COLLOQUIUM MATHEMATICUM

VOL. 81 1999 NO. 2

FANS ARE NOT C-DETERMINED

BY

ALEJANDRO ILLANES (MEXICO)

Abstract. A continuum is a compact connected metric space. For a continuum X,
let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two
nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that
C(X) and C(Y') are homeomorphic. This answers a question by Sam B. Nadler, Jr.

1. Introduction. A continuum is a compact connected metric space.
For a continuum X, let C(X) denote the space of all the subcontinua of
X, with the Hausdorff metric H. A Whitney map for C(X) is a continuous
function p : C(X) — [0,1] such that u(X) =1, u({z}) =0 for each z € X
and if A C B, then u(A) < p(B). For the existence of Whitney maps
see [9, 0.50.1]. A dendroid is an arcwise connected hereditarily unicoherent
continuum. Given points p and ¢ in a dendroid X, pg denotes the unique
arc joining p and ¢ if p # ¢, and pg = {p} if p = ¢. A fan is a dendroid
with only one ramification point. Let X be a fan with ramification point v;
it is said to be a smooth fan provided that if {z,}>2, is a sequence in X
converging to a point x € X, then vz, — vz.

A class A of continua is said to be C-determined ([9, Definition 0.61)])
provided that if X,Y € A and C(X) = C(Y) (C(X) is homeomorphic to
C(Y)), then X = Y. The following classes of continua are known to be
C-determined:

(a) finite graphs different from an arc ([3, 9.1]),

(b) hereditarily indecomposable continua ([9, 0.60]),

(c) smooth fans ([4, Corollary 3.3]),

(d) indecomposable continua such that all their proper nondegenerate
subcontinua are arcs ([7]), and

(e) metric compactifications of the half-ray [0, c0) ([1]).

Recently, answering a question by Nadler, the author showed that the
class of chainable continua is not C-determined ([5]). In [9, Questions 0.62]
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Nadler asked if the class of fans is C-determined. Here, we answer this ques-
tion in the negative.

Description of the examples. Given two points p, ¢ in the Euclidean
plane R2, pq denotes the convex segment which joins them. Given points
D1y Pn in RZ et (p1, ..., pn) = p1pa UpapzU...Up,_1p,. Given a point
p € R? and a subset A of R? let p+ A = {p+a :a € A}. The set of
positive integers is denoted by N. Let § = (0,0) € R?, By = 6(2,0) and
Co = (2’ O)(3’ O)

Let
Z =1{0,(2,1),(1,2),(3,3)).

Notice that Z C {(x,y) € R? : 0 < y < 2z}.
For each n € N, let

1 1
Pn:<1—wv1—w>+{

p= [U{Pn ‘ne N}} u{(1,1)}.
Notice that P C {(z,y) € R?: 0 <y < 2x}.

1
: A
Sl iPE }

Let
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Given m € N, let

1 1 Y

1 1 1 1
Cm = (2’ om—1 + 2m+1> <3’ ogm—1 + 2m+1>'

Notice that By, C {(z,y) € R? :y < z/2m"1 and y < 1/2m~1 4 1/2m+1}
Finally, let

X=J{Bn:m=01,..}, YV=(}{BnUCp:m=0,1,..}
Clearly, X and Y are fans and X is not homeomorphic to Y.

C(X) is homeomorphic to C(Y). Fix a Whitney map p : C(X) —
[0,1]. By the main result of [10], we may assume that u(B,,) = 1/2 for
every m = 0,1,... Let m; : R?> = R! be the projection on the ith coordinate,
i=1,2.

We denote the Hilbert cube by Q. Let C({6},X)={AcC(X):0c A}
and C({0},Y) ={A € C(Y) : 6 € A}. In [4], Eberhart and Nadler con-
structed geometric models for the hyperspace of subcontinua of a smooth
fan. We will use some of the ideas and results from that paper.

