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FANS ARE NOT C-DETERMINED

BY

ALEJANDRO ILLANES (MÉXICO)

Abstract. A continuum is a compact connected metric space. For a continuum X,
let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two
nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that
C(X) and C(Y ) are homeomorphic. This answers a question by Sam B. Nadler, Jr.

1. Introduction. A continuum is a compact connected metric space.
For a continuum X, let C(X) denote the space of all the subcontinua of
X, with the Hausdorff metric H. A Whitney map for C(X) is a continuous
function µ : C(X) → [0, 1] such that µ(X) = 1, µ({x}) = 0 for each x ∈ X
and if A ( B, then µ(A) < µ(B). For the existence of Whitney maps
see [9, 0.50.1]. A dendroid is an arcwise connected hereditarily unicoherent
continuum. Given points p and q in a dendroid X, pq denotes the unique
arc joining p and q if p 6= q, and pq = {p} if p = q. A fan is a dendroid
with only one ramification point. Let X be a fan with ramification point v;
it is said to be a smooth fan provided that if {xn}

∞

n=1 is a sequence in X
converging to a point x ∈ X, then vxn → vx.

A class Λ of continua is said to be C-determined ([9, Definition 0.61)])
provided that if X,Y ∈ Λ and C(X) ∼= C(Y ) (C(X) is homeomorphic to
C(Y )), then X ∼= Y . The following classes of continua are known to be
C-determined:

(a) finite graphs different from an arc ([3, 9.1]),

(b) hereditarily indecomposable continua ([9, 0.60]),

(c) smooth fans ([4, Corollary 3.3]),

(d) indecomposable continua such that all their proper nondegenerate
subcontinua are arcs ([7]), and

(e) metric compactifications of the half-ray [0,∞) ([1]).

Recently, answering a question by Nadler, the author showed that the
class of chainable continua is not C-determined ([5]). In [9, Questions 0.62]
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Nadler asked if the class of fans is C-determined. Here, we answer this ques-
tion in the negative.

Description of the examples. Given two points p, q in the Euclidean
plane R2, pq denotes the convex segment which joins them. Given points
p1, . . . , pn in R2, let 〈p1, . . . , pn〉 = p1p2 ∪ p2p3 ∪ . . .∪ pn−1pn. Given a point
p ∈ R2 and a subset A of R2, let p + A = {p + a : a ∈ A}. The set of
positive integers is denoted by N. Let θ = (0, 0) ∈ R2, B0 = θ(2, 0) and
C0 = (2, 0)(3, 0).

Let

Z = 〈θ, (2, 1), (1, 2), (3, 3)〉.

Notice that Z ⊂ {(x, y) ∈ R2 : 0 ≤ y ≤ 2x}.
For each n ∈ N, let

Pn =

(

1−
1

2n−1
, 1−

1

2n−1

)

+

{

1

3 · 2n
p : p ∈ Z

}

Let

P =
[

⋃

{Pn : n ∈ N}
]

∪ {(1, 1)}.

Notice that P ⊂ {(x, y) ∈ R2 : 0 ≤ y ≤ 2x}.
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Given m ∈ N, let

Bm = θ

(

1,
1

2m−1

)

∪

{(

1 + x,
1

2m−1
+

y

2m+1

)

: (x, y) ∈ P

}

,

Cm =

(

2,
1

2m−1
+

1

2m+1

)(

3,
1

2m−1
+

1

2m+1

)

.

Notice that Bm ⊂ {(x, y) ∈ R2 : y ≤ x/2m−1 and y ≤ 1/2m−1 + 1/2m+1}.
Finally, let

X =
⋃

{Bm : m = 0, 1, . . .}, Y =
⋃

{Bm ∪Cm : m = 0, 1, . . .}.

Clearly, X and Y are fans and X is not homeomorphic to Y .

C(X) is homeomorphic to C(Y ). Fix a Whitney map µ : C(X) →
[0, 1]. By the main result of [10], we may assume that µ(Bm) = 1/2 for
every m = 0, 1, . . . Let πi : R2 → R1 be the projection on the ith coordinate,
i = 1, 2.

We denote the Hilbert cube by Q. Let C({θ},X) = {A ∈C(X) : θ ∈A}
and C({θ}, Y ) = {A ∈ C(Y ) : θ ∈ A}. In [4], Eberhart and Nadler con-
structed geometric models for the hyperspace of subcontinua of a smooth
fan. We will use some of the ideas and results from that paper.

