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Abstract. Let R be a subring of the rationals. We want to investigate self splitting
R-modules G, that is, such that ExtR(G,G) = 0. For simplicity we will call such modules
splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper
[8]). Our investigation continues [5]. In [5] we answered an open problem by constructing
a large class of splitters. Classical splitters are free modules and torsion-free, algebraically
compact ones. In [5] we concentrated on splitters which are larger than the continuum and
such that countable submodules are not necessarily free. The “opposite” case of ℵ1-free
splitters of cardinality less than or equal to ℵ1 was singled out because of basically different
techniques. This is the target of the present paper. If the splitter is countable, then it must
be free over some subring of the rationals by Hausen [7]. In contrast to the results of [5]
and in accordance with [7] we can show that all ℵ1-free splitters of cardinality ℵ1 are free
indeed.

1. Introduction. Throughout this paper R will denote a subring of the
rationals Q and we will consider R-modules in order to find out when they
are splitters. “Splitters” were introduced in Schultz [10]. They also come
up under different names as mentioned in the abstract.

Definition 1.1. An R-module G is a splitter if and only if Ext1R(G,G)
= 0 or equivalently if Ext1Z(G,G) = 0, which is the case if and only if any
R-module sequence

0→ G
β−→ X

α−→ G→ 0

splits.

Throughout we set Ext(A,B) = Ext1R(A,B).
A short exact sequence

0→ B
β−→ C

α−→ A→ 0
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represents 0 in Ext(A,B) if and only if there is a splitting map γ : A → C
such that γα = idA. Here maps are acting on the right.

Recall an easy basic observation (see [4]):

If Ext(A,B) = 0, A′ ⊆ A and B′ ⊆ B, then Ext(A′, B/B′) = 0 as well.

The first result showing freeness of splitters is much older than the notion
of splitters and is due to Hausen [7]. It says that any countable, torsion-free
abelian group is a splitter if and only if it is free over its nucleus. The nucleus
is the largest subring R of Q which makes the abelian group canonically into
an R-module. More precisely:

Definition 1.2. The nucleus R of a torsion-free abelian group G 6= 0
is the subring R of Q generated by all 1/p (p any prime) for which G is
p-divisible, i.e. pG = G.

The fixed ring R mentioned at the beginning will be the nucleus R =
nucG of the associated abelian group G.

The following result reduces the study of splitters among abelian groups
to those which are torsion-free and reduced modules over their nuclei.

Theorem 1.3 ([10]). Let G be any abelian group and G = D ⊕ C a
decomposition of G into the maximal divisible subgroup D and a reduced
complement C. Then the following conditions are equivalent.

(i) G is a splitter.

(ii) (a) D is torsion (possibly 0) and C is a torsion-free (reduced) splitter
with pC = C for all p-primary components Dp 6= 0 of D ; or

(b) D is not torsion and C is cotorsion.

Many splitters are constructed in [5], in fact we are also able to prescribe
their endomorphism rings. This shows that uncountable splitters are not
classifiable in any reasonable way, a result very much in contrast to classical
well-known (uncountable) splitters which are the torsion-free algebraically
compact (or cotorsion) groups.

The classical splitters come up naturally among many others when con-
sidering Salce’s work [9] on cotorsion theories: A cotorsion theory is a pair
(F,C) of classes of R-modules which are maximal, closed under extensions,
the torsion-free class F is closed under subgroups, the cotorsion class C is
closed under epimorphic images and Ext(F,C) = 0 for all F ∈ F and C ∈ C.
The elements in F ∩ C are splitters and in the case of Harrison’s classical
cotorsion theory these are the torsion-free, algebraically compact groups.
For the trivial cotorsion theory these are free R-modules.

Hausen’s [7] theorem mentioned above can be slightly extended without
much effort (see [5]).
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Theorem 1.4. If R = nucG is the nucleus of the torsion-free group G
and G is a splitter of cardinality < 2ℵ0 , then G is an ℵ1-free R-module.

Recall that G is an ℵ1-free R-module if any countably generated R-
submodule is free. The algebraic key tool of this paper can be found in Sec-
tion 2. We consider torsion-free R-modules M of finite rank which are min-
imal in rank and non-free. They are (by definition) n-free-by-1 R-modules
if rkM = n + 1; the name is self explanatory: They are pure extensions
of a free R-module of rank n by an R-module of rank 1. Similar to sim-
ply presented groups, n-free-by-1 groups are easily represented by free gen-
erators and relations. Using these minimal R-modules we will show the
following

Main Theorem 1.5. Any ℵ1-free splitter of cardinality ℵ1 is free over
its nucleus.

The proof will depend on the existence of particular chains of ℵ1-free
R-module of cardinality ℵ1 which we use to divide the ℵ1-free R-modules of
cardinality ℵ1 into three types (I, II, III). This may be interesting indepen-
dently and we would like to draw attention to Section 3. In Sections 4–7
we use our knowledge about these chains to show freeness of splitters. The
proof is divided into two main cases depending on the continuum hypothesis
CH (Section 5) and its negation (Section 4). In the appendix Section 8 we
present a proof of the main result of Section 5 under the weaker set-theoretic
assumption WCH 2ℵ0 < 2ℵ1 , a weak form of CH which will be interesting
(only) for splitters of cardinality > ℵ1. The results in Section 6 and 7 on
splitters of type II and III do not use the case distinction by additional
axioms of set theory.

For general aspects of the discussed problem we also suggest to consult
the work in [1], [2], [6], [13], [11], [12].

2. Solving linear equations.Let R be a subring of Q. Then R-modules
of minimal finite rank which are not free will lead to particular infinite
systems of linear equations. Consider the Baer–Specker R-module Rω of all
R-valued functions f : ω → R on ω, also denoted by f = (fm)m∈ω.

Lemma 2.1. Let p = (pm)m∈ω, ki = (kim)m∈ω ∈ Rω (i < n) where no
pm is a unit of R. Then we can find a sequence s = (sm)m∈ω ∈ Rω such
that the following system (ŝ) of equations has no solution x = (x0, . . . , xn) ∈
Rn+1, ym ∈ R:

(ŝ) y0 = xn, ym+1pm = ym +
∑
i<n

xikim + sm (m ∈ ω).
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P r o o f. We use Cantor’s argument which shows that there are more real
numbers than rationals. First we enumerate all elements in Rn+1 as

W = W = {xm = (xm0 , . . . , x
m
n ) : m ∈ ω}

and construct s ∈ Rω inductively.

It is interesting to note that the set of bad elements

B = {s ∈ Rω : ∃x ∈ Rn+1, (ym)m∈ω ∈ Rω solving (ŝ)} ⊆ Rω

is a submodule of Rω but |B| is uncountable in many cases. Hence enumer-
ating B would not help.

Suppose s0, . . . , sm−1 ∈ R are chosen and we must find sm. We calculate
y0, . . . , ym from s0, . . . , sm−1 and y0 = xmn , x

m
1 , . . . , x

m
n−1 and equation (ŝ)

up to m − 1. The values are uniquely defined by torsion-freeness and in
particular

(2.1) z = ym +
∑
i<n

xmi kim ∈ R

is uniquely defined. Recall that pm is not a unit and either pm does not
divide z, then we set sm = 0, or we can choose some sm ∈ R \ {0} such that
pm does not divide z + sm. In any case

(2.2) ypm = z + sm has no solution in R

and sm is defined.

Suppose that (ŝ) has a solution x ∈ Rn+1. Then x = xm for some m by
our enumeration. We calculate ym+1 from (ŝ) substituting x, hence

ym+1pm = ym +
∑
i<m

xmi kim + sm = z + sm

is solvable by (2.1), which contradicts (2.2).

If G′ ⊆ G is a pure R-submodule of some R-module G which is of finite
rank, not a free R-module, and such that all pure R-submodules of G′ of
smaller rank are free, then we will say that G′ is minimal non-free. Such
modules are “simply presented” in the sense that there are xi, ym ∈ G′

(i < n, m ∈ ω) such that

(2.3) G′ = 〈B, ymR : m ∈ ω〉 with B =
⊕
i<n

xiR

and the only relations in G′ are

(2.4) ym+1pm = ym +
∑
i<n

xikim (m ∈ ω)

for some coefficients pm, kim ∈ R. The submodule B is pure in G′. If G is
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not ℵ1-free, then the existence of minimal non-free submodules is immediate
by Pontryagin’s theorem. Non-freeness of G′ implies that the Baer type of

G′/B = T ⊆ Q
is strictly greater than the type of R (see Fuchs [4, Vol. 2, pp. 107–112]).

In more detail, B is a pure submodule of G′, hence G′/B is torsion-free of
rank 1 and since G′ is not a free R-module, G′/B = T cannot be isomorphic
to R. If ϕ : G′ → Q is the canonical homomorphism taking B to 0 and y0 to
1 ∈ Q, then Imϕ ⊆ Q represents the type of 〈y0 + B〉∗ = G′/B. There are
pm ∈ N, not units in R, such that T =

⋃
m∈ω q

−1
m Z ⊆ Q and qm =

∏
i<m pi.