As a consequence of Theorem 2.3 of [4], we know that C({#}, X) and
C({6},Y) are homeomorphic to Q.

Let N(X) ={0p € C(X) : pe X}, NY) ={0pecCY):peY},
T(X) =U{CBy) :m=0,1,...}, and T(Y) = J{C(Bn UCyp,) : m =
0,1,...}. Clearly, T(X) and T(Y) are compact, C({0},X) N T(X) =
N(X), CH{0}LY)NT(Y)=N(Y),C(X)=C{8},X)UT(X) and C(Y) =
CH{e}L,Y)uT(Y).

CrLAamM 1. N(X) (respectively, N(Y)) is a Z-set in C({0},X) (respec-
tiely, C({60},Y)).

Recall that, by definition, N(X) is a Z-set in C({#}, X) if and only for

each € > 0, there exists a continuous function
g9e : C({0}, X) — C({0}, X) — N(X)

such that H(g:(A), A) < ¢ for every A € C({0}, X).

In order to prove Claim 1, let € > 0. Suppose that e < 1. Let D. = {p €
X :|lp— 0| < e/2}. Then define g. : C({6},X) — C({#}, X) — N(X) by

g:(A)=AUD..

Clearly, g. has the required properties. Therefore, N(X) is a Z-set in
C({6},X). Similarly, N(Y) is a Z-set in C({6},Y).

Notice that, for each m € N, ma|By, : B, — [0,1/2m71 + 1/2mF1] s
one-to-one. Let B={A € C(X): m(A) C [1,2]}.
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For i = 1,2, let M;,m; : C(X) — R be the maps defined by M;(A4) =
max m;(A) and m;(A) = minm;(A). Let w: N(X)UB — [0,1] be given by
M, (A) + My(A)
22 + 1/2m-1 + 1/2m+1)
w(A) = if Ae C(B,,) N N(X) for some m € N,
Mi(A)/4 if AC By and A € N(X),
(Mi(A) —mq(A) + Ma(A) —ma(A))/4 it A e B.

CLAIM 2. The set B and the function w have the following properties:

(a) B is closed in C(X), BN N(X) =0,

(b) w is continuous,

(¢c) if AC B, then w(A) < w(B),

(d) w({p}) = 0 for each {p} € N(X)U B and w(B,,) = 1/2 for each

m=20,1,...

Statements (a), (b) and (d) are easy to prove. In order to prove (c), let
A,B € N(X) besuch that A C B C B,, for some m € N. Since A and B are
arcs, 0 is an end point of A and of B and 7a|B,, is one-to-one, we conclude
that My(A) < Ms(B). Notice that M;(A) < M;(B). Thus w(A) < w(B).
The case A, B C By is easier. The case A, B € B follows from the fact that
72| By, is one-to-one for every m € N. Finally, the case A € Band B € N(X)
is easy to check. This completes the proof of Claim 2.

Clearly, N(X)UB is a compact subset of C'(X). Thus we may apply the
main result of [10]. In this way we may assume that the Whitney map p
also satisfies p|(N(X)UB) = w.

Let g : T(X) — R? be given by

Mi(A) + My (A)
(2(2 F1/2m1 4 1/2mt1)’ Mo (4), “(A)>
if A C B,, for some m € N,
(MI(A)/4707M(A)) ifAC By,

Clearly, g is a continuous function.

g(A) =

CLAIM 3. g is one-to-one.

In order to prove Claim 3, suppose that A, B € T'(X) and g(A4) = g(B).

If A C By, then 0 = M3(A) = My(B). Thus B C By. Since M;(A) =
M;(B), it follows that A and B are (possibly degenerate) subarcs of By
with the same right end point. Thus, A C B or B C A. But u(A) = u(B).
Therefore, A = B.

Therefore we may assume that A ¢ By and B ¢ By. Thus My(A) =
My(B) > 0.
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If A,B C B, for some m € N, then since ms|B,, is one-to-one and
M5(A) = Msy(B), we conclude that A and B are (possibly degenerate)
subarcs of B,, with a common end point. Then A C B or B C A. Since
w(A) = u(B), we conclude that A = B.