As a consequence of Theorem 2.3 of [4], we know that C({θ},X) and
C({θ}, Y ) are homeomorphic to Q.

Let N(X) = {θp ∈ C(X) : p ∈ X}, N(Y ) = {θp ∈ C(Y ) : p ∈ Y },
T (X) =

⋃

{C(Bm) : m = 0, 1, . . .}, and T (Y ) =
⋃

{C(Bm ∪ Cm) : m =
0, 1, . . .}. Clearly, T (X) and T (Y ) are compact, C({θ},X) ∩ T (X) =
N(X), C({θ}, Y ) ∩ T (Y ) = N(Y ), C(X) = C({θ},X) ∪ T (X) and C(Y ) =
C({θ}, Y ) ∪ T (Y ).

Claim 1. N(X) (respectively , N(Y )) is a Z-set in C({θ},X) (respec-
tively , C({θ}, Y )).

Recall that, by definition, N(X) is a Z-set in C({θ},X) if and only for
each ε > 0, there exists a continuous function

gε : C({θ},X) → C({θ},X)−N(X)

such that H(gε(A), A) < ε for every A ∈ C({θ},X).
In order to prove Claim 1, let ε > 0. Suppose that ε < 1. Let Dε = {p ∈

X : ‖p − θ‖ ≤ ε/2}. Then define gε : C({θ},X) → C({θ},X) −N(X) by

gε(A) = A ∪Dε.

Clearly, gε has the required properties. Therefore, N(X) is a Z-set in
C({θ},X). Similarly, N(Y ) is a Z-set in C({θ}, Y ).

Notice that, for each m ∈ N, π2|Bm : Bm → [0, 1/2m−1 + 1/2m+1] is
one-to-one. Let B = {A ∈ C(X) : π1(A) ⊂ [1, 2]}.
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For i = 1, 2, let Mi,mi : C(X) → R be the maps defined by Mi(A) =
maxπi(A) and mi(A) = minπi(A). Let ω : N(X) ∪ B → [0, 1] be given by

ω(A) =



























M1(A) +M2(A)

2(2 + 1/2m−1 + 1/2m+1)

if A ∈ C(Bm) ∩N(X) for some m ∈ N,
M1(A)/4 if A ⊂ B0 and A ∈ N(X),
(M1(A)−m1(A) +M2(A) −m2(A))/4 if A ∈ B.

Claim 2. The set B and the function ω have the following properties:

(a) B is closed in C(X), B ∩N(X) = ∅,
(b) ω is continuous,

(c) if A ( B, then ω(A) < ω(B),

(d) ω({p}) = 0 for each {p} ∈ N(X) ∪ B and ω(Bm) = 1/2 for each

m = 0, 1, . . .

Statements (a), (b) and (d) are easy to prove. In order to prove (c), let
A,B ∈ N(X) be such that A ( B ⊂ Bm for somem ∈ N. Since A and B are
arcs, θ is an end point of A and of B and π2|Bm is one-to-one, we conclude
that M2(A) < M2(B). Notice that M1(A) ≤ M1(B). Thus ω(A) < ω(B).
The case A,B ⊂ B0 is easier. The case A,B ∈ B follows from the fact that
π2|Bm is one-to-one for every m ∈ N. Finally, the case A ∈ B and B ∈ N(X)
is easy to check. This completes the proof of Claim 2.

Clearly, N(X)∪B is a compact subset of C(X). Thus we may apply the
main result of [10]. In this way we may assume that the Whitney map µ
also satisfies µ|(N(X) ∪ B) = ω.

Let g : T (X) → R3 be given by

g(A) =















(

M1(A) +M2(A)

2(2 + 1/2m−1 + 1/2m+1)
,M2(A), µ(A)

)

if A ⊂ Bm for some m ∈ N,
(M1(A)/4, 0, µ(A)) if A ⊂ B0,

Clearly, g is a continuous function.

Claim 3. g is one-to-one.

In order to prove Claim 3, suppose that A,B ∈ T (X) and g(A) = g(B).

If A ⊂ B0, then 0 = M2(A) = M2(B). Thus B ⊂ B0. Since M1(A) =
M1(B), it follows that A and B are (possibly degenerate) subarcs of B0

with the same right end point. Thus, A ⊂ B or B ⊂ A. But µ(A) = µ(B).
Therefore, A = B.