In order to derive the crucial equations as in the above definition we choose
preimages ym ∈ G′ of q−1m such that

y0ϕ = q0 = 1, ymϕ = q−1m (m ∈ ω).

Using qm+1 = qmpm we find elements kim ∈ R (i < n) and gm ∈ G′ such
that (2.3) and (2.4) hold. We will constantly use the representations (2.3)
and (2.4) which are basic for the following pushout.

Proposition 2.2. Let Gα ⊆ Gα+1 be a countable free resolution of G′

as in (2.3) and let the relations (2.4) be expressed in Gα+1 by

y′′m+1pm = y′′m +
∑
i<n

x′′i kim + gm

for some gm ∈ Gα; let zm (m ∈ ω) be non-trivial elements of an ℵ1-free
R-module H0 of cardinality ℵ1 and

0→ H0 → Hα
h−→ Gα → 0

be a short exact sequence. Then we can find an R-module

H ′ = 〈Hα ⊕B′, y′m : m ∈ ω〉
with B′ =

⊕
i<n x

′
iR and gmh = gm such that the only relations in H ′ are

y′m+1pm = y′m +
∑
i<n

x′ikim + zm + gm (m ∈ ω).

The map h extends to h′ by x′ih
′ = x′′i , y

′
mh
′ = y′′m such that the new diagram

with vertical maps inclusions commutes:

0 −→ H0 −→ Hα
h−→ Gα −→ 0y y y

0 −→ H0 −→ H ′
h′−→ Gα+1 −→ 0

P r o o f. Let

Fα+1 = Hα ⊕
⊕
i<n

xiR⊕
⊕
m∈ω

ymR
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and define

Nα+1 =
〈(
ym+1pm − ym −

∑
i<n

xikim − zm − gm
)
R : m ∈ ω

〉
.

Hence H ′ = Fα+1/Nα+1 and let

x′i = xi +Nα+1, y′m = ym +Nα+1, x′ = x+Nα+1.

First we see that

(a) x 7→ x′ (x ∈ Hα) defines an embedding Hα → H ′ and then we identify
Hα with its image in H ′.

It remains to show thatHα∩Nα+1 = 0 viewed in Fα+1. If x ∈ Hα∩Nα+1,
then there are km ∈ R for m ≤ l and some l ∈ ω such that

l∑
m=0

(
ym+1pm − ym −

∑
i<n

xikim − zm − gm
)
km = x ∈ Hα.

We get

x = −
l∑

m=0

(zm + gm)km,

l∑
m=0

(
ym+1pm − ym −

∑
i<n

xikim

)
km = 0.

The coefficient of yl+1 is plkl = 0, hence kl = 0 and going down we get
km = 0 for all m ≤ l, hence x = 0 and (a) holds. From Nα+1 we have the
useful system of equations in H ′:

(b) y′m+1pm = y′m +
∑
i<n

x′ikim + zm + gm with gm ∈ Hα.

In view of (a) we also have

(c) H ′ = 〈Hα ⊕B′, y′m : m ∈ ω〉 with B′ =
⊕
i<n

x′iR ⊆ H ′.

Next we claim that

(d) If h′�Hα = h, x′ih
′ = xi and y′mh

′ = ym (i < n, m ∈ ω), then
h′ : H ′ → Gα+1 is a well-defined homomorphism with

(e) kerh′ = H0, Imh′ = Gα+1.

As h′ is defined on non-free generators, we must check that the relations
between them are preserved when passing to the proposed image. The rela-
tions are given by Nα+1 or equivalently by (b). Using the definition (d) we
see that the relations (b) are mapped summand-wise under h′ as follows:
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y′m+1pm + y′m +
∑
i<n

x′ikim + zm + gm

↓ ↓ ↓ ↓ ↓
ym+1pm ? ym +

∑
i<n

xikim + 0 + gm

and inspection of (2.4) and the relations in Gα+1 shows that ? is an equality
sign. Hence h′ is well defined. Notice that Hαh

′ = Hαh = Gα, therefore h′

induces a homomorphism

H ′/Hα → Gα+1/Gα

and the last argument and gm ∈ Gα show that this is an isomorphism. Hence
when passing from h to the extended map h′ the kernel cannot grow, we
have H0 = kerh′ = kerh and Imh′ = Gα+1 is obvious, so (d) and (e) and
the proposition are shown.

3. The main reduction lemma—types I, II and III. The Chase
radical νG of a torsion-free R-module G is the characteristic submodule

νG =
⋂
{U ⊆ G : G/U is ℵ1-free}.

Since G/νG is also ℵ1-free, the Chase radical is the smallest submodule with
ℵ1-free quotient. If U is a submodule of G we write νUG = G′ for the Chase
radical of G over U which is defined by ν(G/U) = G′/U .

Given any ℵ1-free R-module G of cardinality |G| = ℵ1, we fix an ℵ1-
filtration

G =
⋃
α<ω1

G0
α

which is an ascending, continuous chain of countable, free and pure
R-submodules G0

α of G with G0
0 = 0.

We want to find a new ascending, continuous chain of pure R-submodules
Gα (not necessarily countable) such that G =

⋃
α<ω1

Gα. However, we do
require that

(3.1) G/Gα is ℵ1-free if α is not a limit ordinal.

We will use the new chain to divide the ℵ1-free R-modules of cardinality ℵ1
into three types. This distinction helps to show that ℵ1-free splitters of
cardinality ℵ1 are free.

Suppose Gβ ⊆ G is constructed for all β < α. Next we want to define Gα.
If α is a limit ordinal, then

Gα =
⋃
β<α

Gβ .
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Hence we may assume that α = β + 1 and we must define Gα = Gβ+1. In
order to ensure G =

⋃
α∈ω1

Gα we let

(3.2) Gα0 = (Gβ +G0
α)∗ ⊆ G

be the pure R-submodule generated by Gβ + G0
α. In any case we want

to ensure that (3.1) holds, hence νGα0
G ⊆ Gα. Therefore we construct an

ascending, continuous chain of pure R-submodules

(3.3) {Gαj : j < ω1} with Gα,j+1/Gαj = 0 or minimal non-free for each
0 < j < ω1

such that Gα =
⋃
j∈ω1

Gαj . Suppose that Gαi is defined for all i < j < ω1. If
j is a limit ordinal we take Gαj =

⋃
i<j Gαi, and if j = i+ 1 we distinguish

two cases:

(3.4) IfG/Gαi is ℵ1-free, thenGαj = Gαi henceGα =Gαi and |Gα/Gα−1|
= ℵ0.

Otherwise G/Gαi is not ℵ1-free, and by Pontryagin’s theorem we can find
a finite rank minimal non-free pure R-submodule M/Gαi of G/Gαi. Since
G =

⋃
i∈ω1

G0
i and ∅ 6= M \ Gαi ≤ G, there is also a least ordinal γ =

γ(M) = γ(M/Gαi) < ω1 such that

(3.5) (M \Gαi) ∩ (G0
γ+1 \G0

γ) 6= ∅.

Among the candidates M we choose one with the smallest γ(M) and take
it for M=Gα,i+1. This completes the construction of the Gαi’s. Notice that
either the construction of Gα stops as in case (3.4) or we arrive at the second
possibility:

(3.6) Gα,i+1/Gαi is minimal non-free for each i < ω1 and |Gα/Gα−1|
= ℵ1.

It remains to show that in case (3.6) the following holds:

(3.7) νGα0G = Gα or equivalently G/Gα is ℵ1-free.

Suppose that G/Gα is not ℵ1-free and let X be a non-free submodule of
minimal finite rank in G/Gα which exists by Pontryagin’s theorem. Repre-
senting X in G we have

G′′ = 〈xi, ym, Gα : i < n, m ∈ ω〉∗ with G′′/Gα = X

(see also Göbel–Shelah [5]). There are elements gm ∈ Gα (m ∈ ω) such that

ym+1pm = ym +
∑
i<n

xikim + gm

for some pm, kim ∈ R (pm not units of R). We take

G′ = 〈xi, ym, gm : i < n, m ∈ ω〉∗ ⊆ G,
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hence X = G′+Gα/Gα was our starting point. Since G′ is obviously count-
able, there is a γ∗ ∈ ω1 with G′ ⊆ G0

γ∗ . If {Gαj : j < ω1} is the chain
constructed above, we also find i ∈ ω1 with gm ∈ Gαi for all m ∈ ω. If
i ≤ j ∈ ω1, then G′+Gαj/Gαj is an epimorphic image of X, hence minimal
non-free or 0. The second case leads to the immediate contradiction:

G′ ⊆ Gαj ⊆ Gα but X 6= 0.