Finally, we consider the case when A C B,, and B C B,, with 0 < n <
m. We know that B, C {(z,y) € R? : y < /2" !l and y < 1/2m71 +
1/2m*T1} This implies My(B) < M;(B)/2™~ ! and My(B) = My(A) <
1/2m=1 4 1/2m*1 The way that B, and B,, were constructed implies A C
6(1,1/2771) and Mo(A) = My (A)/2n L.

Since

My(A) + Ma(A) M (B) + Mz(B)
202+ 1/27- L + 1/27+1) ~ 2(2 4 1/2m1 4 1/2m+1)
and n < m, we obtain
224+ 1/2m7 1 1 1/2mTH M (A) > 2(2 +1/27 71 4 1/2" T My (B).
Then
2(24+1/2m7 1 4 1/2mTH2n ML (A) > 2(2+ 1727 +1/27 )2 My (B).
Thus

1 1 1 1 1 1
W(?-ﬁ- om—1 + 2m+1> > on—1 <2+ an + W)
This is a contradiction since n < m. Thus the proof of Claim 3 is complete,
i.e. g is one-to-one.

By Claim 3, the map ¢ is a homeomorphism from 7'(X) onto g(T'(X)) C
R3. Thus we have obtained a model for T'(X).

Let S ={(z,2) €eR?: 0< 2 <1/2,2>2—4r and 0 < 2z < z} and
R = (2/5,2/5)(1/2,1/2). Let 7 : R® — R? be the projection defined as
m(x,y,2) = (z,2).

CLAIM 4. For each m =0,1,..., let A,, = (10 g)~*(S)NC(By), Cpn =
N(X)NC(By) ={A € C(By) : 0 € A}, e = (2,1/2m71 +1/2m+L) for
m>1, eg = (2,0) and D,,, = {A € C(B,,) : em, € A}. Then:

(i) m0g|Cp : Cry — 6(1/2,1/2), o g| Dy, : Dy, — (1/2,0)(1/2,1/2) and
mog|lAn, : Ay — S are homeomorphisms,

(i) 7(9(Am NCp)) = R,

(iii) Bde(p,,) (Am) = (10 g|C(Bm))((1/2,0)(2/5,2/5)), and

(iv) Bedpx) (UfAm s m = 0,1,....}) = (w0 9)1((1/2,0)(2/5,2/5)),

Since B, is an arc with end points 8 and e,,, there is a homeomorphism
from C(B,,) into a triangle such that the following sets are sent to the
respective sides of the triangle: the set of singletons of B,,, C,, and D,,. In
particular, C,,, and D,, are arcs. The end points of C,, are {#} and B,, and
the end points of D,, are {e,,} and B,,. Given A # B in C,, (respectively,
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D), we have A C B or B C A. This implies that u(A) < p(B) or vice
versa. Thus, u|C,, (respectively, u|D,,) is one-to-one.

Let A € Cy,. Then A C B,,,. Thus u(A) < u(B,,) =1/2 and w(g(A)) =
(@(A), 1(4)) € 0(1/2,1/2). Since n(g({9})) = 6 and 7(g(Br)) = (1/2,1/2),
we conclude that wo g|Cp, : C,, — 60(1/2,1/2) is a homeomorphism.

Given A € D,,, we have e,, € A C B,,,. Then M;(A) =2 and M3(A) =
1/2m=t +1/2m+ if m > 1, and My(A) = 2 if m = 0. Thus 7m(g(A)) =
(1/2,u(A)) € (1/2,0)(1/2,1/2). Since pu({es}) = 0 and p(Byp,) = 1/2, we
conclude that 7o g|D,, : Dy, — (1/2,0)(1/2,1/2) is a homeomorphism.

Now we show that 7 o g|.A,, is one-to-one.