Therefore we may assume that A * B0 and B * B0. Thus M2(A) =
M2(B) > 0.
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If A,B ⊂ Bm for some m ∈ N, then since π2|Bm is one-to-one and
M2(A) = M2(B), we conclude that A and B are (possibly degenerate)
subarcs of Bm with a common end point. Then A ⊂ B or B ⊂ A. Since
µ(A) = µ(B), we conclude that A = B.

Finally, we consider the case when A ⊂ Bn and B ⊂ Bm with 0 < n <
m. We know that Bm ⊂ {(x, y) ∈ R2 : y ≤ x/2m−1 and y ≤ 1/2m−1 +
1/2m+1}. This implies M2(B) ≤ M1(B)/2m−1 and M2(B) = M2(A) ≤
1/2m−1 +1/2m+1. The way that Bn and Bm were constructed implies A ⊂
θ(1, 1/2n−1) and M2(A) = M1(A)/2

n−1.
Since

M1(A) +M2(A)

2(2 + 1/2n−1 + 1/2n+1)
=

M1(B) +M2(B)

2(2 + 1/2m−1 + 1/2m+1)

and n < m, we obtain

2(2 + 1/2m−1 + 1/2m+1)M1(A) > 2(2 + 1/2n−1 + 1/2n+1)M1(B).

Then

2(2 + 1/2m−1 + 1/2m+1)2n−1M2(A) > 2(2 + 1/2n−1 + 1/2n+1)2m−1M2(B).

Thus

1

2m−1

(

2 +
1

2m−1
+

1

2m+1

)

>
1

2n−1

(

2 +
1

2n−1
+

1

2n+1

)

.

This is a contradiction since n < m. Thus the proof of Claim 3 is complete,
i.e. g is one-to-one.

By Claim 3, the map g is a homeomorphism from T (X) onto g(T (X)) ⊂
R3. Thus we have obtained a model for T (X).

Let S = {(x, z) ∈ R2 : 0 ≤ x ≤ 1/2, z ≥ 2 − 4x and 0 ≤ z ≤ x} and
R = (2/5, 2/5)(1/2, 1/2). Let π : R3 → R2 be the projection defined as
π(x, y, z) = (x, z).

Claim 4. For each m = 0, 1, . . . , let Am = (π ◦ g)−1(S) ∩C(Bm), Cm =
N(X) ∩ C(Bm) = {A ∈ C(Bm) : θ ∈ A}, em = (2, 1/2m−1 + 1/2m+1) for

m ≥ 1, e0 = (2, 0) and Dm = {A ∈ C(Bm) : em ∈ A}. Then:

(i) π ◦ g|Cm : Cm → θ(1/2, 1/2), π ◦ g|Dm : Dm → (1/2, 0)(1/2, 1/2) and

π ◦ g|Am : Am → S are homeomorphisms,
(ii) π(g(Am ∩ Cm)) = R,
(iii) BdC(Bm)(Am) = (π ◦ g|C(Bm))−1((1/2, 0)(2/5, 2/5)), and
(iv) BdT (X)(

⋃

{Am : m = 0, 1, . . .}) = (π ◦ g)−1((1/2, 0)(2/5, 2/5)).

Since Bm is an arc with end points θ and em, there is a homeomorphism
from C(Bm) into a triangle such that the following sets are sent to the
respective sides of the triangle: the set of singletons of Bm, Cm and Dm. In
particular, Cm and Dm are arcs. The end points of Cm are {θ} and Bm and
the end points of Dm are {em} and Bm. Given A 6= B in Cm (respectively,
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Dm), we have A ( B or B ( A. This implies that µ(A) < µ(B) or vice
versa. Thus, µ|Cm (respectively, µ|Dm) is one-to-one.

Let A ∈ Cm. Then A ⊂ Bm. Thus µ(A) ≤ µ(Bm) = 1/2 and π(g(A)) =
(ω(A), µ(A)) ∈ θ(1/2, 1/2). Since π(g({θ})) = θ and π(g(Bm)) = (1/2, 1/2),
we conclude that π ◦ g|Cm : Cm → θ(1/2, 1/2) is a homeomorphism.

Given A ∈ Dm, we have em ∈ A ⊂ Bm. Then M1(A) = 2 and M2(A) =
1/2m−1 + 1/2m+1 if m ≥ 1, and M1(A) = 2 if m = 0. Thus π(g(A)) =
(1/2, µ(A)) ∈ (1/2, 0)(1/2, 1/2). Since µ({em}) = 0 and µ(Bm) = 1/2, we
conclude that π ◦ g|Dm : Dm → (1/2, 0)(1/2, 1/2) is a homeomorphism.

