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QUOTIENTS OF TORIC VARIETIES BY ACTIONS OF SUBTORI

BY

JOANNA Ś W I Ȩ C I C K A (WARSZAWA)

Abstract. Let X be an algebraic toric variety with respect to an action of an algebraic
torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open
subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns
out that it is enough to consider open S-invariant subsets of X with a good quotient by T .
These subsets can be described by subfans of Σ. We give a description of such subfans and
also a description of fans corresponding to quotient varieties. Moreover, we give conditions
for a subfan to define an open subset with a complete quotient space.

Introduction. Let X be a toric variety with respect to an action of
a torus S and let T be a subtorus of S. In this paper we study quotients
of open subsets of X by the induced action of T . If there exists a good
quotient q : U → U//T and V ⊂ U is a T -invariant subset such that the
closures of T -orbits in U and in V coincide, then there exists a good quotient
q1 : V → V//T and the induced morphism of quotient spaces U//T → U//T
is an open embedding. Such a V ⊂ U is called a saturated subset of U . Any
T -invariant open subset with a good quotient with respect to T is contained
as a saturated subset in a T -maximal set, i.e. a set which is not properly
contained as a saturated subset in any subvariety of X which admits a good
quotient.

First we prove that any T -maximal set U ⊂ X is a toric subvariety of X
(see Corollary 2.4). Then for a given subtorus T of S we give a description of
the fan of any toric variety X which admits a good quotient with respect to
the induced action of T (Theorem 4.1). The good quotient of a toric variety
is again a toric variety with respect to an action of some quotient of S/T .
Theorem 4.1 gives the construction of the fan of X//T .

In the last section we give a description of the fan of any open, T -maximal
subset U in X (see Theorem 5.2). This problem was solved in [2] in the
particular case of X = Pn, and in [5] in the case of a vector space.

Questions connected with quotients of toric varieties were also considered
in [7] and [6]. In [7] only projective toric varieties were considered and the
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problem of existence of the Chow quotient was investigated. In [6], for a given
toric variety X, the author found an open toric subvariety U of the affine
toric variety Cn such that X is a quotient of U by an action of a subtorus T ⊂
(C∗)n extended by a finite group. I was informed that also H. A. Hamm of
Münster University considered similar problems and independently obtained
results concerning good quotients of toric varieties.

I should also mention that Corollary 2.4 follows from Corollary to The-
orem II in [1], but the proof of this general theorem is much more involved.

1. Notation and terminology. All varieties and algebraic spaces con-
sidered are assumed to be defined over the field C of complex numbers. Let
G be an algebraic reductive group acting on an algebraic variety X and let
Y be an algebraic variety with a trivial action of G.

Definition 1.1. A G-morphism q : X → Y is said to be a good quotient
if the following conditions are satisfied:

(i) q is affine,

(ii) OY = π∗(OX)G.

Let U ⊂ V be G-invariant subvarieties of X. Then U is G-saturated in V
if for any x ∈ U , the closures of the G-orbit Gx in U and in V coincide. We
recall from [2]

Definition 1.2. An openG-invariant subset U inX is calledG-maximal
if there exists a good quotient U → U//G and if U is maximal in X with
respect to saturated inclusion in the family of all open, G-invariant subsets
of X which admit a good quotient with respect to the action of G.

Let S be an algebraic torus and let N(S) be the Z-module of one-
parameter subgroups of S. Denote by E(S) the vector space N(S) ⊗Z R.
For any subtorus T ⊂ S we shall consider N(T ) and E(T ) as embedded in
N(S) and E(S) respectively.

By a cone we always mean a convex cone in E(S) which is generated by
a finite number of vectors from N(S).

In the set of all strictly convex cones in E(S) we have a (partial) order
≺: for any strictly convex cones σ, σ′, σ′ ≺ σ if and only if σ′ is a face of σ.
For any cone σ ⊂ E(S), we denote its relative interior by σ◦.

