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Abstract. We discuss k-rotundity, weak k-rotundity, C-k-rotundity, weak C-k-rotun-
dity, k-nearly uniform convexity, k-β property, C-I property, C-II property, C-III property
and nearly uniform convexity both pointwise and global in Orlicz function spaces equipped
with Luxemburg norm.Applications to continuity for the metric projection at a given point
are given in Orlicz function spaces with Luxemburg norm.

Let X be a Banach space, and D be a subset of X. The metric projection

PD : X → 2D is defined by PD(x) = {y ∈ D : ‖x− y‖ = dist(x,D)}. D is a
proximinal (resp. Chebyshev) set if PD(x) contains at least (resp. exactly)
one point for all x in X. For a proximinal D, PD is called norm-norm (resp.
norm-weak) upper semicontinuous at x if for every normed (resp. weak)
open set W ⊇ PD(x), there exists a normed neighborhood U of x such that
PD(y) ⊆ W for all y in U . It is proved in [Wa95] that if X has the C-II
(or C-III) property, then PD is continuous for any Chebyshev convex set D.
In this paper, we investigate some structures which imply the continuity
of the metric projection at a given point for Orlicz function spaces with
Luxemburg norm.

Let B(X) and S(X) be the unit ball and the unit sphere of the Banach
space X respectively. A point x ∈ S(X) is said to be a locally C-I (resp.
C-II, C-III) point of B(X) if the following implication holds for every
sequence {xn} ⊆ B(X): if for any δ > 0 there exists an integer m such that
conv({x} ∪ {xn}n≥m) ∩ (1− δ)B(X) = ∅, then limn→∞ xn = x (resp. {xn}
is relatively compact, weakly compact) [Wa95]. We call such points LC-I,
LC-II, and LC-III points respectively.
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Recall that the Kuratowski measure of noncompactness α(A) for A ⊂ X
is defined as

α(A) = inf{ε > 0 : A can be covered by a finite family of sets

of diameter less than ε}.

A slice of B(X) is defined by S(f, η) = {x ∈ B(X) : f(x) > 1 − η} where
f ∈ S(X∗) and η > 0.

Let R be the set of all real numbers. A function M : R → R+ is called
an Orlicz function if M is convex, even, M(0) = 0 and M(∞) = ∞. The
complementary function N of M in the sense of Young is defined by

N(v) = sup
u∈R

{uv −M(u)}.

It is known that if M is an Orlicz function, then so is N . M is said to
be strictly convex if M((u + v)/2) < (M(u) + M(v))/2 for all u 6= v. An
interval (a, b) is said to be an affine interval of M if M is affine on (a, b)
and M is strictly convex on (b, b+ ε) and (a− ε, a) for some ε > 0. Denote
all affine intervals of M by

⋃∞
i=1(ai, bi).

M is said to satisfy the△2-condition for large u (we simply writeM∈△2)
if for some K and u0 > 0, M(2u) ≤ KM(u) for |u| ≥ u0.

Let G be a bounded set in R
n and let (G,Σ, µ) be a finite non-atomic

measure space. For a real-valued measurable function x(t) over G, we call
̺M (x) =

T
G
M(x(t)) dµ(t) the modular of x. The Orlicz function space L(M)

generated by M is the Banach space

L(M) = {x = x(t) : ∃λ > 0, ̺M (λx) < ∞}

equipped with the Luxemburg norm

‖x‖ = inf{λ : ̺M (x/λ) ≤ 1}.

For information on Orlicz spaces, see [KrRu61, Ch96].

First we recall some lemmas.

Lemma 1 [LiSh96]. In an Orlicz function space L(M) equipped with Lux-

emburg norm, let x ∈ S(L(M)). If M does not satisfy the △2-condition,
then α(S(f, η)) ≥ 1/4 for any slice S(f, η) of B(L(M)) containing x.

Lemma 2 [LiSh96]. In an Orlicz function space L(M) equipped with Lux-

emburg norm, let x ∈ S(L(M)). If µ{t ∈ G : x(t) ∈
⋃∞

i=1(ai, bi)} > 0, where
⋃∞

i=1(ai, bi) is the family of all affine intervals of M , then α(S(f, η))≥θ>0
for any slice S(f, η) of B(L(M)) containing x, where θ is a constant that

depends only on x.
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Theorem 1. In an Orlicz function space L(M) equipped with Luxemburg

norm, let x ∈ S(L(M)). Then the following are equivalent :

(1) x is an LC-II point of B(L(M)).