Now we show that π ◦ g|Am is one-to-one.
Let D1 =

⋃

{α : α is a straight line segment contained in B1 and the
slope of α is negative}. Let D0 = π1(D1).

Let m ≥ 0. Let A ∈ C(Bm) be such that A ⊂ π−1
1 (D0). Let g(A) =

(x′, y′, z′). We prove that z′ < 2−4x′ (and then A 6∈ Am). We only consider
the case m ≥ 1, the case m = 0 is easier. Notice that π1(A) ⊂ [1, 2]. Then
A ∈ B and µ(A) = (M1(A) − m1(A) + M2(A) − m2(A))/4. Notice that,
from the way Bm was constructed, M1(A) − m1(A) ≤ (2−M1(A))/4 and
M2(A)−m2(A) ≤ (2−M1(A))/8. Thus µ(A) < (2−M1(A))/2.

Notice that

x′ =
M1(A) +M2(A)

2(2 + 1/2m−1 + 1/2m+1)
<

M1(A) + 1/2m−1 + 1/2m+1

2(2 + 1/2m−1 + 1/2m+1)
.

Then

1− 2x′ >
2−M1(A)

2 + 1/2m−1 + 1/2m+1
≥

2−M1(A)

4
≥

µ(A)

2
.

Thus z′ = µ(A) < 2− 4x′.
Now, we are ready to prove that π ◦ g|Am is one-to-one. It is easy to

show that π ◦g|C(B0) is one-to-one. So, we only consider the case of m ≥ 1.
Suppose that A,B ∈ Am and π(g(A)) = π(g(B)). If M2(A) = M2(B), then
since π2|Bm is one-to-one, A and B are (possibly degenerate) arcs with a
common end point. Thus A⊂B or B ⊂ A. Since µ(A) = µ(B), we conclude
that A = B. Hence, we may assume that M2(A) < M2(B). Since π(g(A)) =
π(g(B)), M1(A) > M1(B). From the way Bm was constructed, it follows
that B ⊂ π−1

1 (D0). By the paragraph above B 6∈ Am. This contradiction
proves that π ◦ g|Am is one-to-one.

Now, we show that π ◦ g|Am : Am → S is onto. Let (x, z) ∈ S. Then
0 ≤ x ≤ 1/2, z ≥ 2− 4x and 0 ≤ z ≤ x. Since 0 ≤ z ≤ 1/2, we have (z, z) ∈
θ(1/2, 1/2) and (1/2, z) ∈ (1/2, 0)(1/2, 1/2). Thus there exist C ∈ Cm and
D ∈ Dm such that (µ(C), µ(C)) = π(g(C)) = (z, z) and (1/2, µ(D)) =
π(g(D)) = (1/2, z). Let E = (µ|C(Bm))−1(z). Since Bm is an arc, by [6,
6.4(a)], E is an arc with end points C and D. Notice that for every E ∈ E ,
π(g(E)) ∈ R × {z}. Since z ≤ x ≤ 1/2, the Intermediate Value Theorem
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implies that there exists E0 ∈ E such that π(g(E0)) = (x, z). Notice that
E0 ∈ Am. Therefore, π ◦ g|Am : Am → S is bijective.

Clearly, Am is compact. Hence, π◦g|Am : Am → S is a homeomorphism.
The equality π(g(Am ∩ Cm)) = R is easy to prove. Now, we check that

BdC(Bm)(Am) = (π ◦ g|C(Bm))−1((1/2, 0)(2/5, 2/5)). Let A ∈ C(Bm) and
let π(g(A)) = (x′, z′). We analyze two possibilities for A.

If A ⊂ π−1
1 (D0), then as we saw before, z′ < 2− 4x′. Thus A 6∈ Am and

A 6∈ (π ◦ g)−1((1/2, 0)(2/5, 2/5)).
If A 6⊆ π−1

1 (D0), let p, q ∈ A be such that M1(A) = π1(p) and M2(A) =
π2(q) (if m=0, we can take q=p; then M1(A)=π1(q)). Let J (respectively,
K and L) be the (possibly degenerate) subarc of Bm which joins θ and q
(respectively, p and q and θ and p). Notice that K ⊂ A, and K is a one-
point set or K ⊂ π−1

1 (D0). Then M1(K) = M1(A), M2(K) = M2(A) and
π(g(K)) = (x′, µ(K)). Thus µ(K) = 0 or µ(K) < 2− 4x′.