A collection Σ = {σ1, . . . , σm} of strictly convex cones is a fan if

(i) for any σi, σj ∈ Σ, σi ∩ σj ≺ σi, and

(ii) if σ1 ∈ Σ and σ ≺ σ1 then σ ∈ Σ.

If Σ is a fan then we denote by Σmax the subset of Σ consisting of all
cones maximal with respect to ≺.
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For any collection {σ1, . . . , σm} of strictly convex cones satisfying

σi ∩ σj ≺ σi for i, j = 1, . . . ,m,(1)

we can define a fan Σ(σ1, . . . , σm) =
⋃m
i=1{σ : σ ≺ σi}.

Let X be a toric variety with respect to an action of S (see [9]). It will be
called an S-toric variety. Then in particular we have a distinguished point
x0 of the dense orbit and we consider S embedded in X by the morphism
i : S → X where i(s) = s · x0. Let Σ(X) be the fan corresponding to X. A
strictly convex cone σ ⊂ E(S) is contained in Σ(X) if and only if there exists
an open, S-invariant, affine subset U(σ) ⊂ X such that σ is generated (as a
cone with vertex 0) by all one-parameter subgroups α ∈ N(S) satisfying the
following condition: limt→0 α(t)x0 exists in U(σ). Moreover for any open,
S-invariant subsets U(σ1), U(σ2), we have U(σ1) ⊂ U(σ2) if and only if
σ1 ≺ σ2.

For any fan Σ in E(S) there exists a unique (up to isomorphism) normal
toric variety U(Σ) corresponding to this fan. For any point x ∈ U(Σ) there
is a unique cone σ(x) of minimal dimension such that x ∈ U(σ). Then Sx
is the unique closed orbit of S contained in U(σ(x)). The relative interior of
σ(x) will be denoted by σ(x)◦. It follows from the definition of σ(x) that if
x = limt→0 α(t)x0 for a one-parameter subgroup α ∈ E(S) then α ∈ σ(x)◦

and the isotropy group Sx is generated by all one-dimensional subtori of S
corresponding to the one-parameter subgroups α ∈ lin(σ(x)). Moreover

σ(x) ≺ σ(y)⇔ y ∈ Sx.(2)

Let g : S → S′ be a homomorphism of algebraic tori and π : E(S) →
E(S′) be the linear map induced by the morphism of Z-modules N(S) →
N(S′). Assume that X is a toric variety with respect to an action of S, Y a
toric variety with respect to an action of S′, and q : X → Y a morphism such
that q|S = g (we consider S and S′ as subsets of X and Y respectively). Let
Σ, Υ be the fans in E(S) and E(S′) defining X and Y respectively. Then
for any σ ∈ Σ there exists a cone τ ∈ Υ such that π(σ) ⊂ τ .

Lemma 1.3. Let X, Y, π, Σ, Υ and q : X → Y be as above. Then q is
affine if and only if for every τ ∈ Υ , there exists σ ∈ Σ such that

∀σ′ ∈ Σ : σ′ ⊂ π−1(τ)⇔ σ′ ≺ σ.(3)

P r o o f. Let V be an open, affine S′-invariant subvariety in Y . Then
V ' U(τ) for a convex cone τ ∈ Υ . Assume first that q is affine. Then
q−1(V ) is affine and S-invariant and therefore it corresponds to a convex
cone σ ∈ Σ. Obviously π(σ) ⊂ τ . Let σ′ ∈ Σ and assume that σ′ ⊂ π−1(τ).
Then U(σ′) ⊂ q−1(V ). Since q−1(V ) = U(σ) this is equivalent to σ′ ≺ σ.

Assume now that there exists σ ∈ Σ such that (3) is satisfied. The open
set q−1(U(τ)) is an open subvariety of X, invariant under the action of S.
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Therefore it is a toric variety (with the action of S) and it corresponds to
a subfan Σ′ ⊂ Σ. By assumption Σ′ is the fan of faces of the cone σ and
hence q−1(U(τ)) is the affine toric variety U(σ). This proves that q is affine
and ends the proof.