Hence G′+Gαj/Gαj 6=0 was a candidate for constructing Gα,j+1 for any i≤
j∈ω1. Has it been used? We must compare the γ-invariant γ(G′+Gαj/Gαj)
with the various γ(Gα,j+1/Gαj). FromG′ ⊆ G0

γ∗ we see that there is γj < γ∗

such that

(G′ +Gαj \Gαj) ∩ (G0
γj+1 \G

0
γj ) 6= ∅.

By minimality of γj =: γ(Gα,j+1/Gαj) we must have γj ≤ γj < γ∗ and

(Gα,j+1 \Gαj) ∩ (G0
γj+1 \G0

γj ) 6= ∅

and (Gαj ∩ G0
γ∗) (j ∈ ω1) is a strictly increasing chain of length ω1 of the

countable module G0
γ∗ , which is impossible. Hence G/Gα is ℵ1-free and

(3.7) is shown.
We have a useful additional property of the constructed chain which

reflects (3.7).

Corollary 3.1. If 0 6= α ∈ ω1 is not a limit ordinal , then Gα = νG0
α
G.

P r o o f. We concentrate on the case (3.6) and only note that the case
(3.4) is similar.

Recall from (3.7) that G/Gα is ℵ1-free, hence the statement of the corol-
lary is equivalent to saying that any submodule X of Gα must be Gα if only
G0
α ⊆ X with Gα/X ℵ1-free.

Let α > 0 and suppose G0
α ⊆ X ⊆ Gα and 0 6= Gα/X is ℵ1-free. First

we claim that

Gβ ⊆ X for all β < α.

If this is not the case, then let β < α be minimal with Gβ 6⊆ X. Recall that
β cannot be a limit ordinal and we can write β = γ+ 1 for some γ < β. We
have Gβ =

⋃
j∈ω1

Gβj , hence

iβ = min{j ∈ ω1 : Gβj 6⊆ X} ∈ ω1

exists. If iβ = 0, then G0
β ⊆ G0

α ⊆ X from α > β and Gβ0 6⊆ X. We

get Gβ0 = 〈Gγ , G0
β〉∗ 6⊆ X and G0

β ⊆ X requires Gγ 6⊆ X, contradicting
minimality of β. Hence iβ > 0 and iβ = j + 1. We have Gβiβ 6⊆ X and
Gβj ⊆ X from j < iβ and minimality of iβ . However Gβ,j+1/Gβj is minimal
non-free, and 0 6= Gβ,j+1 + X/X ⊆ G/X is an epimorphic image, hence
non-free as well. Therefore G/X is not ℵ1-free, a contradiction showing our
first claim.
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From the first claim we derive
⋃
β<αGβ ⊆ X. Now there must be a

minimal

iα = min{j : Gαj 6⊆ X} ∈ ω1,

which cannot be a limit ordinal, and again iα > 0, hence iα = j+1. We find
Gαj ⊆ X,Gα,j+1 6⊆ X and Gα/X cannot be ℵ1-free, a final contradiction.

We now distinguish cases for G depending on the existence of particular
filtrations. Let G =

⋃
α<ω1

Gα be the filtration constructed from the ℵ1-

filtration G =
⋃
α<ω1

G0
α.

If there is an ordinal β < ω1 (which we assume to be minimal) such that
G = Gβ , then let C = G0

β , which is a countable, free and pure R-submodule
of G. From Corollary 3.1 we see that νCG = G. Hence, beginning with
C we get a new ℵ1-filtration (we use the same notation) {Gα : α ∈ ω1} of
countable, pure and free R-submodules of G such that G0 = C and each
Gα+1/Gα (α > 0) is minimal non-free. In this case we say that G and the
filtration are of type I.

In the opposite case the chain only terminates at the limit ordinal ω1,
i.e. Gβ 6= G for all β < ω1. We have a proper filtration G =

⋃
α<ω1

Gα such
that Corollary 3.1 holds. If for each α ∈ ω1 for some i < ω1 case (3.4) occurs,
then the constructed chain {Gα : α ∈ ω1} is an ℵ1-filtration of countable,
pure and free R-submodules with the properties of Corollary 3.1 and (3.1).
We say that the chain and G are of type II.

If G is not of type I or of type II we say that G is of type III . In this case,
there is a first α ∈ ω1 such that Gα+1/Gα is uncountable. We may assume
that α = 0. With the new enumeration we see that the following holds for
type III:

(III) G =
⋃
α<ω1

Gα, G0 = 0, |G1| = ℵ1 and (3.1) holds, G1 =
⋃
j∈ω1

G0j

is an ℵ1-filtration of pure submodules of G1 with each G0,j+1/G0j

minimal non-free.

We have

Reduction Lemma 3.2. Any ℵ1-free module G of cardinality ℵ1 is either
of type I , II or III.

4. Splitters of cardinality ℵ1 < 2ℵ0 are free. In this section we do
not need the classification of ℵ1-free R-modules of cardinality ℵ1 given in
Lemma 3.2. Moreover, we note that ℵ1-freeness of splitters of cardinality
ℵ1 < 2ℵ0 follows by Theorem 1.4. In fact we will present a uniform proof
showing freeness of splitters up to cardinality ℵ1 < 2ℵ0 , which extends
Hausen’s result [7] concerning countable splitters. We begin with a trivial
observation:



ALMOST FREE SPLITTERS 203

Proposition 4.1. Let G =
⋃
α∈ω1

Gα be an ℵ1-filtration of pure and free
R-submodules Gα of G. Then nucGα = R for all α ∈ ω1.

P r o o f. Choose any basic element b ∈ Gα for some α ∈ ω1. If r ∈ Q
divides b in G, then r divides b in Gα by purity, hence r ∈ R from bR⊕C =
Gα and nucG = R.

Corollary 4.2 (ℵ1 < 2ℵ0). If G is a splitter of cardinality ≤ ℵ1 and
nucG = R, then there is an ℵ1-filtration G =

⋃
α∈ω1

Gα of pure and free
R-submodules Gα such that nucGα = R for all α ∈ ω1.

P r o o f. From ℵ1<2ℵ0 and Göbel–Shelah [5] (see Theorem 1.4) it follows
that G is an ℵ1-free R-module and G has an ℵ1-filtration as in the hypothesis
of Proposition 4.1.

Definition 4.3. Let G be a torsion-free abelian group with nucG = R
and X an R-submodule of G. Then X is contra-Whitehead in G if the
following holds. There are zm ∈ G and pm, kim ∈ R (i < n, m ∈ ω) such
that the system of equations

Ym+1pm ≡ Ym +
∑
i<n

Xikim + zm mod X (m ∈ ω)

has no solutions ym, ai ∈ G (for Ym, Xi respectively) with
⊕

i<n(ai +X)R
free of rank n and pure in G/X. Otherwise we call X pro-Whitehead in G.

For X ⊆ G as in the definition let W be the set of all finite sequences
a = (a0, a1, . . . , an) such that

(i) ai ∈ G (i ≤ n),
(ii)

⊕
i<n(ai +X)R is pure in G/X,

(iii) 〈(ai +X)R : i ≤ n〉∗ is not a free R-module in G/X.

In particular G′a =
⊕

i<n aiR ⊕X is a pure submodule of Ga = 〈X, aiR :
i ≤ n〉∗ and of G, and the module Ga/X is an n-free-by-1 R-module. From
(2.4) we find pam ∈ N not units in R and elements kaim ∈ R (i < n),
gam ∈ Ga such that

(4.1) ya,m+1pam = yam +
∑
i<n

aikaim + gam (m ∈ ω).

The equations (4.1) are the basic systems of equations to decide whether
G is a splitter or not. We will also consider an “inhomogeneous counterpart”
of (4.1) and choose a sequence z = (zm : m ∈ ω) of elements zm ∈ G. The
z-inhomogeneous counterpart of (4.1) is the system of equations

(4.2) Ym+1pam ≡ Ym +
∑
i<n

Xikaim + zm mod X (m ∈ ω).

According to the above definition we also say that a ∈W is contra-White-
head if (4.2) has no solutions ym (m ∈ ω) in G (hence in Ga) for some z and
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Xi = ai. Otherwise we say that a is pro-Whitehead. If G =
⋃
α∈ω1

Gα is
an ℵ1-filtration of G, then we define Wα for X = Gα and let S = {α ∈ ω1 :
there exists a ∈Wα contra-Whitehead}.
Proposition 4.4. If G =

⋃
α∈ω1

Gα and S as above is stationary in ω1,
then G is not a splitter.

Before proving this proposition we simplify our notation. If α ∈ S we
choose zαm ∈ G, a = (aα0 , a

α
1 , . . . , a

α
n), pam = pαm, gam = gαm, kaim =

kαim, yam = yαm so that equations (4.1) and (4.2) become, for X = Gα,

(4.3) yαm+1pαm = yαm +
∑
i<n

aαi kαim + gαm (m ∈ ω)

with zα-inhomogeneous counterpart

(4.4) Ym+1pαm ≡ Ym +
∑
i<n

Xikαim + zαm mod Gα (m ∈ ω).