Since A 6⊆ π−1
1 (D0), it is easy to prove that M1(A) = M1(J) and

M2(A) = M2(J). Let α : [0, 1] → J be a continuous function such that
α(0) = q and α(1) = θ. Let β : [0, 1] → C(Bm) be given by β(t) =
K ∪ α([0, t]). Then β is continuous, β(0) = K, β(1) = J , there exists
t0 ∈ [0, 1] such that β(t0) = A, M1(β(t)) = M1(A), M2(β(t)) = M2(A)
for every t ∈ [0, 1] and if s ≤ t, then µ(β(s)) ≤ µ(β(t)). Thus π(g(β(t))) =
(x′, µ(β(t))) for each t ∈ [0, 1].

Since J = β(1) ∈ Cm, we have x′ = µ(J) = µ(β(1)) ≥ µ(β(t0)) = µ(A).
Moreover, since x′ ≤ 1/2, π(g(A)) is in the triangle in R2 which has vertices
θ, (1/2, 1/2) and (1/2, 0).

Combining the conclusions of the two cases A ⊂ π−1
1 (D0) and A 6⊆

π−1
1 (D0), we find that Am = (π ◦ g)−1(S) ∩ C(Bm) = (π ◦ g)−1({(x, z) ∈

R2 : 2− 4x ≤ z and 0 ≤ z}) ∩C(Bm). Thus

BdC(Bm)(Am) ⊂ (π ◦ g|C(Bm))−1((1/2, 0)(2/5, 2/5)).

Now, take A ∈ (π ◦ g|C(Bm))−1((1/2, 0)(2/5, 2/5) − {(1/2, 0)}). Then
A 6⊆ π−1

1 (D0). Let β and t0 be as before. Since µ(A) > 0, we have A 6= K
and β can be chosen to be one-to-one. Thus 0 < t0 and for each t ∈ [0, t0),
µ(β(t)) < µ(β(t0)). This implies that β(t) 6∈ Am for every t < t0. Hence,
A ∈ BdC(Bm)(Am). Since BdC(Bm)(Am) is closed, we conclude that

BdC(Bm)(Am) = (π ◦ g|C(Bm))−1((1/2, 0)(2/5, 2/5)).

Finally, the equality

BdT (X)

(

⋃

{Am : m = 0, 1, . . .}
)

= (π ◦ g)−1((1/2, 0)(2/5, 2/5))

easily follows. This completes the proof of Claim 4.

Claim 5. There is a homeomorphism F : T (Y ) → T (X) such that

F (N(Y )) = N(X).
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For eachm = 1, 2, . . . , let tm = 1/2m−1+1/2m+1 and Em = (2, tm)(3, tm)
= em(3, tm). Let t0 = 0, E0 = (2, t0)(3, t0) = e0(3, 0) and A =

⋃

{Am : m =
0, 1, . . .}.

Let G : T (Y ) → R3 be given by

G(A) =



















g(A) if A ∈ T (X),
(1/2 +M1(A)− 2, tm, µ(A ∩Bm))

if em ∈ A ⊂ Bm ∪Em for some m ≥ 0,
(1/2 +M1(A)− 2, tm, 2−m1(A))

if A ⊂ Em for some m = 0, 1, . . .

If A ∈ T (X) ∩ C(Bm ∪ Em) and em ∈ A, then A ⊂ Bm. So µ(A ∩ Bm) =
µ(A), M1(A) = 2 and M2(A) = 1/2m−1 + 1/2m+1 = tm. It follows that
(1/2 +M1(A)− 2, tm, µ(A ∩Bm)) = (1/2, tm, µ(A)) = g(A).

If A ⊂ Em and em ∈ A, then m1(A) = 2. Thus, µ(A∩Bm) = µ({em}) =
0 = 2−m1(A).

This proves that G is well defined. It is easy to show that G is continuous
and one-to-one. Therefore, G : T (Y ) → G(T (Y )) is a homeomorphism.

Let S1 = S ∪ ([1/2, 3/2] × [0, 1/2]) ∪ {(x, z) ∈ R2 : 1/2 ≤ x ≤ 3/2 and
1/2−x ≤ z ≤ 0}, R1 = R∪ ([1/2, 3/2]×{1/2}) and R2 be the triangle with
vertices θ, (1/2, 0) and (2/5, 2/5).