Let α : C∗ → S be a one-parameter subgroup of S. In Section 3 we shall
need

Lemma 1.4. Let U(Σ) be an S-toric variety and x, y ∈ U(Σ). Assume
that y = limt→0 α(t)x. Then σ(x) ≺ σ(y) and (σ(x)◦ + {α}) ∩ σ(y)◦ 6= ∅.

P r o o f. In this case y ∈ Sx, hence σ(x) ≺ σ(y) by (2). Let β be any
one-parameter subgroup of S such that limt→0 β(t)x0 = sx. Then β ∈ σ(x)◦.
Consider the subtorus T0 generated by α(C∗) and β(C∗) in S. Let Y be the
closure of the orbit T0x0 in U(Σ). Then x, y ∈ Y , and y ∈ T0x. There exist
n,m ∈ N such that limt→0(nα + mβ)(t)x0 = sy for some s ∈ T0. It follows
that (nα + σ(x)◦) ∩ σ(y)◦ 6= ∅. This implies that (α + σ(x)◦) ∩ σ(y)◦ 6= ∅,
completing the proof.

2. Two theorems on existence of good quotients. Assume that T
is a torus contained in the torus S. Let X be a toric variety with respect
to an action of S given by a fan Σ. Then we have an induced action of T
on X. We shall prove (Corollary 2.4) that all T -maximal subsets U in X are
S-invariant and therefore are also toric varieties with respect to the action
of S. We first consider the general situation of actions of algebraic groups
H and G on X.

Theorem 2.1. Let X be an algebraic variety and H, G be subgroups of
Aut(X). Assume that H is connected , G is reductive and for any h ∈ H and
g ∈ G, hgh−1 ∈ G (i.e. H normalizes G in Aut(X)). Let U be an open,
G-invariant subset of X such that there exists a good quotient U → U//G.
Then there exists a good quotient H · U → H · U//G.

P r o o f. Consider any points x1, x2 ∈ H · U and let Hi = {h ∈ H : hxi
∈ U} for i = 1, 2. Since U is open, the sets Hi, i = 1, 2, are open subsets
of the connected group H. Hence there exists h ∈ H such that hxi ∈ U for
i = 1, 2 so xi ∈ h−1U for i = 1, 2. The set h−1U is open. For any g ∈ G, there
exists g1 ∈ G such that gh−1 = h−1g1 and so h−1U is G-invariant. As there
exists a good quotient U//G, so does h−1U//G. It follows from Theorem C
of [4] that there exists a good quotient H · U → H · U//G, completing the
proof.

Theorem 2.2. Let X be an algebraic normal variety and H, G be al-
gebraic subgroups of Aut(X). Assume that H is connected , G is reductive
and for any h ∈ H and g ∈ G, hgh−1 = g (i.e. H centralizes G in Aut(X)).
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Let U be an open, G-invariant subset of X such that there exists a good
quotient U → U//G. Then U is G-saturated in H · U .

P r o o f. By Proposition 2.6 of [2] it is enough to prove that U is T0-
saturated in H · U for any one-dimensional subtorus T0 of G. Let α be a
one-parameter subgroup of G with α(C∗) = T0. Assume that x ∈ U and
limt→0 α(t)x = y ∈ H · U . We show that y ∈ U . The point y is fixed under
the action of T0. Let X0 be the irreducible component of XT0 containing y.
It follows from the definition that x ∈ U ∩ (X0)+. The group H acts on XT0

(as the action of H commutes with the action of T0). Since H is connected,
irreducible components of XT0 are H-invariant. It follows that H acts on
X0 and on X+

0 .
Since y ∈ H · U , there exists h ∈ H such that hy ∈ U and therefore

hy ∈ U ∩X0. In particular U ∩X0 6= ∅ and hx ∈ (U ∩X0)+ ⊂ U ∩ (X0)+.
The point y is in the closure of H ·hx and therefore in the closure of (U∩X0)+

in U . Since there exists a good quotient U → U//G, the Reduction Theorem
[3] implies that so does q0 : U → U//T0. Then F = q−10 (q0(X0 ∩ U)) is a
closed subset in U . In particular (X0 ∩ U)+ is closed in U . It follows that
x ∈ (U ∩ X0)+, hence y ∈ U ∩ X0 and therefore U is saturated in H · U ,
completing the proof.