Hence (4.3) is a system of equations with solutions yαm, a
α
i , g

α
m in Gα+1,

while (4.4) with variables Ym, Xi (m ∈ ω, i < n) has no solutions in G,
as discussed in Definition 4.3 for X = Gα. The set of limit ordinals is a
cub, hence we may restrict S to this cub and assume that S consists of limit
ordinals only. If α ∈ S we may also assume that

Gα+1 = 〈Gα, aαi R : i < n〉∗ = 〈Gα, aαi R, yαmR : m ∈ ω1, i < n〉.
Proof of Proposition 4.4. We will use the last remarks to construct h :

H → G such that

(∗) 0→ H0 → H
h−→ G→ 0

does not split, hence Ext(G,H0) 6= 0. We will have H0 ∼= G, hence
Ext(G,G)
6= 0 and G is not a splitter.

Choose an isomorphism γ : G → H0 which carries the ℵ1-filtration
{Gα : α ∈ ω1} to H0 =

⋃
α∈ω1

H ′α and zαm to z′αm. Inductively we want to
define short exact sequences

(β) 0→ H0 id−→ Hβ
hβ−→ Gβ → 0 (β < α)

which are increasing continuously. Let

(0) 0→ H0 id−→ H0
h0−→ 0→ 0

be defined for H0 = H0 with h0 the zero map and suppose (β) is defined for
all β < α < ω1 with α a limit ordinal. We take unions and (α) is defined.
If α ∈ ω1 \ S, we extend (α) trivially to get (α + 1) and if α ∈ S we must
work for (α+ 1): We apply Proposition 2.2 to find Hα ⊆ Hα+1 with

Hα+1 = 〈Hα, eαm, xαm : m ∈ ω, i < n〉
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and relations

(4.5) eα,m+1pαm = eαm +
∑
i<n

xαikαim + yαm + z′αm (m ∈ ω)

with yαmhα = gαm ∈ Gα. We want to extend the homomorphism hα : Hα →
Gα to hα+1 : Hα+1 → Gα+1, and set eαmhα+1 = yαm and xαihα+1 = aαi . By
Proposition 2.2 the map hα+1 is a well defined homomorphism. It is clearly
surjective with kernel H0. Hence (α + 1) is well defined for all α ∈ ω1 and
h =

⋃
α∈ω1

hα shows (∗).
Finally we must show that (∗) does not split. Suppose that σ : G → H

is a splitting map for (∗). Hence σh= idG and H =H0 ⊕ Imσ and gαm =
yαmhα = yαmh, so (yαm−gαmσ)h = 0 implies yαm−gαmσ ∈ H0 for all α ∈ S.
The set

C = {α ∈ ω1 : α a limit ordinal, yαm − gαe σ ∈ H ′α}
—by a back-and-forth argument—is a cub and hence S ∩ C is stationary
in ω1. We can find α ∈ C ∩ S and consider the associated equations. In G
we have (4.3):

yαm+1pαm = yαm +
∑
i<n

aαi kαim + gαm

and σ moves these equations to H:

(yαm+1σ)pαm = (yαmσ) +
∑
i<n

(aαi σ)kαim + (gαmσ),

which we subtract from (4.5). Hence

(eαm+1 − yαm+1σ)pαm = (eαm − yαmσ) +
∑
i<n

(xαi − aαi σ)kαim

+ (yαm − gαm σ) + z′αm.

Put

fαm = eαm − gαmσ, vαi = xαi − aαi σ, wαm = yαm − gαmσ
and note that

fαmh = eαmh− gαmσh = gαm − gαm = 0,

hence fαm ∈ kerh = H0. Similarly wαm, vαm ∈ H0. The last equation turns
into

fα,m+1pαm = fαm +
∑
i<n

vαimkαim + wαm + z′αm (m ∈ ω),

which, as just seen, is a system of equations in H0. From α ∈ C we have
wαm ∈ H ′α. The isomorphism γ−1 moves the last equation back into G and
wαmγ

−1 ∈ Gα. Using

f ′αm = fαmγ
−1, w′αm = wαmγ

−1, v′αi = vαiγ
−1
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we derive

f ′α,m+1pαm = f ′αm +
∑
i<n

v′αikαim + w′αm + zmα (m ∈ ω)

with w′αm ∈ Gα and zmα as in (4.4), which is impossible if α ∈ S is contra-
Whitehead, where we have chosen zmα suitably.

Theorem 4.5. Let G be a splitter of cardinality < 2ℵ0 with nucG = R.
If X is a pure, countable R-submodule of G which is pro-Whitehead in G,
then G/X is an ℵ1-free R-module.

P r o o f. First we assume that nuc(G/X) = R and suppose for contra-
diction that G/X is not an ℵ1-free R-module. By Pontryagin’s theorem we
can find an R-submodule Y ⊆ G/X of finite rank which is not free. We may
assume that Y is of minimal rank. Hence

Y = 〈B, ymR : m ∈ ω〉, B =
⊕
i<n

xiR

with the only relations

ym+1pm = ym +
∑
i<n

xikim (m ∈ ω)

as in Section 2 such that no pm ∈ R is a unit of R for m ∈ ω. Choose
xi ∈ G such that xi + X = xi for each i < n. We can also choose a
sequence of elements zm ∈ G such that zm + X is not divisible by pm−1
from nuc(G/X) = R (m ∈ ω). If η ∈ ω2, then let

zη = 〈η(e)ze : e ∈ ω〉 = (zηe ).

Recall that X is pro-Whitehead in G, hence the system of equations

(η) yηm+1pm ≡ yηm +
∑
i<n

xki kim + zηm mod X (m ∈ ω)

has solutions xηi , y
η
m ∈ G for each η ∈ ω2. Note that

|{〈xηi : i < n〉∧〈yη0 〉 : η ∈ ω2}| ≤ |G| < 2ℵ0 .

We can find η 6= ν ∈ ω2 such that xηi = xνi for all i < n and yη0 = yν0 . From
η 6= ν we find a branching point j ∈ ω such that η(j) 6= ν(j) but η�j = ν�j.
We may assume η(j) = 1 and ν(j) = 0 and put wm = yηm−yνm. Subtracting
the equations (ν) from (η) we infer from xηi − xνi = 0 that

wm+1pm = wm + (zηm − zνm) mod X

and w0 = yη0 − yν0 = 0 as well. For m ≤ j we have zηm − zνm = 0 and
zηj − zνj = zj , hence wm = 0 for m < j by torsion-freeness and

wjpj−1 = zj mod X,

which contradicts our choice of zm’s and pm’s.
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If nuc(G/X) = Q, then G/X is divisible, hence X is dense and pure in G,

we have X ⊆∗ G ⊆∗ X̂, where X̂ is the Z-adic completion of X, and X is a
free R-module of countable rank. Hence G/X ⊆∗ X̂/X ∼=

⊕
2ℵ0 Q and there

are 2ℵ0 independent elements in X̂/X. These independent elements can be
expressed as unique solutions of certain systems of equations—rewrite the Z-
adic limits accordingly. The equations must be solvable by pro-Whitehead.
Hence |G| = |X̂| = 2ℵ0 > ℵ1, which is a contradiction.

So we find pm ∈ R and zm ∈ G such that pm−1 does not divide zm +X
in G for all m ∈ ω. The above argument applies again for n = 0 and leads
to a contradiction.

Corollary 4.6. Any splitter of cardinality at most ℵ1 < 2ℵ0 is free over
its nucleus.

P r o o f. Let G =
⋃
α∈ω1

Gα be an ℵ1-filtration of the splitter G. By
Corollary 4.2 we may assume that each Gα is a pure and free R-submodule
of G with R = nucG. If S denotes the set

{α ∈ ω1 : Gα is contra-Whitehead in G},
then S is not stationary in ω1 by Proposition 4.4. We may assume that all
Gα are pro-Whitehead in G and each Gα+1/Gα is countable, hence free by
Theorem 4.5. We see that G must be free as well.

5. Splitters of type I under CH. In view of Section 4 we may assume
CH to derive a theorem in ZFC showing freeness for ℵ1-free splitters of
cardinality ℵ1 of type I. The advantage of the set-theoretical assumption
is—compared with the proof based on the weak continuum hypothesis WCH
in Section 8—that the proof given here is by no means technical. Recall that
G is of type I if G =

⋃
α∈ω1

Gα for some ℵ1-filtration {Gα : α ∈ ω1} of pure
submodules Gα such that each Gα+1/Gα (α > 0) is a minimal non-free
R-module. In this section we want to show the following

Proposition 5.1 (ZFC + CH). Modules of type I are not splitters.