(2) (i) M ∈ △2,

(ii) µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} = 0, where
⋃∞

i=1(ai, bi) is all

affine intervals of M ,

(iii) if µ{t ∈ G : |x(t)| = b} > 0 for some affine interval (a, b), then
N ∈ △2 and µ{t ∈ G : |x(t)| = c} = 0 for all affine intervals

(c, d) of M .

(3) x is an LUR point of B(L(M)), i.e., for all sequences {xn} in B(L(M)),
limn→∞ ‖xn − x‖ = 0 whenever limn→∞ ‖xn + x‖ = 2.

P r o o f. (1)⇒(2). (i) Suppose that M 6∈ △2. Then (see the proof of
Lemma 1 in [LiSh96]) there is a sequence {xn} satisfying

xn = x|G\Gn
+ (x+ un)|Gn

, lim
n→∞

‖xn‖(M) = 1, α({xn}) ≥ 1/4,

and xn → x weakly. For every δ > 0 there exists an integer N so that
conv({x}∪ {xn}n≥N )∩ (1− δ)B(X) = ∅; but α({xn}) ≥ 1/4, which contra-
dicts x being an LC-II point of B(L(M)).

(ii) Suppose µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} > 0. By Lemma 2, there
exists a sequence {xn} in B(L(M)) satisfying α({xn}) ≥ θ and xn → x
weakly, where θ depends only on x, which implies that x is not an LC-II
point of B(L(M)), a contradiction.

(iii) Suppose that µB = µ{t ∈ G : |x(t)| = b} > 0 and µC = µ{t ∈ G :
|x(t)| = c} > 0 for some affine intervals (a, b) and (c, d) of M . Take B0 ⊂ B
and C0 ⊂ C with µB0 > 0, µC0 > 0 and

[M(b)−M(a)]µB0 = [M(d) −M(c)]µC0

(i.e., M(b)µB0 +M(c)µC0 = M(a)µB0 +M(d)µC0). Set

z = x|G\(B0∪C0) +
a+ b

2
sign x|B0

+
c+ d

2
signx|C0

.

Then

̺M (z) = ̺M (x|G\(B0∪C0)) +
M(a) +M(b)

2
µB0 +

M(c) +M(d)

2
µC0

= ̺M (x) = 1.

As in the proof of Lemma 2, there exists a sequence {zn} in B(L(M)) sat-
isfying α({zn}) ≥ θ and zn → z weakly, where θ depends only on z, hence
only on x. Let y = x|G\(B0∪C0) + a signx|B0

+ d signx|C0
. Then

̺M (y) = ̺M (x|G\(B0∪C0)) +M(a)µB0 +M(d)µC0 = ̺M (x) = 1
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and z = (x+ y)/2. Since ‖x‖(M) = ‖y‖(M) = ‖z‖(M) = 1, there is f ∈ L∗
(M)

with f(x) = f(z) = ‖f‖ = 1. Since zn → z weakly, for any δ > 0 there
exists an integer N so that conv({x} ∪ {zn}n≥N ) ∩ (1 − δ)B(X) = ∅; but
α({zn}) ≥ θ contradicts x being an LC-II point of B(L(M)).

Suppose µB = µ{t ∈ G : |x(t)| = b} > 0 for some affine interval (a, b) of
M and N 6∈ △2. Since N 6∈ △2, there exist un ր ∞ such that

2nM

(

1

2n
un

)

>

(

1−
1

n

)

M(un).

Without loss of generality, assume that x(t) = b on B. Take subsets Bn in
B such that B ⊃ B1 ⊃ B2 ⊃ . . . and

[M(un)−M(a)]µBn = [M(b)−M(a)]µB.

Then M(un)µBn ≥ [M(b)−M(a)]µB. Set

xn = x|G\B + a|B\Bn
+ un|Bn

.

Then

̺M (xn) = ̺M (x|G\B) +M(a)(µB − µBn) +M(un)µBn

= ̺M (x|G\B) +M(b)µB = ̺M (x) = 1.