Corollary 2.3. Let X, H and G be as in Theorem 2.2. Let U be any
G-maximal set in X. Then U is H-invariant.

P r o o f. This follows immediately from Theorems 2.1 and 2.2.

Corollary 2.4. Let X be a toric variety with respect to an action of the
torus S and let T be a subtorus of S. Assume that U ⊂ X is a T -maximal
subset of X. Then U is a toric variety with respect to the action of S.

P r o o f. Since U is open and S-invariant by the previous corollary, it
contains the open orbit of S in X.

Corollary 2.5. Under the conditions of Corollary 2.4 the quotient U//T
is a toric variety with respect to the action of some quotient of the torus S.

P r o o f. According to Corollary 2.4, S has an open orbit in U . Therefore
a quotient of S (in fact a quotient of S/T ) has a dense orbit in U//T and
U//T is a normal variety.

3. Affine case. First assume that X is an affine toric variety (with re-
spect to an action of S). Then X is defined by a strictly convex cone σ:
Σmax = {σ} (in E(S) = N(S) ⊗Z R). Since X is affine, there exists a good
quotient q : X → X//T . The quotient X//T is also affine. We shall describe
the cone of the toric variety X//T .

As before, let E(T ) = N(T )⊗R be the linear subspace of the linear space
E(S) spanned by all one-parameter subgroups of T. Let E′ be the vector
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space spanned by E(T ) and the elements from the face of σ of smallest di-
mension containing σ∩E(T ). Moreover let T ′ be the subtorus in S generated
by all one-parameter subgroups in E′ (i.e. T ′ is generated by all elements
t ∈ {α(C∗) : α ∈ E′ ∩N(S)}). Let p : S → S/T ′ be the quotient morphism.
Then E(S)/E′ ' E(S/T ′) and if π′ : E(S) → E(S)/E′ ' E(S/T ′) is the
quotient map then for any σ ∈ Σ, π′(σ) is a (strictly) convex (rational) cone
in E(S/T ′).

Proposition 3.1. Let X be an affine toric variety with an action of S
defined by a (strictly) convex cone σ in E(S). Assume that T ′ and π′ are as
above. Then T ′ acts trivially on X//T , X//T is a toric variety with respect
to the action of S/T ′ and this toric variety is defined in E(S/T ′) by the cone
π′(σ).

P r o o f. Since the orbit S · q(x0) is dense in X//T and X//T is normal, it
is enough to show that there exists a point y ∈ q−1(q(x0)) = Tx0 such that
the isotropy group of q(y) equals T .

Let y ∈ Tx0 be a point with a closed T -orbit. Then E(T )∩σ(y)◦ 6= ∅. The
isotropy group Sy is generated by one-parameter subgroups α ∈ lin(σ(y))
and it follows that Sy · T = T ′ acts trivially on X//T . On the other hand, if
s ∈ S acts trivially on X//T then sTy ⊂ Ty hence s ∈ T ·Sy = T ′. Therefore
X//T is a toric variety with respect to the action of S/T ′. Moreover X//T
is affine, because X is affine.

Let τ ⊂ E(S/T ′) be the strictly convex cone defining the toric variety
X//T ′. We prove that τ = π′(σ).

Notice that π′(σ) ⊆ τ since we have a morphism of the S-toric variety
X into the S/T ′-toric variety relative to the morphism of tori. Assume that
v ∈ (τ \ π′(σ)) ∩N(S/T ′). This element v corresponds to a one-dimensional
subtorus Tv ⊂ S/T ′ such that the orbit Tv · q(x0) is not closed in X//T ′.
Consider now the action of the torus T1 = p−1(Tv) on X. We claim that
the T ′-invariant set Z = T1x0 is closed. This follows from the fact that
(π′)−1(lin(v)) ∩ σ = E(T1) ∩ σ = {0}. The quotient morphism q is closed
and therefore the set q(Z) = Tv · q(x0) is closed, contrary to the choice of v.
This completes the proof.