Combining Proposition 5.1 and Corollary 4.6 we can remove CH and
have the immediate consequence which holds in ZFC.

Corollary 5.2. Any ℵ1-free splitter of type I (and cardinality ℵ1) is
free over its nucleus.

The proof of Proposition 5.1 is based on an observation strongly related
to type I concerning splitting maps. Then we want to prove a step lemma
for applications of CH. Finally we use CH to show Ext(G,G) 6= 0 in Theo-
rem 5.1. In Section 1 we noticed that if

0→ B
β−→ C

α−→ A→ 0
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is a short exact sequence, hence representing an element in Ext(A,B), then
this element is 0 if and only if there is a splitting map γ : A→ C such that
γα = idA. This simple fact is the key for the next two results.

Observation 5.3. Let G =
⋃
α∈ω1

Gα be a filtration of type I. For
α ∈ ω1, let

(α) 0→ H0 → Hα → Gα → 0

be a continuous, increasing chain of short exact sequences with union

(ω1) 0→ H0 → H → G→ 0

and let H0 ∼= G be ℵ1-free. Then any splitting map of (α) for α = 1 has at
most one extension to a splitting map of (ω1).

P r o o f. We may assume that the splitting map σ : G1 → H1 of (1) has
two extensions σ, σ′ : G→ H which split. Since ω1 is a limit ordinal, there is
some β < ω1 minimal with (σ−σ′)�Gβ 6= 0. Clearly β is not a limit ordinal
and σ − σ′ induces a non-trivial map δ : Gβ/Gβ−1 → Hβ . The domain of
this map is minimal non-free, while its range is ℵ1-free, hence δ must be 0,
a contradiction.

Step Lemma 5.4. Let G =
⋃
α∈ω1

Gα be a filtration of type I and let

0→ H0 → Hα
h−→ Gα → 0

be a short exact sequence with H0 ∼= G. If σ : Gα → Hα is a splitting map,
then there is an extension of this sequence such that σ does not extend to a
splitting map σ′ of the new short exact sequence:

0 −→ H0 −→ Hα

h

�
σ

Gα −→ 0y y y
0 −→ H0 −→ H ′

h′−→8
σ′

Gα+1 −→ 0

Moreover , the vertical maps in the diagram are inclusions and if Gα+1/Gα
is n-free-by-1 , then B′α+1 is a free R-module of rank n and

H ′ = 〈Hα ⊕B′α+1, y
′′
αm : m ∈ ω〉

and B′α+1 is mapped under h′ mod Gα onto a free maximal pure R-sub-
module of Gα+1/Gα.

P r o o f. We will use special elements sm∈R (m∈ω) to kill extensions. It
will help the reader to pose precise conditions on the choice of the sm’s only
when needed, which will be at the end of the proof. Readers familiar with
such proofs will know that we are working to produce a p-adic catastrophe.
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First we use the fact that G′ = Gα+1/Gα is minimal non-free, say n-
free-by-1. By (2.3) and (2.4) we have

G′ =
〈⊕
i<n

xiR, ymR : m ∈ ω
〉

with the only relations

ym+1pm = ym +
∑
i<n

xikim (m ∈ ω)

and coefficients pm, kim ∈ R. By the last equations we can find gαm ∈ Gα
and xαi, yαm ∈ Gα+1 such that

(∗) Gα+1 = 〈Gα, xαiR, yαmR : i < n,m ∈ ω〉 with the relations

yα,m+1pm = yαm +
∑
i<n

xαikim + gαm (m ∈ ω).

The action of σ is known to us on Gα, hence we can choose a pure element
0 6= z ∈ H0 and let zm = zsm. Then H0/zR is ℵ1-free by purity of z in
an ℵ1-free R-module. We also choose preimages gαm = gαmσ ∈ Hα, hence
gαmh = gαm. We are now in a position to apply Proposition 2.2. Let

H ′ = 〈Hα ⊕B′α+1, y
′′
αm : m ∈ ω〉 with B′α+1 =

⊕
i<n

x′′αiR ⊆ H ′

be the extension given by the proposition with the useful relations

(5.1) y′′α,m+1pm = y′′αm +
∑
i<n

x′′αikim + zsm + gαmσ (m ∈ ω)

and an extended homomorphism h′ : H ′ → Gα+1 with

h′�Hα = h, x′′αih
′ = xαi, y′′αmh

′ = yαm (i < n, m ∈ ω)

such that kerh′ = H0 and Imh′ = Gα+1. It remains to show the non-
splitting property of the lemma.

Suppose that σ′ : Gα+1 → H ′ is an extension of σ : Gα → H such that
σ′h′ = idGα+1

. Now we want to derive a contradiction by choosing the sm’s
suitably (independent of σ′ !). We apply σ′ to (∗) and get the equations
in H ′:

(∗σ′) yα,m+1σ
′pm = yαmσ

′ +
∑
i<n

xαiσ
′kim + gαmσ

′.

If dαm = y′′αm − yαmσ′ and eαi = x′′αi − xαiσ′ then dαm ∈ H0 since

dαmh
′ = (y′′αm − yαmσ′)h′ = y′′αmh

′ − yαmσ′h′ = yαm − yαm = 0

and kerh′ = H0. Similarly we argue with eαi and get dαm, eαi ∈ H0.
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Subtracting (∗σ′) from (5.1) now leads to a system of equations in H0:

dα,m+1pm = dαm +
∑
i<n

eαikim + zsm.

We consider the submodule

W = 〈dαm + zR, eαi + zR : i < n, m ∈ ω〉R ⊆ H0/zR.

The last displayed equations tell us that W is an epimorphic image of a
minimal non-free R-module, hence 0 or non-free of finite rank. On the other
hand H0/zR is ℵ1-free as noted above, hence W = 0 or equivalently

〈dαm, eαi : m ∈ ω, i < n〉R ⊆ zR ∼= R.

The original equations

(5.2) dα,m+1pm = dαm +
∑
i<n

eαikim + sm

still hold, but this time require solutions dαm, eαi ∈ R. We get to an end:
just choose rational numbers sm ∈ R such that (5.2) has no solutions. The
existence of such sm’s follows from Lemma 2.1. Finally note that dealing
with (5.2) is independent of the particular choices of the extensions of σ as
required in the lemma.

Proof of Proposition 5.1. Let H0 ∼= G=
⋃
α∈ω1

Gα be a module of type I.

We must show that Ext(G,H0) 6= 0 and need a non-splitting short exact
sequence

(5.3) 0→ H0 → H
h−→ G→ 0,

which we construct inductively as an ascending, continuous chain of short
exact sequences

0→ H0 → Hα
hα−→ Gα → 0

with union (5.3). Let

0→ H0 → H1
h1−→ G1 → 0

be the first step with G1 a free R-module of countable rank. By Observa-
tion 5.3 and CH we can enumerate all possible splitting maps σ : G→ H of
extensions h as in (5.3) of all h1’s by ω1, and let {σα : G→ H : α ∈ ω1} be
such a list. Using Step Lemma 5.4 and the uniqueness in Observation 5.3
we can discard any σα at stage α when constructing

0→ H0 → Hα+1

hα+1

−−→ Gα+1 → 0.

The resulting extension (5.3) cannot split.
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6. Splitters of type II. An R-module G is of type II if G has an ℵ1-
filtration G =

⋃
α∈ω1

Gα of pure submodules Gα such that G/Gα is ℵ1-free
for all non-limit ordinals α ∈ ω1 (see Section 3). In this section we want to
show our second main

Theorem 6.1. If G is of type II , then G is a splitter if and only if G is
free over its nucleus R.

Remark. Theorem 6.1 includes the statement that strongly ℵ1-free R-
modules are never splitters, except if trivially the module is free. This was
very surprising to us.

P r o o f (of Theorem 6.1). If S = {α ∈ ω1 : G/Gα is not ℵ1-free}, then
S is a set of limit ordinals by (3.1), and if α ∈ S we may also assume that
Gα+1/Gα is minimal non-free (compare §3).

We get a Γ -invariant Γ (G) defined by S modulo the ideal of thin sets
(see e.g. [3]). If Γ (G) = 0, then we find a cub C ⊆ ω1 with C ∩ S = ∅
and G =

⋃
α∈C Gα. Let α0 = minC. Then G = Gα0

⊕ F for some free
R-module F , and Gα0

is a countable submodule of G which must be free
over R by Hausen’s [7] result (see also [5]). Hence G is free. Note that the
hypothesis of G being ℵ1-free is not used in this case! If Γ (G) 6= 0 we want
to show that Ext(G,G) 6= 0. Theorem 6.1 can be rephrased as

(6.1) If G is of type II , then G is a splitter if and only if Γ (G) = 0.