Let D; = [J{o : « is a straight line segment contained in B; and the
slope of « is negative}. Let Dy = m1(Dy).

Let m > 0. Let A € C(B,,) be such that A C 77 *(Dy). Let g(A) =
(«',y',2"). We prove that 2/ < 2—4z’ (and then A ¢ A,,). We only consider
the case m > 1, the case m = 0 is easier. Notice that 7m1(A) C [1,2]. Then
A € B and p(A) = (M;(A) — my(A) + Ma(A) — ma(A))/4. Notice that,
from the way B,, was constructed, M;(A) — m1(A) < (2 — M;(A))/4 and
Ma(4) — ma(A) < (2 — My(A))/8. Thus u(4) < (2 — My(4))/2.

Notice that

L = Ml(A)+M2(A) Ml(A)+1/2m—1+1/2m+1
22 + 1/2m=1 + 1/2m+1) = 2(2 + 1/2m—1 ¢ 1/2m+1)
Then

2 M) 2-M(A) _ p(A)
2 1/2m-1 4 1/om+1 = 4 = 2
Thus 2’ = p(A) < 2 — 42/,

Now, we are ready to prove that 7 o g|A,, is one-to-one. It is easy to
show that 7o g|C(By) is one-to-one. So, we only consider the case of m > 1.
Suppose that A, B € A, and 7(g(A)) = w(g(B)). If My(A) = M5(B), then
since 7| B, is one-to-one, A and B are (possibly degenerate) arcs with a
common end point. Thus AC B or B C A. Since u(A) = u(B), we conclude
that A = B. Hence, we may assume that Ms(A) < M3(B). Since 7(g(A4)) =
m(g9(B)), My(A) > M;(B). From the way B,, was constructed, it follows
that B C m; *(Dp). By the paragraph above B ¢ A,,. This contradiction
proves that 7 o g|.A,, is one-to-one.

Now, we show that 7o g|A,, : A,, — S is onto. Let (z,z) € S. Then
0<x<1/2,2>2—4zand 0 < z < z. Since 0 < z < 1/2, we have (z,2) €
6(1/2,1/2) and (1/2,z) € (1/2,0)(1/2,1/2). Thus there exist C € C,, and
D € Dy, such that (4(C), 4(C)) = 7(9(C)) = (2,2) and (1/2,u(D)) =
m(g(D)) = (1/2,2). Let & = (u|C(By))"'(2). Since B,, is an arc, by [6,
6.4(a)], £ is an arc with end points C and D. Notice that for every F € &,
m(g(E)) € R x {z}. Since z < x < 1/2, the Intermediate Value Theorem

1—22" >
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implies that there exists Ey € &€ such that 7(g(Ey)) = (z,2). Notice that
Ey € A,,. Therefore, 7o g|A,, : A,, — S is bijective.

Clearly, A,, is compact. Hence, mog|A,, : A, — S is a homeomorphism.

The equality 7(g(A,, NCp,)) = R is easy to prove. Now, we check that
Bde(s, ) (Am) = (70 gIC(B)) " ((1/2,0)(2/5,2/5)). Let A € C(By) and
let m(g(A)) = (2/,2"). We analyze two possibilities for A.

IfAcC ™ 7 1(Dy), then as we saw before, 2’ < 2 —4a’. Thus A € A,, and
A ¢ (m09)"((1/2,0)(2/5,2/5)).

If AZ 7 Y(Dy), let p,q € A be such that M;(A) = m;(p) and My(A) =
m2(q) (if m=0, we can take ¢=p; then M;(A)=m1(q)). Let J (respectively,
K and L) be the (possibly degenerate) subarc of B, which joins 6 and ¢
(respectively, p and ¢ and 6 and p). Notice that K C A, and K is a one-
point set or K C 7w '(Dg). Then M, (K) = M;(A), My(K) = My(A) and
m(g(K)) = (¢/, u(K)). Thus u(K) =0 or pu(K) < 2 — 42'.