Obviously

lim
β→0

sup
n

̺M (βxn)

β
≥ [M(b)−M(a)]µB > 0,

by [An62], {xn} is not weakly compact and so α({xn}) ≥ θ > 0. For any
δ > 0, take K > 0 such that 2/K ≤ δ. Set xn0

= x. Then for all K < n1 <

. . . < nk and any
∑k

i=0 λi = 1, λi ≥ 0, we have

̺M

(

k
∑

i=0

λixni

)

= ̺M (x|G\B) +M
(

λ0b+
k
∑

i=1

λia
)

µ(B \Bn1
)

+M
(

k
∑

i=1

λiuni
+ λ0b

)

µBnk

+M
((

k−1
∑

i=1

λiuni
+ λ0b+ λka

)
∣

∣

∣

Bn1
\Bnk

)

≥ ̺M (x|G\B) +
(

λ0M(b) +

k
∑

i=1

λiM(a)
)

µ(B \Bn1
)

+
k
∑

i=1, λi≥1/2ni

(1− 1/ni)λiM(uni
)µBnk

+M(λ0b)µBnk
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+M
(

k−1
∑

i=1

λiuni
+ λ0b+ λka

)

µ(Bnk−1
\Bnk

)

+M
((

k−1
∑

i=1

λiuni
+ λ0b+ λka

)
∣

∣

∣

Bn1
\Bnk−1

)

≥ ̺M (x|G\B) +
(

λ0M(b) +

k
∑

i=1

λiM(a)
)

µ(B \Bn1
)

+
k
∑

i=1, λi≥1/2ni

(1− 1/ni)λiM(uni
)µBnk

+M(λ0b)µBnk

+

k−1
∑

i=1, λi≥1/2ni

(1− 1/ni)λiM(uni
)µ(Bnk−1

\Bnk
)

+M(λ0b+ λka)µ(Bnk−1
\Bnk

)

+M
((

k−1
∑

i=1

λiuni
+ λ0b+ λka

)
∣

∣

∣

Bn1
\Bnk−1

)

≥ ̺M (x|G\B) +
(

λ0M(b) +
k
∑

i=1

λiM(a)
)

µ(B \Bn1
)

+

k
∑

j=1

j
∑

i=1, λi≥1/2ni

(1− 1/ni)λiM(uni
)µ(Bnj

\Bnj+1
)

+

k
∑

j=1

M(λ0b+ (λj+1 + . . . + λk)a)µ(Bnj
\Bnj+1

)

≥ ̺M (x|G\B) +
(

λ0M(b) +

k
∑

i=1

λiM(a)
)

µ(B \Bn1
)

+ (1− 1/n1)

k
∑

j=1

j
∑

i=1, λi≥1/2ni

λiM(uni
)µ(Bnj

\Bnj+1
)

+

k
∑

j=1

M(λ0b+ (λj+1 + . . . + λk)a)µ(Bnj
\Bnj+1

)

≥ (1− 1/n1)
k

∑

i=1

λi̺M (xni
)− (1− 1/n1)

k
∑

i=1, λi<1/2ni

λi̺M (xni
)

≥ (1− 1/n1)−
k

∑

i=1

1/2ni = (1− 1/K) − 1/2K > 1− δ.
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Hence conv({x}∪{xn}n≥K)∩(1−δ)B(X) = ∅; but α({xn}) > 0 contradicts
x being an LC-II point of B(L(M)).

(2)⇒(3). By [ChWa92], it follows that x is an LUR point of B(L(M)).
(3)⇒(1). Obvious.

For an integer k, a point x ∈ S(X) is said to be:

• a locally k-rotund (LkR) point of B(X) if for any sequence {xn} in
B(X), limn1,...,nk→∞ ‖x+xn1

+. . .+xnk
‖= k+1 implies limn→∞ ‖xn−x‖=0;

• a locally weakly k-rotund (LWkR) point of B(X) if for any sequence
{xn} in B(X), limn1,...,nk→∞ ‖x + xn1

+ . . . + xnk
‖ = k + 1 implies

w-limn→∞ xn = x;

• a locally C-k-rotund (LCkR) point of B(X) if for any sequence {xn}
in B(X), limn1,...,nk→∞ ‖x + xn1

+ . . . + xnk
‖ = k + 1 implies {xn} is a

relatively compact set;

• a locally k-nearly uniformly convex (LkNUC) point of B(X) if for every
ε > 0 there exists δ > 0 such that for all sequences {xn} with sep(xn) ≥ ε
there are {n1, . . . , nk} with