Now assume that S is stationary in ω1. We want to construct some

H
h−→ G → 0 with kerh = H0, G isomorphic to H0 by γ, which does not

split. If Gαγ = H ′α (α ∈ ω1), then

H0 =
⋃
α∈ω1

H ′α

is a (canonical) ℵ1-filtration of H0 copied from G. First we pick elements
zα ∈ H0 such that zαR ∼= R and H0/zαR is ℵ1-free, e.g. take any basis
element from a layer H ′α+2 \H ′α+1 of the filtration of H0. Then we define
inductively a continuous chain of short exact sequences (α ∈ ω1)

(β) 0→ H0 → Hβ hβ−→ Gβ → 0,

countable, free submodules Hβ ⊆∗ Hβ , and ordinals β < β′ ≤ ω1

subject to various conditions. At the end we want in particular H =⋃
α∈ω1

Hα

=
⋃
α∈ω1

Hα.

If β = 0, then G0 = 0 and we take the zero map h0 : H0 → G0 → 0 with
kernel H0.

Suppose (β) is constructed for all β < α. If α is a limit, we take unions
hα =

⋃
β<α hβ , Hα =

⋃
β<αHβ and Hα =

⋃
β<αH

β , assuming that at



212 R. GÖBEL AND S. SHELAH

inductive steps sequences extend (naturally) by inclusions. Then visibly (α)
holds.

We may assume that (α) is known, and we want to construct (α+ 1).
If α 6∈ S, then we extend (α) trivially: Put Hα+1 = Hα ⊕ Fα with

Fα a free R-module of the same rank as the free R-module Gα+1/Gα. As
Gα+1 = F ′α ⊕ Gα, we may choose an isomorphism h′ : Fα → F ′α and
extend hα to hα+1 by hα+1 = hα ⊕ h′. Clearly kerhα+1 = kerhα = H0

and Imhα+1 = Gα+1.
If α ∈ S, then we must work. We have Gα+1/Gα = 〈B′α+1, y

′
m : m ∈ ω〉

from (2.3) and (2.4). Hence

(6.2) Gα+1 = 〈Gα, Bα+1, yαmR : m ∈ ω〉, Bα+1 =
⊕
i<n

xαiR

with relations

(6.3) yα,m+1pm = yαm +
∑
i<n

xαikim + gαm (m ∈ ω),

where gαm ∈ Gα. Let Bα+1 =
⊕

i<n xαiR be a copy of Bα+1. Then we pose
the following additional conditions on (α+ 1):

(a) Hα+1hα+1 = Hα+1hα+1 = Gα+1,
(b) Bα+1 ⊆ Hα+1,
(c) Hα+1/Hα ∼= Gα+1/Gα,
(d) Hα+1/Hβ +H ′γ is free for all β ≤ α, β 6∈ S and γ ∈ ω1,
(e) Hα+1/Hβ +H ′γ is ℵ1-free for all β ≤ α, γ ∈ ω1,
(f) H ′α+1 ⊆ Hα+1 ∩H0 = H ′(α+1)′ .

We choose preimages gαm ∈ Hα such that gαmhα = gαm and apply
Proposition 2.2 to define the extension

Hα ⊆ Hα+1 = 〈Hα ⊕Bα+1, yαmR : m ∈ ω〉
with relations

(6.4) yα,m+1pm = yαm +
∑
i<n

xαikim + zαmsαm + gαm

where

Bα+1
∼=
⊕
i<n

x′iR

as required in (b). Similarly, by Proposition 2.2 the map hα extends to an
epimorphism hα+1 : Hα+1 → Gα+1. It is now easy to check that (c) holds
and it is also easy to see that kerhα+1 = H0. Next we extend Hα ⊂ Hα+1

carefully such that (α+ 1), (a), (b), (d), (e) and (f) hold.
Imhα+1 = Gα+1 is a countable module of the ℵ1-free R-module G,

hence free and hα+1 must split. There is a splitting map σ : Gα+1 →
Hα+1 such that σhα+1 = idGα+1 , hence Hα+1 = H0 ⊕ Gα+1σ. Let π0 :
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Hα+1 → H0 and π1 : Hα+1 → Gα+1σ be the canonical projections with
π0 + π1 = idHα+1 . Recall that Bα+1 ⊆ Hα+1. Choose β ∈ ω1 large enough
such that β 6∈ S, β ≥ α′, α + 1 and (Bα+1 + Hα)π0 ⊆ H ′β . This is easy

because ω1 \S is unbounded and (Bα+1 +Hα)π0 is countable. Put Hα+1 =
H ′β ⊕ (Gα+1σ) and β = (α+ 1)′. Note that

Gα+1 = Hα+1hα+1 ⊇ Hα+1hα+1 ⊇ Gα+1σhα+1 = Gα+1

and (a) follows.
If γ ≤ (α + 1)′, then Hα+1 + Hγ = Hα+1 and if γ ≥ (α + 1)′, then

Hα+1 + H ′γ = H ′γ ⊕ Gα+1σ and (d) follows. We see immediately Hαπ1 ⊆
Gα+1σ and Hαπ0 ⊆ H ′(α+1)′ , hence

Hα ⊆ Hαπ0 +Hαπ1 ⊆ Hα+1

and (α+ 1) holds; similarly Bα+1 ⊆ Hα+1 for (c). From H ′(α+1)′ ⊆ H
0 and

the modular law we have Hα+1 ∩H0 = H ′(α+1)′ ⊕ (Gα+1σ ∩H0) = H ′(α+1)′

and (f) holds.
Finally we choose H =

⋃
α∈ω1

Hα, h =
⋃
α∈ω1

hα and

(6.5) 0→ H0 → H
h−→ G→ 0

is established; it remains to show that (6.5) does not split. Suppose for
contradiction that σ : G→ H is a splitting map for h. We have ℵ1-filtrations
H =

⋃
α∈ω1

Hα and G =
⋃
α∈ω1

Gα. Using the above properties of the Hα’s,
it follows by a back and forth argument that

E = {α ∈ ω1 : Hα ∩H0 = H ′α, Gασ ⊆ Hα}
is a cub. On the other hand S is stationary in ω1 and we find α ∈ S ∩ E.
From (6.3) and (6.4) we have

yα,m+1σpm = yαmσ +
∑
i<n

xαiσkim + gαmσ

and

yα,m+1pm = yαm +
∑
i<n

xαikim + zαsαm + gαm

with gαmσ, gαm ∈ Hα and Gασ ⊆ Hα. Put dαm = yαm − yαmσ, fαm =
gαm − gαmσ, eαi = xαi − xαiσ and notice that dαmh = eαih = fαmh = 0,
hence dαm, eαi, fαm ∈ H0.

Subtracting the last displayed equations we get

(j) dα,m+1pm = dαm +
∑
i<n

eαikim + fαm + zαsαm in H0.

Recall that fαm ∈ Hα ∩H0 ⊆ H ′α′ by (f) and modulo T = H ′α′ + zαR
the equations (j) say that W = 〈dαm, eαi : i < n, m ∈ ω〉 + T/T is either
minimal non-free or 0. On the other hand H0/T is ℵ1-free, hence W = 0 and
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〈dαm, eαi, zα〉 ⊆ H ′α + zαR. Recall from (e) that H0/H ′α is ℵ1-free. Hence
(j) turns into

dα,m+1pm ≡ dαm +
∑
i<n

eαikim + zαsαm mod H ′α.

Using ℵ1-freeness of H0/zαR these equations tell us that we must have
solutions dαm, eαi ∈ R for

(k) dα,m+1pm = dαm +
∑
i<n

eαikim + sαm.

In Lemma 2.1 we selected particular sαm’s in R such that (k) has no solution
in R. Now we are ready to make this choice which we should have done right
at the beginning of the proof and hence derive a contradiction; we conclude
Ext(G,G) 6= 0.

From Theorem 6.1 we see that non-free but strongly ℵ1-free abelian
groups are never splitters. We find this very surprising. Particular groups
like the Griffith group G below which is a Whitehead group (Ext(G,Z) = 0)
under Martin’s axiom and ¬CH is not a splitter. Recall a nice and easy
construction of G which is sometimes Whitehead but always fails to be a
splitter in general.

Let P = Zℵ1 =
∏
α∈ℵ1 αZ be the cartesian product of Z. If λ ∈ ℵ1 is a

limit ordinal choose an order preserving map δλ : ω → λ with sup(ωδλ) = λ.
Then along this ladder system we define branch elements

cλn =
∑
i≥n

(iδλ)
i!

n!

which are a “divisibility chain” of cλ0 modulo
⊕

α∈ℵ1 αZ, hence

G =
〈 ⊕
α∈ℵ1

αZ, cλn : λ ∈ ℵ1, λ a limit ordinal, n ∈ ω
〉

is a pure subgroup of P . We see that |G| = ℵ1 and G is ℵ1-free by ℵ1-
freeness of P ; see [4] (Vol. 1, p. 94, Theorem 19.2). Moreover ΓG 6= 0
because Gβ = G∩

∏
α<β αZ (β ∈ ω1) is an ℵ1-filtration of G with Gλ+1/Gλ

divisible for all limit ordinals λ. Hence G is not free. It is easy to check that
G is ℵ1-separable, hence strongly ℵ1-free; see also [3], p. 183, Theorem 1.3.