In Section 5 we shall need the following easy lemma:

Lemma 3.2. Let U(σ) be an affine S-toric variety , T ⊂ S, σ1 a face
of σ and let π : E(S) → E(S)/E(T ) be the quotient map. The set U(σ1) is
T -saturated in U(σ) if and only if for any σ2 ≺ σ,

π(σ◦2) ∩ π(σ1) 6= ∅ ⇒ σ2 ≺ σ1.(4)

P r o o f. Assume first that U(σ1) is T -saturated in X and σ2 ≺ σ. Sup-
pose that π(σ◦2) ∩ π(σ1) 6= ∅ and σ2 is not a face of σ1. Let σ3 ≺ σ be
the face of smallest dimension such that σi ≺ σ3 for i = 1, 2. It follows that
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π(σ◦3) ∩ π(σ1) 6= ∅. Then there exist α ∈ E(T ) and β ∈ σ1 such that
α + β ∈ σ◦3 . It follows that the limits limt→0(α + β)(t)x0 and limt→0 β(t)x0
exist in X. Let y = limt→0(α + β)(t)x0 and z = limt→0 β(t)x0. Let T0 be
the subtorus of S generated by α, β. It follows that y ∈ U(σ3), z ∈ U(σ1)
and T0y is the only closed T0-orbit in T0x0, hence y ∈ T0z. Since β(C∗) ∈ Sz
we infer that limt→0 α(t)z ∈ T0y ⊂ U(σ3) − U(σ1). But this contradicts the
assumption that U(σ1) is saturated in U(σ) hence σ2 ≺ σ1.

Assume now that for any face σ2 of σ condition (4) is satisfied. We have
to show that U(σ1) is T -saturated in U(σ). It is enough to show that for
any z ∈ U(σ1) and any one-parameter subgroup α ∈ E(T ) if the limit
limt→0 α(t)z exists in U(σ) then y = limt→0 α(t)z ∈ U(σ1). This follows
from 1.4.

Remark 3.3. Condition (4) of Lemma 3.2 is equivalent to

π−1(σ1) ∩ |σ| = σ1.(5)

4. Quotients of toric varieties. In this section we generalize the result
of Section 3 to the case of any toric variety. In particular in Theorem 4.1
we give a necessary and sufficient condition for existence of a good quotient
of a toric variety and a description of the fan of the quotient toric variety
U(Σ)//T .

Let X be a toric variety with respect to an action of the torus S. Assume
that X is defined by a fan Σ and Σmax = {σ1, . . . , σm} and consider the
induced action of T on X. We define the vector space ET,Σ ⊂ E(S) to be
generated by E(T ) and by all σ ∈ Σ such that σ◦ ∩ E(T ) 6= ∅, and T ′ to
be the subtorus of S generated by all (images of) one-parameter subgroups
in ET,Σ ∩ N(S). Then ET,Σ = E(T ′). Let π : E(S) → E(S)/E(T ) and
π′ : E(S)→ E(S)/E(T ′) be the quotient maps.

We shall prove the following

Theorem 4.1. Let X, S, Σ, T, T ′, π and π′ be as above. There exists
a good quotient q : X → X//T if and only if for any σi ∈ Σmax,

π−1(π(σi)) ∩ |Σ| = σi.(6)

Moreover if (6) is satisfied then X//T is a toric variety with respect to the
action of S/T ′ corresponding to the fan Υ in E(S)/E(T ′) with Υmax =
{π′(σi) : σi ∈ Σmax}.

P r o o f. Assume first that there exists a good quotient q : X → X//T .
Then X//T is a toric variety with respect to the action of a quotient of
torus S. We shall show that (6) is satisfied.