∥

∥

∥

∥

x+ xn1
+ . . . + xnk

k + 1

∥

∥

∥

∥

≤ 1− δ;

• a locally k-β (Lkβ) point of B(X) if for every ε > 0 there exists δ > 0
such that for all sequences {xn} with sep(xn) ≥ ε there are {n1, . . . , nk}
with conv({x, xn1

, . . . , xnk
}) ∩ (1− δ)B(X) 6= ∅;

• a locally nearly uniformly convex (LNUC) point of B(X) if for every
ε > 0 there exists δ > 0 such that for all sequences {xn} with sep(xn) ≥ ε
we have conv({x} ∪ {xn}) ∩ (1− δ)B(X) 6= ∅.

It is easy to see that for all Banach spaces, we have the implications

LUR LkR LCkR

LWkR LC-II

LkNUC Lkβ LNUC

+3__________
��

�������������� +3________
��

����
��

����
+3______ +3______ KS��� ���

For these properties, we refer to [Ku91, KuLi94, KuLi93, Wa95].

Corollary 1. In an Orlicz function space L(M) equipped with Luxem-

burg norm, let x ∈ S(L(M)). Then the following are equivalent :

(1) x is an LUR point of B(L(M)) [ChWa92];
(2) x is an LkR point of B(L(M)) (k ≥ 1);

(3) x is an LWkR point of B(L(M)) (k ≥ 1);
(4) x is an LCkR point of B(L(M)) (k ≥ 1);

(5) x is an LkNUC point of B(L(M)) (k ≥ 1);
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(6) x is an Lk-β point of B(L(M)) (k ≥ 1);

(7) x is an LNUC point of B(L(M));

(8) x is an LC-I point of B(L(M));

(9) x is an LC-II point of B(L(M));

(10) M ∈ △2, µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} = 0, where {(ai, bi)} is the

family of all affine intervals of M , and if µ{t ∈ G : |x(t)| = b} > 0 for some

affine interval (a, b) of M , then N ∈ △2 and µ{t ∈ G : |x(t)| = c} = 0 for

all affine intervals (c, d) of M .

P r o o f. (1)⇒(2)⇒(3), (1)⇒(2)⇒(4)⇒(9), (1)⇒(5)⇒(6)⇒(7), and
(1)⇒(8)⇒(9) are trivial by definitions.

(7)⇒(9). By Theorem 4 of [Wa95], an LNUC point is an LC-II point
in B(X).

(10)⇒(1). This is proved in [ChWa92].

(9)⇒(10). This follows from Theorem 1.

(3)⇒(10). Since ‖x‖(M) = 1, there is c > 0 such that µGc = µ{t ∈ G :
|x(t)| ≤ c} > 0.

Suppose that M 6∈ △2. Then there exist un ր ∞ such that

M((1 + 1/n)un) > 2nM(un).

On passing to a subsequence if necessary, there are disjoint subsets Gn ⊂ Gc

so that

M(un)µGn = 1/2n, n = 1, 2, . . .

Define y =
∑∞

n=1 un|Gn
. Then ̺M (y) =

∑∞
n=1 M(un)µGn = 1, ‖y‖(M) = 1

and dist(y,EM ) = 1, where EM = {x : ̺M (λx) < ∞ for all λ}. By the
Hahn–Banach theorem, there is a functional φ such that φ(y) = ‖φ‖ = 1,
and φ(z) = 0 for all z in EM . Set xn = x|G\

⋃
i>n Gi

+ y|⋃
i>n Gi

. Then
∥

∥

∥

∥

x+ xn1
+ . . .+ xnk

k + 1

∥

∥

∥

∥

(M)

≥ ‖x|G\
⋃

i>nk
Gi
‖(M) → 1 (n1, . . . , nk → ∞)

and

̺M (xn) = ̺M (x|G\
⋃

i>n Gi
) + ̺M (y|⋃

i>n Gi
) → ̺M (x) ≤ 1.

But

φ(xn − x) = φ(y|⋃
i>n

Gi
)− φ(x|⋃

i>n
Gi
) = φ(y|⋃

i>n
Gi
)

= φ(y|Gc
) = 1.

So xn 6→ x weakly, contrary to x being an LWkR point of B(L(M)).

We claim that µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} = 0.