7. Splitters of type III. If G is of type III then we recall from Section 3
that G =

⋃
α∈ω1

Gα, G0 = 0 with (3.4)–(3.6) and G1 =
⋃
j∈ω1

G0j and
{G0j : j ∈ ω1} is an ℵ1-filtration of pure submodules G0j such that each
G0,j+1/G0j is minimal non-free. Here we will show:

Theorem 7.1. Modules of type III are not splitters.
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P r o o f. Let G′ =
⋃
α∈ω1

G′α be an isomorphic copy of G taking Gα
to G′α, and choose a sequence of elements zα ∈ G′α+2 (α ∈ ω1) such that
G′α+1 ∩ zαR = 0 and G′α+2/G

′
α+1⊕ zαR is ℵ1-free. This is possible by (III).

By a basic observation from Section 1 it is enough to show that
Ext(G1, G) 6= 0. Inductively we will construct a non-trivial element in
Ext(G1, G). We consider the following diagram:

(0) 0 −→ G′ −→ H0 h0−→ G00 = 0 −→ 0∥∥∥ y y
(β) 0 −→ G′ −→ Hβ hβ−→ G0β −→ 0∥∥∥ y y
(ω1) 0 −→ G′ −→ H

h−→ G1 −→ 0

The first row is the trivial extension with G′ = H0 and h0 = 0. Vertical
maps and maps between G′ and H’s are inclusions. The sequences (β) are
increasing continuous and suppose (β) is constructed for all β < α. Then
hα =

⋃
β<α hβ and

0→ G′ →
⋃
β<α

Hβ hα−→ G0α → 0

if α is a limit. Next we want to construct (α + 1) from (α) and recall that
G′ = G0,α+1/G0α is minimal non-free generated as in (2.3), (2.4). We can
write

(7.1) G0,α+1 = 〈G0α, Bα+1, yαmR : m ∈ ω〉, Bα+1 =
⊕
i<n

xαiR

with relations

(7.2) yα,m+1pm = yαm +
∑
i<n

xαikim + gαm (m ∈ ω), gαm ∈ G0α.

Then we define hα+1 : Hα+1 → G0,α+1 → 0 by Proposition 2.2. Hence

Hα+1 = 〈Hα ⊕Bα+1, yαmR : m ∈ ω〉

has the relations

(7.3) yα,m+1pm = yαm +
∑
i<n

xαikim + zαsαm + gαn (m ∈ ω),

where the sαm ∈ R will be specified later on, and gαm ∈ Hα.

Suppose that (ω1) splits and consequently σ : G1 → H is a splitting map
for h. Then let

dβm = yβm − yβm, eβi = xβiσ − xβi, fβm = gβmσ − gβm.
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From splitting we get again

dβm, eβi, fβm ∈ G′ (β ∈ ω1, m ∈ ω, i < n).

Using G′ =
⋃
α∈ω1

G′α for β ∈ ω1 we find α ∈ ω1 such that

dβm, eβi, fβm ∈ G′α for all i < n, m ∈ ω.
Consider a map τ : ω1 −→ ω1 taking any α ∈ ω1 to

τ(α) = min{β ∈ ω1 : β a limit ordinal,

dαm, eαi, fαm ∈ G′β , α ≤ β, m ∈ ω, i < n}
and note that C = {α ∈ ω1 : τ(α) = α} is a cub in ω1 and a subset of

E = {α ∈ ω : α a limit ordinal,

dβm, eβi, fβm ∈ G′α for all β < α, i < n, m ∈ ω}.
Hence E is a cub in ω1. Next we apply σ to (7.2) and subtract (7.3). Hence
we get a system of equations in Hα+1:

(7.4) dα,m+1pm = dαm +
∑
i<n

eαikim + fαm + zαsαm (m ∈ ω)

If α ∈ E, then modulo Hα the equations (7.4) turn into

dα,m+1pm ≡ dαm +
∑
i<n

eαikim + zαsαm (m ∈ ω)

and modulo zαR an earlier argument and ℵ1-freeness of G′/Gα⊕ zαR show
that the last equation requires solutions dαm, eαi ∈ R for

dα,m+1pm = dαm +
∑
i<n

eαikim + sαm (m ∈ ω).

By a special choice of sαm’s in Lemma 2.1 this is now excluded, a contra-
diction. Hence (ω1) has no splitting map and Theorem 7.1 follows.

8. Appendix: splitters of type I under 2ℵ0 < 2ℵ1 . In Section 5 we
have seen a proof that CH implies that modules of type I are never splitters.
A slight but somewhat technical modification of the proof shows that this
result can be extended to WCH, that is, 2ℵ0 < 2ℵ1 . Due to Section 5 this
is not needed for the main result of this paper dealing with modules of
cardinality ℵ1 but it will be interesting when passing to cardinals > ℵ1. We
outline the main steps, their proofs are suggested by the proofs in Section 5.

Theorem 8.1 (ZFC + 2ℵ0 < 2ℵ1). Modules of type I are not splitters.

Step Lemma 8.2. Let G =
⋃
α∈ω1

Gα be a filtration of type I and let

0→ K → Hα
h−→ Gα → 0
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be a short exact sequence with some z ∈ K such that zR ∼= R and K,K/zR
are ℵ1-free. Then there are two commuting diagrams (ε = 0, 1)

0 −→ K −→ Hα
h−→ Gα −→ 0

↓ ↓ ↓
0 −→ Kε −→ Hε

hε−→ Gα+1 −→ 0

with vertical maps inclusions such that any third row with H ′ε ℵ1-free,

0→ K ′ε → H ′ε
h′ε−→ Gβ → 0

and any splitting map σ of h cannot have two splitting extensions σε of h′ε:

0 −→ K −→ Hα

h

�
σ

Gα −→ 0

↓ ↓ ↓
0 −→ Kε −→ Hε

hε−→ Gα+1 −→ 0
↓ ↓ ↓

0 −→ K ′ε −→ H ′ε
h′ε−→8
σε

Gβ −→ 0

Moreover Hε = 〈Hα

⊕
Bεα+1, y

ε
αm : m ∈ ω〉 and Bεα+1 is mapped under hε

mod Gα onto a free maximal R-submodule of Gα+1/Gα (cf. (2.3)).

Definition 8.3. If an extension σε as in (8.2) exists for some ε ∈ {0, 1}
we say that σ splits over (Hε, hε).

Proof of Lemma 8.2. Compare the proof of Step Lemma 5.4 but note
that at the end we must take once more differences of the elements dαm, eαi
for ε = 1 and ε = 0 respectively. Then we are able to apply Lemma 2.1 to
get a contradiction from splitting.

We then apply the Step Lemma and weak diamond Φω1
to construct a

short exact sequence

0→ H0 → H
h−→ G→ 0.

Let γ : G→ H0 be a fixed isomorphism. Later we will use consequences
of Φω1 to show that h does not split.

Proof of Theorem 8.1. If H ′α = Gαγ, then H0 =
⋃
α∈ω1

H ′α is an ℵ1-
filtration if G =

⋃
α∈ω1

Gα is the given filtration of type I.
Let T = ω1>2 be the tree of all branches η : α→ 2 for some α ∈ ω1. We

call α = l(η) the length of η. Branches are ordered as usual, hence η < η′ if
η′�Dom η = η. The empty set ∅ is the bottom element of the tree. If η ∈ T ,
then we construct triples (Hη, H

η, hη) of R-modules Hη ⊆ Hη with Hη free
of countable rank and a homomorphism hη : Hη → G subject to various
natural conditions:
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(i) H∅ = H0, H∅ = 0 and h∅ = 0, hence 0→ H0 → H∅
h∅−→ G0 = 0→ 0

is short exact.
(ii) If η < η′, then (Hη, H

η, hη) ⊆ (Hη′ , H
η′ , hη′), that is, Hη ⊆ Hη′ ,

Hη ⊆ Hη′ and hη ⊆ hη′ .
(iii) H0 = kerhη and Imhη = Gl(η) = Hηhη.
(iv) If α ∈ ω1 is a limit and η ∈ α2, then we take unions

(Hη, H
η, hη) =

⋃
β<α

(Hη�β , H
η�β , hη�β) =

( ⋃
β<α

Hη�β ,
⋃
β<α

Hη�β ,
⋃
β<α

hη�β

)
.

If l(η) = α we put further restrictions on those triples. In this case
G′ = Gα+1/Gα is minimal non-free, and G′ can be represented by (2.3),
(2.4). There are elements gαm ∈ Gα and xαi, yαm ∈ Gα+1 with

Gα+1 = 〈Gα, Bα+1, yαmR : m ∈ ω〉, Bα+1 =
⊕
i<n

xαiR

and relations
yα,m+1pm = yαm +

∑
i<n

xαikim + gαm.