Since A ¢ 7 *(Dy), it is easy to prove that M;(A) = M;(J) and
Ms(A) = My(J). Let a : [0,1] — J be a continuous function such that
a(0) = g and (1) = 0. Let 8 : [0,1] — C’( m) be given by (B(t) =
K U «([0,t]). Then @ is continuous, S(0) = B(1 ) = J, there exists
to € [0,1] such that B(to) = A, Mi(B(t)) = ( ), Ma(B(t)) = My(A)
for every t € [0,1] and if s < ¢, then u(5(s)) < p(5(t)). Thus 7(g(B(t))) =
(', u(B(t))) for each t € [0, 1].

Since J = (1) € Cyn, we have & = u(J) = u(B(1) > p(B(to)) = u(A).
Moreover, since z’ < 1/2, w(g(A)) is in the triangle in R? which has vertices
0, (1/2,1/2) and (1/2,0).

Combining the conclusions of the two cases A C 77 '(Dg) and A ¢
77 (Dy), we find that A, = (10 ¢)"*(S)NC(By) = (rog) ' ({(z,2) €
R?:2 -4z < z and 0 < 2}) N C(B,,). Thus

Bdc(s,,) (Am) C (w0 g|C(Bm)) ™" ((1/2,0)(2/5,2/5)).
Now, take A € (70 g|C(B))~1((1/2,0)(2/5,2/5) — {(1/2,0)}). Then
A Z w71 (Dy). Let B and ty be as before. Since pu(A) > 0, we have A # K
and f can be chosen to be one-to-one. Thus 0 < ¢ and for each t € [0,ty),
w(B(t)) < u(B(te)). This implies that 5(t) & A, for every t < to. Hence,
A € Bde(,,)(An). Since Bde(g,,)(Am) is closed, we conclude that
Bdc(s,,) (Am) = (70 g|C(Bm)) ™" ((1/2,0)(2/5,2/5)).

Finally, the equality
Bdr(x) (U{Am m=0,1,.. .}) — (1 09)"1((1/2,0)(2/5,2/5))
easily follows. This completes the proof of Claim 4.

CLAM 5. There is a homeomorphism F : T(Y) — T(X) such that
F(N(Y)) = N(X).



306 A. ILLANES

Foreachm = 1,2,...,let t,, = 1/2" 1 +1/2"  and E,, = (2,t.:n)(3, tn)
= em(?),tm). Let tg = 0, Eo = (Q,tg)(?),tg) = 60(3,0) and A = U{Am tm =
0,1,...}.

Let G : T(Y) — R? be given by

g(4) if AeT(X),
(1/2 + Ml(A) - 2=tmaM(A N Bm))
G(A) = ife,, € AC B,, UE,, for some m > 0,
(1/2+ My (A) = 2,t,0,2 — my (4))
if AC FE,, for some m=0,1,...

fAeT(X)NnC(By,UE,) and e,, € A, then A C B,,. So u(ANB,,) =
w(A), Mi(A) = 2 and My(A) = 1/2m~1 4 1/2mFt = ¢,.. Tt follows that
(1/2+ My (A) = 2, tim, (AN By)) = (1/2, i, n(A)) = g(A).

If AcC E,, and e, € A, then my(A) = 2. Thus, p(ANB,,) = p({em}) =

This proves that G is well defined. It is easy to show that G is continuous
and one-to-one. Therefore, G : T(Y) — G(T(Y)) is a homeomorphism.

Let S1 = SU([1/2,3/2] x[0,1/2]) U {(x,2) € R?* : 1/2 < 2 < 3/2 and
1/2—2 < 2<0}, Ry = RU([1/2,3/2] x{1/2}) and Rz be the triangle with
vertices 6, (1/2,0) and (2/5,2/5).

Clearly, there is a homeomorphism h : S; — S such that h(R;) = R and
h|Ry is the identity on Ry. Suppose that h = (hy, h3).