In fact, if this measure is positive, then µE > 0, where E = µ{t ∈ G :
x(t) ∈ (a + 2δ, b − 2δ)} for some δ > 0. Split E into two parts E1 and E2
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with µE1 = µE2 = (µE)/2. Define

z = x|G\E + (x+ 2δ)|E1
+ (x− 2δ)|E2

.

Then

̺M (z) = ̺M (x|G\E) + ̺M ((x+ 2δ)|E1
) + ̺M ((x− 2δ)|E2

)

= ̺M (x|G\E) + ̺M (x|E1
) + ̺M (x|E2

) = 1,

̺M

(

x+ z

2

)

= ̺M (x|G\E) + ̺M ((x+ δ)|E1
) + ̺M ((x− δ)|E2

)

= ̺M (x|G\E) + ̺M (x|E1
) + ̺M (x|E2

) = 1.

Moreover x 6= z. As in Lemma 2, there exists a sequence {zn} in B(L(M))
such that zn → z weakly and sep{zn} ≥ θ > 0, where θ depends only
on z. For k > 1, since zn → z weakly and ‖x + z‖(M) = 2, we have
limn1,...,nk→∞ ‖x + zn1

+ . . . + znk
‖ = k + 1. This contradicts x being an

LWkR point of B(L(M)). For k = 1 we can take xn = z to get a contradic-
tion.

From Theorem 1, it follows that if µ{t ∈ G : |x(t)| = b} > 0 for some
affine interval (a, b) of M , then N ∈ △2 and µ{t ∈ G : |x(t)| = c} = 0 for
all affine intervals (c, d) of M .

Corollary 2. In an Orlicz function space L(M) equipped with Luxem-

burg norm, the following are equivalent :

(1) L(M) is locally UR [ChWa92, Ka84];
(2) L(M) is locally kR (k ≥ 1);

(3) L(M) is locally WkR (k ≥ 1);

(4) L(M) is locally CkR (k ≥ 1);
(5) L(M) is locally kNUC (k ≥ 1);

(6) L(M) is locally k-β (k ≥ 1);
(7) L(M) is locally NUC ;

(8) L(M) has the C-I property ;

(9) L(M) has the C-II property ;
(10) M ∈ △2 and M is strictly convex on the real line.

Corollary 3. In an Orlicz function space L(M) equipped with Luxem-

burg norm, suppose M ∈ △2 and let x ∈ S(L(M)). If µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} = 0 and either µ{t ∈ G : |x(t)| ∈
⋃∞

i=1{bi}} = 0, or N ∈ △2

and µ{t ∈ G : |x(t)| ∈
⋃∞

i=1{ai}} = 0, then every proximinal metric projec-

tion PD is norm-norm upper semicontinuous at x.

Moreover , if M ∈ △2 and M ∈ SC, then every proximinal metric

projection PD is norm-norm upper semicontinuous.

Next, we study the LC-III points.



ORLICZ SPACES 231

Lemma 3. For an Orlicz space L(M), suppose M ∈ △2. Then

(1) for any ε > 0 there is η > 0 such that

̺M (x) < η ⇒ ‖x‖(M) < ε,

‖x‖(M) > 1− η ⇒ ̺M (x) > 1− ε;

(2) if ̺M (xn) → ̺M (x) and xn
µ
→ x in measure, then xn → x in norm.

For a proof, see [Ch86, Hu83, HuLa95].

Theorem 2. In an Orlicz function space L(M) equipped with Luxemburg

norm, let x ∈ S(L(M)). Then x is a C-III point of B(L(M)) if and only if

(1) M ∈ △2;
(2) either N ∈ △2, or µ{t ∈ G : |x(t)| ∈

⋃∞
i=1(ai, bi)} = 0 and µ{t ∈ G :

|x(t)| ∈
⋃∞

i=1{bi}} = 0.

P r o o f. Choose c > 0 such that µGc = µ{t ∈ G : |x(t)| ≤ c} > 0. Sup-
pose M 6∈ △2. There exists [KrRu61] y ∈ L(M) with supp y ⊂ Gc, ‖y‖(M) =
dist(y,EM ) = 1, and φ ∈ L∗

(M) with φ(y) = ‖φ‖ = dist(y,EM ) = 1 and

φ(z)=0 for all z∈ EM , and Gn ⊂ Gc, where Gn ={t ∈ G : |y(t)| ≥ n}. Set

xn = x|G\Gn
+ y|Gn

.