Let V ⊂ X//T be any open, affine subvariety invariant with respect to the
induced action of S. The set q−1(V ) is an open S-invariant affine subvariety
in X and therefore corresponds to a strictly convex cone σ ∈ Σ. Obviously
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q : U(σ) → V is a good quotient of this affine toric variety and therefore
we can use Proposition 3.1. It follows that U(σ)//T is a toric variety with
respect to an action of the quotient of S by the subtorus T ′′ generated by
T and all one-parameter subgroups contained in the maximal face σ′′ ≺ σ
such that E(T ) ∩ (σ′′)◦ 6= ∅. As X//G is a good quotient and V is an open
subset of X//T , it follows that T ′′ acts trivially and S/T ′′ acts effectively
on X//T . Therefore T ′′ = T ′ and E(T ′′) = E(T ′). Let Υ be the fan defining
X//T in E(T ′).

The quotient morphism of toric varieties X → X//T induces a map of
the corresponding fans. Let σi ∈ Σmax. There exists τj ∈ Υmax such that
π′(σi) ⊂ τj . Then by Lemma 1.3, (π′)−1(τj) ∩ |Σ| is a strictly convex cone
in Σmax containing σi. Since σi ∈ Σmax, we have σi = (π′)−1(τj) ∩ |Σ| and
π′(σi) = τj . But π′ = π0 ◦ π, where π0 : E(S)/E(T ) → E(S)/E(T ′) is the
quotient map. Hence

σi = (π′)−1(π′(σi)) ∩ |Σ| = π−1(π−10 (π′(σi)) ∩ |Σ|.

From this it follows easily that condition (6) is satisfied.

Assume now that the assumptions of Theorem 4.1 are satisfied. Then for
any σ ∈ Σ,

σ ∩ E(T ) ⊂
⋂

σi∈Σmax

σi =: σ0.(7)

Then E(T ′) = ET,Σ is the vector space generated by E(T ) and the face σ′0
of σ0 of minimal dimension containing E(T ) ∩ |Σ|. It follows that for any
cone σi ∈ Σ, π′(σi) is a strictly convex cone in E(S)/E(T ′).

We show that

∀i, j : π(σi ∩ σj) = π(σi) ∩ π(σj) ≺ π(σi).(8)

Let α ∈ |Σ| be such that π(α) ∈ π(σi) ∩ π(σj). It follows from (6) that
α ∈ σi ∩ σj . This proves that π(σi) ∩ π(σj) = π(σi ∩ σj). Assume now
that τ ≺ π(σi) is the face of minimal dimension containing π(σi)∩π(σj). Let
σ′ := π−1(τ)∩σi ≺ σi. Since π((σ′)◦) = τ◦ we have π((σ′)◦)∩π(σi)∩π(σj) 6=
∅. It follows that (σ′)◦ ∩ σj 6= ∅ and hence σ′ ≺ σj . This shows that
τ ⊂ π(σi) ∩ π(σj) and hence τ = π(σi) ∩ π(σj). This proves (8).

It follows that there exists a fan Υ in E(S)/E(T ′) such that {π(σi) : σi
∈ Σmax} = Υmax. Let Y = U(Υ ). The corresponding morphism Q : X → Y
of toric varieties is affine (because condition (3) of Lemma 1.3 is satisfied).
For any σ ∈ Σmax, the open subvariety U(σ) is saturated in X with respect
to the action of T ′. This follows from (6) because U(σ) = q−1(U(τ)), where
τ = π(σ). Then by Proposition 3.1, q|U(σ) : U(σ)→ U(τ) is a good quotient
with respect to the action of T , which proves that q : X → U(Υ ) is a good
quotient: U(Υ ) = X//T ′. This ends the proof of Theorem 4.1.
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Corollary 4.2. Let x, S, Σ be as in Theorem 4.1. Let E′ be a linear
rational subspace in E(S) and let T be the subtorus of S generated by all
one-parameter subgroups α ∈ E′. Assume that for any σ′, σ′′ ∈ Σ,

{σ′ + E′} ∩ (σ′′)◦ 6= ∅ ⇒ ∃σi ∈ Σmax : σ′, σ′′ ≺ σi.(9)

Then there exists a good quotient X → X//T .

