) /H" for Domn = .

Ifne“2and H=H(n) = Uy, H"®, then H' = U, Hyja € H
from (ii). (S iii) ensures H° C H’ and from (iii) we get H/Hy = H'/Hy,
hence H' = H. This will show that
(n1) Hm) = | Hypa= |J H"™  (ne2).

a<wi a<wiy
Similarly h(n) = U, <., fnta is a well defined homomorphism h(n) : H(n) —
G by (ii), it is onto with kernel HY by (iii), hence

(72) 0 H S HH"™a 0 e
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Condition (n1) provides an W;-filtration used to apply weak diamond @ for
showing that (n2) does not split for some 7.

Next we will show that the tree with triples exists. This will follow by
induction along the length a branches n € 2. The case a = 0 is (i) and
already established. Suppose the construction is completed for all § < «,
and o < wy is a limit ordinal. For n € 2 we define (H,,, H", hy) as in (iv).
It is easy to verify that all conditions hold, in particular (S iii), because
we take only countable unions. We come to the inductive step constructing
(HnA<€>,HnA<E>,hnA<E>) from (H,, H", hy) for oo = Dom .

First we apply the Step Lemma for K = H" N H° = ker hy, Hy = H",
H. = H"A<5>, h = hy, he = hyr) and note that the needed element z exists
because H7 N H® C H!, is free. We must still define Hyney 2 Hy carefully
satisfying (ii), (S 1)—(S iii) and the last equality in (iii): Write again h.
for hyney and HE for H" (&), We know that Imh, = G441 is a countable
submodule of the W;-free module G, hence free, and h. must split. There is
a splitting map ¢, : Go411 — H® such that ¢ h. = idg hence

H* = 16 (Gatrg.)
from the first part of (iii). Let 7§ : H® — H° and n{ : H® — H° be the
canonical projections, hence 7§ 4+ 7] = idg-. B

Choose 3 = (a+1)" < w; large enough such that Bo.1mo U Hymo C H,
where B, is taken from the Step Lemma. We can choose 3 because B, 1
and H, are countable. Put

Hyney = Hg @ (Gasap2),
hence by the known half of (iii),
Goy1=Hh: 2 Hn’\(e>h6 2 Gay1pehe = Gatr
and the other half of (iii) follows.

If v < 8, then Hyney + H) = Hyney and if v > B, then Hyney + HY, =
H! @ (Gaq1pe) with quotient H"A<E>/H;@(Ga+1g0€) =~ H°/H! which shows
(Sii). Trivially Hym C (Gat19e) and H,ymo C H,IB by the choice of 3, hence

H’] = I‘L7 idge C Hnﬂ‘g + Hnﬂ'l - HnA<€>
and (ii) holds. Similarly B,.; C Hyny and (S i) is shown. From Hj C H°
and the modular law we have
Hyney VH = Hi & (Gagr0e N H®) = Hjy
and (S iii) holds.

The construction of the tree with triples is complete. We are ready to

use the weak diamond @y, (S) to show that G is not a splitter.

We will use @, (S) as stated in Eklof-Mekler [3, p. 143, Lemma 1.7] and
note that G = J,,,, Gas H(N) = Uqcy, Hyta are Ry-filtrations. &, (S)

a+1?
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must tell us which n € “*2 we should pick. We define a partition P so that
for o € S a homomorphism o : G, — H, (n € *2) has value P, (o) = 0 if
and only if o does not split over (Hynrg, hyro). By the Step Lemma built
into the construction, we observe that

(a) if P(o) =1, then o cannot split over (Hpn1, hpnt).
The prediction principle gives a branch n € “12 with the @-property

(b) Ifo:G — H is any map, then S’ ={a € S : P,(c[|Gy) = n(a)} is
stationary in w;.

We pick that branch and build H = H(n) and h = h(n) suitably, hence

0 H° - H s G = 0is short exact. After the branch is fixed we let
Hme = H* hH® = h, and H,, = H,. Now we claim that the last
sequence does not split. Suppose to the contrary that ¢ : G — H is a
splitting map, hence oh = idg. Notice that the set

C={a<w :H,NH"=H., Goo C H,}

is a cub. Since S’ C w; is stationary, we find an o € S’ N C and also let
olG, = o, hence

(¢) o:Gy — Hy, C H*, P,(0) = n(a) and o is a splitting map of
ho : HY = G,,.

We also find some o < § € C. The difficulty is that Goy10 C H,y1 does
not follow, as in the case where S is not costationary. Hence we need the
stronger Step Lemma (as usual).

If n(a) = P(0) = 0, then (Hynro, hyno) is part of the construction of

0= H°—= Hyry — Gogp1 — 0

and o does not split over (Hyno, hyro), but o is a global splitting map, hence
o splits at 3 over (Hyno, hyro), a contradiction.
Necessarily n(a) = P(o) =1 and by (a), o does not split over (Hya1, hyprt),

but this time (H,1, hyri) was used in the construction of H G and a
contradiction follows. This shows that o is not a splitting map, and G is not
a splitter. m
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