Then for θ > 0, take n0 such that ‖x|G\Gn0
‖(M) > 1 − θ. Then for all

n0 < n1 < . . . < nk and for any
∑k

i=0 λi = 1, where λi ≥ 0,

∥

∥

∥

k
∑

i=0

λixni

∥

∥

∥

(M)
≥ ‖x|G\Gnk

‖(M) > 1− θ.

But {xn} is not relatively weakly compact. In fact, otherwise by the
Shmul’yan Theorem {xn} is relatively weakly sequentially compact. By

taking a subsequence if necessary we may assume that xn
w
→ x′ in the weak

topology. Combining this with xn
w∗

→ x in the w∗ topology, we get xn
w
→ x.

A contradiction since φ(xn − x) = φ(y|Gn
) + φ(x|Gn

) = φ(y|Gn
) = 1.

Assume that µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} > 0. Then µB = µ{t ∈ G :
x(t) ∈ (a+θ, b−θ)} > 0 for some affine interval (a, b) and some θ > 0. Split
B into two parts B′, B′′ with µB′ = µB′′ = (µB)/2. Define

y = x|G\B + (x− θ)|B′ + (x+ θ)|B′′ .

Then

̺M (y) = ̺M (x|G\B) + ̺M ((x− θ)|B′) + ̺M ((x+ θ)|B′′)

= ̺M (x|G\B) + ̺M (x|B′) + ̺M (x|B′′) = 1,

and

̺M

(

x+ y

2

)

= ̺M (x) = 1.
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If N 6∈ △2, then there exists a real sequence {un} such that un ր ∞
and

2nM

(

1

2n
un

)

>

(

1−
1

n

)

M(un).

Take decreasing subsets {Bn} of B such that

̺M (y|B)−M(a)µB = ̺M (x|B)−M(a)µB = [M(un)−M(a)]µBn.

Then M(un)µBn ≥ ̺M (x|B)−M(a)µB > 0. Set

xn = x|G\B + a|B\Bn
+ un|Bn

.

By [An62], {xn} is not weakly compact. But

̺M (xn) = ̺M (x|G\B) +M(a)(µB − µBn) +M(un)µBn = ̺M (x) = 1.

For any δ > 0, take K such that 2/K ≤ δ. Let xn0
= x. Then for all

K < n1 < . . . < nk and for any
∑k

i=0 λi = 1, where λi ≥ 0, as in the proof
of Theorem 1,

̺M

(

k
∑

i=0

λixni

)

≥ 1− δ.

This contradicts x being a C-III point of B(L(M)).

By the same argument as for the second part of (iii) in Theorem 1 we
can show that if x is a locally C-III point of B(L(M)) then µ{t ∈ G : |x(t)|
= b} > 0 for some affine interval (a, b) of M implies N ∈ △2.

Suppose {xn} is a sequence in B(L(M)) such that for any δ > 0 there
exists an integer N with conv({x} ∪ {xn}n≥N ) ∩ (1− δ)B(L(M)) = ∅.

If N ∈ △2, then by (1), L(M) is reflexive. So B(L(M)) is weakly compact
and {xn} is relatively weakly compact.

If N 6∈ △2, then we show that limn→∞ xn = x. By Lemma 3, it suffices

to show that xn
µ
→ x in measure. By (2), µ{t ∈ G : |x(t)| ∈

⋃∞
i=1(ai, bi)} = 0

and µ{t ∈ G : |x(t)| = b} = 0 for all affine intervals (a, b). Since
limn1,...,nk→∞ ‖x+xn1

+ . . .+xnk
‖(M) = k+1, we have limn→∞ ‖x+xn‖(M)

= 2. From

1 =
̺M (x) + ̺M (xn)

2
≥ ̺M

(

x+ xn

2

)

→ 1,

it follows that xn
µ
→ x in measure on {t ∈ G : |x(t)| 6∈ G \

⋃∞
i=1[ai, bi]}.

We claim: xn
µ
→ x in measure on Ga = {t ∈ G : |x(t)| = a} for every

left endpoint a of an affine interval (a, b). Without loss of generality, assume
that Ga = {t ∈ G : x(t) = a}.