P r o o f. Assume that (9) is satisfied. Let π : E(S) → E(S)/E′ be the
quotient map. For any σi ∈ Σmax and any σ ∈ Σ we have

π(σ◦) ∩ π(σi) 6= ∅ ⇒ σ ≺ σi.

Therefore for any σi ∈ Σmax, π
−1(π(σi))∩|Σ| ⊂ σi. Hence π−1(π(σi))∩|Σ| =

σi and condition (6) of Theorem 4.1 is satisfied. Hence there exists a good
quotient X → X//T .

Theorem 4.3. Let S be an n-dimensional torus, T a subtorus of S and
X a toric variety defined by a fan Σ in E(S). Assume that there exists a
good quotient X → X//T . Then X//T is complete if and only if E(S) =⋃
σ∈Σ{σ + E(T )}.

P r o o f. Notice that E(S) =
⋃
σ∈Σ{σ+E(T )} is equivalent to E(S)/E(T )

=
⋃
σ∈Σ π(σ). Let, as before, T ′ be the torus generated by all one-parameter

subgroups in ET,Σ and let π′ : E(S) → E(S)/E(T ′) be the quotient mor-
phism. Then by Corollary 2.5, X//T is a toric variety with respect to the
action of T ′ and is defined in E(S)/E(T ′) by a fan Υ such that Υmax =
{π′(σi) : σi ∈ Σmax}. A toric variety corresponding to a fan Υ in the vector
space E(S/T ′) is complete if and only if

⋃
τ∈Υ τ = E(S/T ′). Obviously if⋃

σ∈Σ
π(σ) = E(S)/E(T )

then ⋃
σ∈Σ

π′(σ) = E(S)/E(T ′).

Since
⋃
σ∈Σ π

′(σ) =
⋃
τ∈Υ τ it follows that X//T ′ = X//T is complete.

On the other hand, assume that⋃
σ∈Σ

π′(σ) = E(S)/E(T ′).(10)

We have to prove that ⋃
σ∈Σ

π(σ) = E(S)/E(T ).

We have assumed that there exists a good quotient U(Σ)→ U(Σ)//T , hence
according to Theorem 4.1 the condition (6) is satisfied for any σ ∈ Σmax.
Let σ′0 be a cone of minimal dimension containing E(T )∩ |Σ|. Then by (10),
E(T ′) = lin(σ′0) + E(T ) and lin(σ′0) + E(T ) = σ′0 + E(T ). Let α ∈ E(S).
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Then there exists σ ∈ Σ such that α ∈ σ + E(T ′) = σ + σ′0 + E(T ). Since
σ′0 ≺ σi for any σi ∈ Σmax (see (7)), we get α ∈ |Σ|+E(T ). This shows that⋃
σ∈Σ π(σ) = E(S)/E(T ), and completes the proof.

Theorem 4.4. Assume that X is a toric variety with respect to an action
of a torus S and T is a subtorus of S. There exists a good quotient q : X →
X//T if and only if for any one-parameter group α ∈ N(T ) there exists a
good quotient qα : X → X//Tα with respect to the action of Tα = α(C∗).

P r o o f. Assume first that there exists a good quotient q : X → X//T ,
α : C∗ → T is a one-parameter subgroup of T and Tα is the corresponding
subtorus in T . Consider the line E(Tα), the subspace Eα = ETα,Σ and the
linear maps πα : E(S) → E(S)/Eα, π

′
α : E(S)/Eα → E(S)/E(T ′), where

as before T ′ ⊂ S is the subtorus generated by all one-parameter subgro-
ups contained in ET,Σ . By Theorem 4.1, the homomorphism π : E(S) →
E(S)/E(T ) satisfies condition (6). But π = π′α ◦ πα, hence πα also satis-
fies (6). Again by Theorem 4.1 we infer that there exists a good quotient
q : X → X//Tα.