Clearly, there is a homeomorphism h : S1 → S such that h(R1) = R and
h|R2 is the identity on R2. Suppose that h = (h1, h3).

For each m = 0, 1, . . . , let Fm = Am ∪ {A ∈ C(Bm ∪ Em) : em ∈ A} ∪
C(Em). It is easy to check that π ◦G|Fm : Fm → S1 is a homeomorphism.
Let F =

⋃

{Fm : m = 0, 1, . . .}. Notice that BdT (Y )(F) = BdT (X)(A) =
(π ◦ g)−1((1/2, 0), (2/5, 2/5)).

Define F : T (Y ) → T (X) by

F (A) =

{

((π ◦ g)|Am)−1(h(π(G(A)))) if A ∈ Fm for some m = 0, 1, . . . ,
A if A 6∈ F .

If A ∈ Fm for some m = 0, 1, . . . and A ∈ ClT (Y )(T (Y ) − F), then A ∈
BdT (Y )(F). This implies that A ∈ T (X) and π(g(A)) ∈ (1/2, 0)(2/5, 2/5) ⊂
R2. Thus ((π ◦ g)|Am)−1(h(π(G(A)))) = ((π ◦ g)|Am)−1(π(g(A))) = A.

It is easy to show that F is a homeomorphism.

If A ∈ N(Y ), A ∈ Fm and A ⊂ Bm, then A ∈ Am∩Cm and π(G(A)) ∈ R.
Thus h(π(G(A))) ∈ R. Hence, F (A) ∈ ((π ◦g)|Am)−1(h(π(G(A)))) ⊂ Cm ⊂
N(X).

If A ∈ N(Y ), A ∈ Fm and A 6∈ C(Bm), then µ(A∩Bm) = µ(Bm) = 1/2
and 2 ≤ M1(A) ≤ 3. Thus π(G(A)) ∈ R1. Therefore, F (A) ∈ N(X)∩Cm ⊂
N(X).

This implies that F (N(Y )) ⊂ N(X).
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Now, let B ∈ N(X) be such that B ∈ Am. Then B ∈ Cm and π(g(B)) ∈
R. Thus h−1(π(g(B))) ∈ R1 = R ∪ ([1/2, 3/2] × {1/2}).

If h−1(π(g(B)) ∈ R, then by Claim 4, there exists A ∈ Am∩Cm ⊂ N(X)
such that π(g(A)) = h−1(π(g(B))). Hence B = F (A).

If h−1(π(g(B)) ∈ [1/2, 3/2] × {1/2}, then h−1(π(g(B))) = (1/2 + t −
2, 1/2) for some t ∈ [2, 3]. Let A = Bm ∪ ([2, t] × {tm}). Then π(G(A)) =
h−1(π(g(B))) and A ∈ N(Y ).

This completes the proof that F (N(Y )) = N(X).

Claim 6. C(X) is homeomorphic to C(Y ).

Since N(X) (respectively, N(Y )) is a Z-set in C({θ},X) (respectively,
C({θ}, Y )) and C({θ},X) and C({θ}, Y ) are homeomorphic to Hilbert cubes
(see Theorem 2.3 of [4]), by [2] (see also 1.3 of [4]), there exists a homeomor-
phism F1 : C({θ}, Y ) → C({θ},X) such that F1|N(Y ) = F |N(Y ). Define
F2 : C(Y ) → C(X) by

F2(A) =

{

F (A) if A ∈ T (Y ),
F1(A) if A ∈ C({θ}, Y ).

Then F2 is a homeomorphism.

Final remarks. Recently, Acosta ([1]) has introduced the following no-
tion: A continuum X is said to have unique hyperspace C(X) provided that
if Y is a continuum such that C(X) ∼= C(Y ), then X ∼= Y . He has showed
that if X is a continuum in one of the following classes, then X has unique
hyperspace C(X):

(a) finite graphs different from an arc and from a circle,

(b) hereditarily indecomposable continua,

(c) indecomposable continua such that all their proper nondegenerate
subcontinua are arcs, and

(d) metric compactifications of the half-ray [0,∞).

Maćıas in [8] has defined the corresponding notion with 2X in place of
C(X); namely, X is said to have unique hyperspace 2X provided that if Y
is a continuum such that 2X ∼= 2Y , then X ∼= Y . He has showed that the
hereditarily indecomposable continua have unique hyperspace 2X .

The following question remains open.

Question [9, Questions 0.62]. Is the class of circle-like continua C-
determined?
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