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QUOTIENTS OF TORIC VARIETIES BY ACTIONS OF SUBTORI

BY

JOANNA SWIECICKA (WARSZAWA)

Abstract. Let X be an algebraic toric variety with respect to an action of an algebraic
torus S. Let X be the corresponding fan. The aim of this paper is to investigate open
subsets of X with a good quotient by the (induced) action of a subtorus 7' C S. It turns
out that it is enough to consider open S-invariant subsets of X with a good quotient by 7T'.
These subsets can be described by subfans of X. We give a description of such subfans and
also a description of fans corresponding to quotient varieties. Moreover, we give conditions
for a subfan to define an open subset with a complete quotient space.

Introduction. Let X be a toric variety with respect to an action of
a torus S and let T be a subtorus of S. In this paper we study quotients
of open subsets of X by the induced action of T. If there exists a good
quotient ¢ : U — U//T and V C U is a T-invariant subset such that the
closures of T-orbits in U and in V coincide, then there exists a good quotient
q1 : V. — V//T and the induced morphism of quotient spaces U//T — U//T
is an open embedding. Such a V' C U is called a saturated subset of U. Any
T-invariant open subset with a good quotient with respect to 7" is contained
as a saturated subset in a T-maximal set, i.e. a set which is not properly
contained as a saturated subset in any subvariety of X which admits a good
quotient.

First we prove that any T-maximal set U C X is a toric subvariety of X
(see Corollary 2.4). Then for a given subtorus T of S we give a description of
the fan of any toric variety X which admits a good quotient with respect to
the induced action of T' (Theorem 4.1). The good quotient of a toric variety
is again a toric variety with respect to an action of some quotient of S/T.
Theorem 4.1 gives the construction of the fan of X//T.

In the last section we give a description of the fan of any open, T-maximal
subset U in X (see Theorem 5.2). This problem was solved in [2] in the
particular case of X = P™, and in [5] in the case of a vector space.

Questions connected with quotients of toric varieties were also considered
in [7] and [6]. In [7] only projective toric varieties were considered and the

1991 Mathematics Subject Classification: Primary 14L30.
Key words and phrases: group actions, orbit spaces, quotients.
This work was completed with the support of KBN Grant 2 PO3A 03808.

[105]



106 J. SWIECICKA

problem of existence of the Chow quotient was investigated. In [6], for a given
toric variety X, the author found an open toric subvariety U of the affine
toric variety C™ such that X is a quotient of U by an action of a subtorus T' C
(C*)™ extended by a finite group. I was informed that also H. A. Hamm of
Miinster University considered similar problems and independently obtained
results concerning good quotients of toric varieties.

I should also mention that Corollary 2.4 follows from Corollary to The-
orem II in [1], but the proof of this general theorem is much more involved.

1. Notation and terminology. All varieties and algebraic spaces con-
sidered are assumed to be defined over the field C of complex numbers. Let
G be an algebraic reductive group acting on an algebraic variety X and let
Y be an algebraic variety with a trivial action of G.

DEFINITION 1.1. A G-morphism ¢ : X — Y is said to be a good quotient
if the following conditions are satisfied:

(i) q is affine,
(ii) Oy = . (Ox)C.

Let U C V be G-invariant subvarieties of X. Then U is G-saturated in V
if for any = € U, the closures of the G-orbit Gz in U and in V coincide. We
recall from [2]

DEFINITION 1.2. An open G-invariant subset U in X is called G-mazimal
if there exists a good quotient U — U//G and if U is maximal in X with
respect to saturated inclusion in the family of all open, G-invariant subsets
of X which admit a good quotient with respect to the action of G.

Let S be an algebraic torus and let N(S) be the Z-module of one-
parameter subgroups of S. Denote by E(S) the vector space N(S) ®z R.
For any subtorus 7' C S we shall consider N(T) and E(T) as embedded in
N(S) and E(S) respectively.

By a cone we always mean a convex cone in E(S) which is generated by
a finite number of vectors from N(.5).

In the set of all strictly convex cones in F(S) we have a (partial) order
<: for any strictly convex cones o,0’, ¢’ < o if and only if ¢’ is a face of o.
For any cone o C E(S), we denote its relative interior by o°.

A collection X' = {oy,...,0.,} of strictly convex cones is a fan if
(i) for any 04,05 € X, 0, Noj < 0y, and
(ii) if o9y € ¥ and 0 < 071 then 0 € X.