Assume now that for any one-parameter subgroup α of T there exists a
good quotient qα : X → X//Tα. It follows from Theorem 4.1 that the qu-
otient morphism πα satisfies condition (6), i.e. for any σi ∈ Σmax, and σ ∈ Σ,

π−1α (πα(σi)) ∩ |Σ| = σi

or equivalently

σ ⊂ π−1α (πα(σi))⇒ σ ≺ σi.(11)

Consider now σi ∈ Σmax and let σ ⊂ π−1(π(σi)) for some σ ∈ Σ. Then
σ ⊂ {σi + E(T )}. There exists a one-parameter subgroup α of T such that
σ◦ ∩ {σi + lin(α)} 6= 0. Consider, as before, the morphism πα : E(S) →
E(S)/E(Tα). Since qα : X → X//Tα is a good quotient, it follows that
σ ≺ σi, and this ends the proof.

Remark 4.5. Theorem 4.4 is also a special case of the Reduction The-
orem [3], but the proof in the general situation (the action of a reductive
group on a normal algebraic variety) uses much stronger methods.

5. T -maximal subsets of toric varieties. In the previous section we
have described the fans Σ in E(S) such that there exists a good quotient
X → X//T where X is the toric variety corresponding to Σ and T is a
subtorus of S. Now for a given toric variety Y corresponding to a fan Σ0 we
shall describe all T -maximal subsets of Y . It follows from Corollary 2.4 that
any T -maximal subset of Y is a toric subvariety and therefore corresponds
to a subfan Σ ⊂ Σ0. Let, as before, E(T ) ⊂ E(S) be the subspace generated
by the one-parameter subgroups of T , and let π : E(S) → E(S/T ) denote
the linear map induced by the quotient morphism of tori. We shall need
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Lemma 5.1. Let Σ, Σ1 be fans in E(S) and Σ ⊂ Σ1. Then U(Σ) is
T -saturated in U(Σ1) if and only if for any σ ∈ Σ,

σ ≺ τ ∈ Σ1 ⇒ π−1π(σ) ∩ τ = σ.(12)

P r o o f. The proof is an immediate consequence of Remark 3.3.

Theorem 5.2. Let X be an S-toric variety corresponding to the fan
Σ1 and let T be a subtorus of S. An open, T -invariant subvariety U is
T -maximal if and only if U = U(Σ) for a subfan Σ of Σ1 such that for any
σ ∈ Σmax,

π−1π(σ) ∩ |Σ| = σ(13)

and for any τ ∈ Σ1 −Σ there exists σ ∈ Σmax such that either

π−1π(σ) ∩ τ 6⊂ σ(14)

or
π−1π(τ) ∩ σ 6⊂ τ.(15)

P r o o f. Assume first that Σ ⊂ Σ1, U = U(Σ) and Σ satisfies condi-
tions (13)–(15). Then according to Theorem 4.1 there exists a good quotient
U(Σ) → U(Σ)//T . Consider any Σ0 ⊂ Σ1 which satisfies (13) and such
that Σ ⊂ Σ0. We have to prove that if Σ 6= Σ0 then U(Σ) is not satu-
rated in U(Σ0). Assume that τ ∈ Σ0 − Σ and τ ∈ (Σ0)max. For this τ
there exists σ ∈ Σmax satisfying (14) or (15). By the assumption we have
π−1π(τ) ∩ |Σ0| = τ . It follows that σ satisfies (14). The condition (13) for
σ and τ respectively implies that σ ≺ τ . We now use Lemma 5.1 to see that
U(Σ) is not saturated in U(Σ0).

Assume now that U ⊂ X is T -maximal. According to 2.4 and 4.1 there
exists a subfan Σ ⊂ Σ1 such that U = U(Σ) and Σ satisfies (13). Suppose
that there exists a cone τ ∈ Σ1 −Σ such that for any σ ∈ Σmax,

π−1π(σ) ∩ τ ⊂ σ and π−1π(τ) ∩ σ ⊂ τ.

Then it is easy to see that a fan Σ0 = Σ ∪ {τi : τi ≺ τ} satisfies (13)
and U(Σ0) is saturated in U(Σ0). But this contradicts the assumption that
U = U(Σ) is T -maximal in U(Σ1). This ends the proof.
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