We choose an isomorphic copy Bα+1 =
⊕

i<n xαR of Bα+1 and now continue
defining the tree with triples.

If ε ∈ {0, 1}, then we require more from (Hη∧〈ε〉, H
η∧〈ε〉, hη∧〈ε〉):

(S i) Hη ⊕Bα+1 ⊆ Hη∧〈ε〉.

(S ii) Hη′ +H ′β ⊆∗ Hη∧〈ε〉 for all η′ ∈ α≥2, and β ∈ ω1.

(S iii) H ′α ⊆ Hη ∩H0 ⊆ Hα′ for some α′ ∈ [α, ω1).

Note that Hη ∩H0 = ker(hη�Hη). The crucial condition is

(S iv) Suppose σ : Gα → Hη is a homomorphism extending to σε :

Gα+1 → Hη∧〈ε〉. Then not both of them can be splitting maps over (Hη∧〈ε〉,
hη∧〈ε〉) for ε = 0, 1.

Before we begin with the inductive construction, we observe from (iii)
that Gα+1/Gα ∼= Hη∧〈ε〉/Hη

∼= Hη∧〈ε〉/Hη for Dom η = α.

If η ∈ ω12 and H = H(η) =
⋃
α<ω1

Hη�α, then H ′ =
⋃
α<ω1

Hη�α ⊆ H

from (ii). (S iii) ensures H0 ⊆ H ′ and from (iii) we get H/H0 = H ′/H0,
hence H ′ = H. This will show that

(η1) H(η) =
⋃
α<ω1

Hη�α =
⋃
α<ω1

Hη�α (η ∈ ω12).

Similarly h(η) =
⋃
α<ω1

hη�α is a well defined homomorphism h(η) : H(η)→
G by (ii), it is onto with kernel H0 by (iii), hence

(η2) 0→ H0 → H(η)
h(η)−→ G→ 0 (η ∈ ω12).
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Condition (η1) provides an ℵ1-filtration used to apply weak diamond Φ for
showing that (η2) does not split for some η.

Next we will show that the tree with triples exists. This will follow by
induction along the length α branches η ∈ α2. The case α = 0 is (i) and
already established. Suppose the construction is completed for all β < α,
and α < ω1 is a limit ordinal. For η ∈ α2 we define (Hη, H

η, hη) as in (iv).
It is easy to verify that all conditions hold, in particular (S iii), because
we take only countable unions. We come to the inductive step constructing
(Hη∧〈ε〉, H

η∧〈ε〉, hη∧〈ε〉) from (Hη, H
η, hη) for α = Dom η.

First we apply the Step Lemma for K = Hη ∩H0 = kerhη, Hα = Hη,

Hε = Hη∧〈ε〉, h = hη, hε = hη∧〈ε〉 and note that the needed element z exists
because Hη ∩H0 ⊆ H ′α is free. We must still define Hη∧〈ε〉 ⊇ Hη carefully
satisfying (ii), (S i)–(S iii) and the last equality in (iii): Write again hε
for hη∧〈ε〉 and Hε for Hη∧〈ε〉. We know that Imhε = Gα+1 is a countable
submodule of the ℵ1-free module G, hence free, and hε must split. There is
a splitting map ϕε : Gα+1 → Hε such that ϕεhε = idGα+1 , hence

Hε = H0 ⊕ (Gα+1ϕε)

from the first part of (iii). Let πε0 : Hε → H0 and πε1 : Hε → H0 be the
canonical projections, hence πε0 + πε1 = idHε .

Choose β = (α+ 1)′ < ω1 large enough such that Bα+1π0 ∪Hηπ0 ⊆ H ′β ,
where Bα+1 is taken from the Step Lemma. We can choose β because Bα+1

and Hη are countable. Put

Hη∧〈ε〉 = H ′β ⊕ (Gα+1ϕε),

hence by the known half of (iii),

Gα+1 = Hεhε ⊇ Hη∧〈ε〉hε ⊇ Gα+1ϕεhε = Gα+1

and the other half of (iii) follows.
If γ ≤ β, then Hη∧〈ε〉 + H ′γ = Hη∧〈ε〉 and if γ ≥ β, then Hη∧〈ε〉 + H ′γ =

H ′γ⊕(Gα+1ϕε) with quotient Hη∧〈ε〉/H ′γ⊕(Gα+1ϕε) ∼= H0/H ′γ which shows
(S ii). Trivially Hηπ1 ⊆ (Gα+1ϕε) and Hηπ0 ⊆ H ′β by the choice of β, hence

Hη = Hη idHε ⊆ Hηπ0 +Hηπ1 ⊆ Hη∧〈ε〉

and (ii) holds. Similarly Bα+1 ⊆ Hη∧〈ε〉 and (S i) is shown. From H ′β ⊆ H0

and the modular law we have

Hη∧〈ε〉 ∩H0 = H ′β ⊕ (Gα+1ϕε ∩H0) = H ′β

and (S iii) holds.
The construction of the tree with triples is complete. We are ready to

use the weak diamond Φℵ1(S) to show that G is not a splitter.
We will use Φω1

(S) as stated in Eklof–Mekler [3, p. 143, Lemma 1.7] and
note that G =

⋃
α<ω1

Gα, H(η) =
⋃
α<ω1

Hη�α are ℵ1-filtrations. Φω1(S)
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must tell us which η ∈ ω12 we should pick. We define a partition P so that
for α ∈ S a homomorphism σ : Gα → Hη (η ∈ α2) has value Pα(σ) = 0 if
and only if σ does not split over (Hη∧0, hη∧0). By the Step Lemma built
into the construction, we observe that

(a) if P (σ) = 1, then σ cannot split over (Hη∧1, hη∧1).

The prediction principle gives a branch η ∈ ω12 with the Φ-property

(b) If σ : G → H is any map, then S′ = {α ∈ S : Pα(σ�Gα) = η(α)} is
stationary in ω1.

We pick that branch and build H = H(η) and h = h(η) suitably, hence

0 → H0 → H
h−→ G → 0 is short exact. After the branch is fixed we let

Hη�α = Hα, h�Hα = hα and Hη�α = Hα. Now we claim that the last
sequence does not split. Suppose to the contrary that σ : G → H is a
splitting map, hence σh = idG. Notice that the set

C = {α < ω1 : Hα ∩H0 = H ′α, Gασ ⊆ Hα}
is a cub. Since S′ ⊆ ω1 is stationary, we find an α ∈ S′ ∩ C and also let
σ�Gα = σ, hence

(c) σ : Gα → Hα ⊂ Hα, Pα(σ) = η(α) and σ is a splitting map of
hα : Hα → Gα.

We also find some α < β ∈ C. The difficulty is that Gα+1σ ⊆ Hα+1 does
not follow, as in the case where S is not costationary. Hence we need the
stronger Step Lemma (as usual).

If η(α) = P (σ) = 0, then (Hη∧0, hη∧0) is part of the construction of

0→ H0 → Hα+1 → Gα+1 → 0

and σ does not split over (Hη∧0, hη∧0), but σ is a global splitting map, hence
σ splits at β over (Hη∧0, hη∧0), a contradiction.

Necessarily η(α) =P (σ) = 1 and by (a), σ does not split over (Hη∧1, hη∧1),

but this time (Hη∧1, hη∧1) was used in the construction of H
h−→ G and a

contradiction follows. This shows that σ is not a splitting map, and G is not
a splitter.
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[5] R. Göbe l and S. She lah, Cotorsion theories and splitters, Trans. Amer. Math.
Soc. (1999), to appear.
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Studies on Abelian Groups, Springer, Berlin, 1968, 147–181.

[8] C. M. Ringe l, Bricks in hereditary length categories, Resultate Math. 6 (1983),
64–70.

[9] L. Sa lce, Cotorsion theories for abelian groups, Symposia Math. 23 (1979), 11–32.
[10] P. Schultz, Self-splitting groups, preprint, Univ. of Western Australia at Perth,

1980.
[11] S. She lah, Infinite abelian groups, Whitehead problem and some constructions,

Israel J. Math. 18 (1974), 243–256.
[12] —, On uncountable abelian groups, ibid. 32 (1979), 311–330.
[13] —, A combinatorial theorem and endomorphism rings of abelian groups II , in:

Abelian Groups and Modules, CISM Courses and Lectures 287, Springer, Wien,
1984, 37–86.

Fachbereich 6, Mathematik und Informatik
Universität Essen
45117 Essen, Germany
E-mail: R.Goebel@uni-essen.de

Department of Mathematics
Hebrew University

Jerusalem, Israel
E-mail: shelah@math.huji.ac.il

Department of Mathematics
Rutgers University

New Brunswick, NJ 08903, U.S.A.

Received 27 August 1998;
revised 12 February 1999