We first show that for any ε > 0, µ{t ∈ Ga : xn(t) ≤ a − ε} → 0 as
n → ∞. Indeed, if for some ε0 > 0 and σ0 > 0 and a subsequence of {xn}
(again denoted by {xn}) we have µGn = µ{t ∈ Ga : xn(t) ≤ a−ε0} ≥ σ0 > 0
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for all n, then there exists a δ0 > 0 such that

M

(

a+ a− ε0
2

)

≤
1

2
(1− δ0)[M(a) +M(a− ε0)]

(because c 6= d for all affine intervals (c, d)). Hence

̺M

(

x+ xn

2

)

≤ 1
2 [̺M (x|G\Gn

) + ̺M (xn|G\Gn
)] +M

(

a+ a− ε0
2

)

µGn

≤ 1
2 [̺M (x|G\Gn

) + ̺M (xn|G\Gn
)]

+ 1
2 (1− δ0)[M(a) +M(a− ε0)]µGn

≤ 1
2 [̺M (x) + ̺M (xn)]−

1
2δ0[M(a) +M(a− ε0)]µGn

≤ 1− 1
2
δ0[M(a) +M(a− ε0)]µGn < 1.

By Lemma 3, limn→∞ ‖x+ xn‖(M) < 2, a contradiction.
Next we show that for any ε > 0, µ{t ∈ Ga : xn(t) ≥ a + ε} → 0 as

n → ∞. Indeed, suppose that for some ε0 > 0 and σ0 > 0 and a subsequence
{xn} (again labeled {xn}) we have µGn = µ{t ∈ Ga : xn(t) ≥ a+ ε0} ≥ σ0

for all n. Since

G =
{

t ∈ G : |x(t)| 6∈
∞
⋃

i=1

[ai, bi]
}

∪
{

t ∈ G : |x(t)| ∈
∞
⋃

i=1

(ai, bi)
}

∪
{

t ∈ G : |x(t)| ∈
∞
⋃

i=1

{bi}
}

∪
{

t ∈ G : |x(t)| ∈
∞
⋃

i=1

{ai}
}

,

by the Fatou Lemma, we see that for all G′ ⊂ G,

lim inf
n→∞

̺M (xn|G′) ≥ ̺M (x|G′).

Hence for n large enough,

̺M (xn) = ̺M (xn|G\Gn
) + ̺M (xn|Gn

)

≥ ̺M (xn|G\Gn
) +M(a+ ε0)µGn

= ̺M (xn|G\Gn
) +M(a)µGn + [M(a+ ε0)−M(a)]µGn

≥ ̺M (x) + [M(a+ ε0)−M(a)]σ0 > 1,

a contradiction.
We now show that xn

µ
→ x in measure on {t ∈ G : |x(t)| ∈

⋃∞
i=1{ai}}.

Indeed, for every ε > 0 and σ > 0, take i0 such that µ{t ∈ G : |x(t)| ∈
⋃

i>i0
{ai}} < ε/2. From the claim we deduce that for n large enough,

µ
{

t ∈ G : |x(t)| ∈
i0
⋃

i=1

{ai} and |xn(t)− x(t)| ≥ σ
}

<
ε

2
.

From the decomposition of G as above we get xn
µ
→ x in measure on G.
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By Lemma 3, we know that xn → x in norm, so {xn} is relatively weakly
compact.

Remark. By the same argument we can show that an element inS(L(M))
is a locally C-III point of B(L(M)) iff it is a locally WCkR point of B(L(M)).

Corollary 4. In an Orlicz function space L(M) equipped with Luxem-

burg norm, the following are equivalent :

(1) L(M) is locally WCkR;
(2) L(M) has the C-III property ;
(3) M ∈ △2 and either M ∈ SC or N ∈ △2.

Corollary 5. In an Orlicz function space L(M) equipped with Luxem-

burg norm, suppose M ∈ △2 and let x ∈ S(L(M)). If µ{t ∈ G : |x(t)| ∈
⋃∞

i=1(ai, bi)} = 0 and µ{t ∈ G : |x(t)| ∈
⋃∞

i=1{bi}} = 0, then every proxim-

inal metric projection PD is norm-weak upper semicontinuous at x.
Moreover , if M ∈ △2, and either M ∈ SC or N ∈ △2, then every prox-

iminal metric projection PD is norm-weak upper semicontinuous on L(M).
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