For each m = 0,1,...,let 7, = A, U{A € C(B,, UE,,) : e, € A} U
C(E,,). It is easy to check that m o G|F,, : F, — S7 is a homeomorphism.
Let F = U{Fmn : m = 0,1,...}. Notice that Bdyy(F) = Bdrx)(A) =
(mog)71((1/2,0),(2/5,2/5)).

Define F: T(Y) — T(X) by

S (mog)|An) " H(h(n(G(A)))) if A€ F, for some m =0,1,...,
F(A)_{A ? ifA¢gF.

If A e Fp for some m = 0,1,... and A € Clpy)(T(Y) —
Bdp(yy(F). This implies that A € T'(X) and 7(g ( )) (1/2,0)(2/5,2/5) C
Ry. Thus ((m 0 g)]An) " (A(m(G(A)))) = (7 0 g)|Am) " (m(g(A))) = A.

It is easy to show that F'is a homeomorphism.

IfAe N(Y), A€ F,,and A C By, then A € A,,NC,, and 7(G(A)) € R.
Thus h(r(G(A))) € R. Hence, F(A) € ((mrog)|Amn) (h(r(G(A)))) C Cm C
N(X).

IfAe N(Y), Ae F,, and A ¢ C(B,,), then u(ANB,,) = u(By) =1/2
and 2 < M;(A) < 3. Thus 7(G(A)) € R;. Therefore, F(A) € N(X)NC,, C
N(X).

This implies that F(N(Y)) C N(X).

F), then A €
0)



FANS ARE NOT C-DETERMINED 307

Now, let B € N(X) be such that B € A,,. Then B € C,,, and 7(g(B)) €
R. Thus h=*(n(g(B))) € R = RU([1/2,3/2] x {1/2}).

If 1 (n(g9(B)) € R then by Claim 4, there exists A € A,,,NC,, C N(X)
such that 7(g(A)) = h=(r(g(B))). Hence B = F(A).

If h~Y(w(g(B)) € [1/2,3/2] x {1/2}, then h=(n(g(B))) = (1/2 +t —
2,1/2) for some t € [2,3]. Let A = B,, U([2,t] X {t;n}). Then 7(G(A4)) =
h=1(m(g(B))) and A € N(Y).

This completes the proof that F(N(Y)) = N(X).

CLAM 6. C(X) is homeomorphic to C(Y).

Since N(X) (respectively, N(Y)) is a Z-set in C ({0}, X) (respectively,
C({6},Y)) and C ({0}, X) and C({6},Y") are homeomorphic to Hilbert cubes
(see Theorem 2.3 of [4]), by [2] (see also 1.3 of [4]), there exists a homeomor-
phism F : C({0},Y) — C({6}, X) such that F1|N(Y) = F|N(Y). Define
Fy: C(Y) = C(X) by

F(4) ifAeT(Y),
Fy(A) = {Fl(A) if AcC({6},Y).

Then F5 is a homeomorphism.

Final remarks. Recently, Acosta ([1]) has introduced the following no-
tion: A continuum X is said to have unique hyperspace C(X) provided that
if Y is a continuum such that C'(X) = C(Y), then X =2 Y. He has showed
that if X is a continuum in one of the following classes, then X has unique
hyperspace C(X):

(a) finite graphs different from an arc and from a circle,

(b) hereditarily indecomposable continua,

(c¢) indecomposable continua such that all their proper nondegenerate
subcontinua are arcs, and

(d) metric compactifications of the half-ray [0, co).

Macfas in [8] has defined the corresponding notion with 2% in place of
C(X); namely, X is said to have unique hyperspace 2% provided that if Y
is a continuum such that 2% 22 2Y then X = Y. He has showed that the
hereditarily indecomposable continua have unique hyperspace 2¥.

The following question remains open.

QUESTION [9, Questions 0.62]. Is the class of circle-like continua C-
determined?
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