If ¥ is a fan then we denote by X.x the subset of X' consisting of all
cones maximal with respect to <.
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For any collection {o1,...,0,,} of strictly convex cones satisfying
(1) o;No; <o, fori,j=1,...,m,
we can define a fan Y(o1,...,04,) = U2, {0 : 0 < 04}

Let X be a toric variety with respect to an action of S (see [9]). It will be
called an S-toric variety. Then in particular we have a distinguished point
xq of the dense orbit and we consider S embedded in X by the morphism
i:S — X where i(s) = s xp. Let X(X) be the fan corresponding to X. A
strictly convex cone o C E(S) is contained in X' (X) if and only if there exists
an open, S-invariant, affine subset U(c) C X such that o is generated (as a
cone with vertex 0) by all one-parameter subgroups a € N(S) satisfying the
following condition: lim; o a(t)xg exists in U(o). Moreover for any open,
S-invariant subsets U(o1), U(oz), we have U(o1) C U(og) if and only if
01 < 039.

For any fan X' in E(S) there exists a unique (up to isomorphism) normal
toric variety U(X) corresponding to this fan. For any point z € U(X) there
is a unique cone o(z) of minimal dimension such that z € U(c). Then Sz
is the unique closed orbit of S' contained in U(o(x)). The relative interior of
o(x) will be denoted by o(z)°. It follows from the definition of o(z) that if
x = limy_,0 a(t)zo for a one-parameter subgroup o € E(S) then o € o(z)°
and the isotropy group S, is generated by all one-dimensional subtori of S
corresponding to the one-parameter subgroups « € lin(o(x)). Moreover

(2) o(x) < o(y) &y € Sz.

Let g : S — S’ be a homomorphism of algebraic tori and 7 : E(S) —
E(S’) be the linear map induced by the morphism of Z-modules N(S) —
N(S’). Assume that X is a toric variety with respect to an action of S, Y a
toric variety with respect to an action of S’, and ¢ : X — Y a morphism such
that ¢|S = g (we consider S and S’ as subsets of X and Y respectively). Let
X, T be the fans in E(S) and E(S’) defining X and Y respectively. Then
for any o € X there exists a cone 7 € 1" such that w(o) C 7.

LEMMA 1.3. Let X, Y, 7, X, T and q: X — Y be as above. Then q is
affine if and only if for every T € 1, there exists o € X such that

(3) Vo'eX: o crnlrt)ed <o

Proof. Let V be an open, affine S’-invariant subvariety in Y. Then
V ~ U(r) for a convex cone 7 € 1. Assume first that ¢ is affine. Then
q (V) is affine and S-invariant and therefore it corresponds to a convex
cone o € X. Obviously w(c) C 7. Let ¢/ € ¥ and assume that o’ C 771(7).
Then U(o’) C ¢~ (V). Since ¢~ 1(V) = U(o) this is equivalent to o’ < 0.

Assume now that there exists o € X such that (3) is satisfied. The open
set ¢~1(U(7)) is an open subvariety of X, invariant under the action of S.
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Therefore it is a toric variety (with the action of S) and it corresponds to
a subfan Y’ C ¥. By assumption X’ is the fan of faces of the cone o and
hence ¢~ *(U()) is the affine toric variety U(c). This proves that g is affine
and ends the proof.

Let o : C* — S be a one-parameter subgroup of S. In Section 3 we shall
need

LEMMA 1.4. Let U(X) be an S-toric variety and x,y € U(X). Assume
that y = limy—0 a(t)z. Then o(z) < o(y) and (o(z)° + {a}) Na(y)° # 0.

Proof. In this case y € Sx, hence o(z) < o(y) by (2). Let 3 be any
one-parameter subgroup of S such that lim;_,o 8(t)zo = sx. Then § € o(x)°.
Consider the subtorus Ty generated by «(C*) and 8(C*) in S. Let Y be the
closure of the orbit Toxg in U(X). Then 2,y € Y, and y € Tox. There exist
n,m € N such that lim;_,o(na + mp)(t)xg = sy for some s € Ty. It follows
that (na + o(x)°) No(y)° # 0. This implies that (a + o(z)°) No(y)° # 0,
completing the proof.

2. Two theorems on existence of good quotients. Assume that T
is a torus contained in the torus S. Let X be a toric variety with respect
to an action of S given by a fan Y. Then we have an induced action of T’
on X. We shall prove (Corollary 2.4) that all T-maximal subsets U in X are
S-invariant and therefore are also toric varieties with respect to the action
of S. We first consider the general situation of actions of algebraic groups
H and G on X.

THEOREM 2.1. Let X be an algebraic variety and H, G be subgroups of
Aut(X). Assume that H is connected, G is reductive and for any h € H and
g € G, hgh™t € G (i.e. H normalizes G in Aut(X)). Let U be an open,
G-invariant subset of X such that there exists a good quotient U — U//G.
Then there exists a good quotient H-U — H -U//G.

Proof. Consider any points 1,29 € H - U and let H; = {h € H : hx;
€ U} for i = 1,2. Since U is open, the sets H;, i = 1,2, are open subsets
of the connected group H. Hence there exists h € H such that hx; € U for
i=1,2s0x; € h~'U fori = 1,2. The set h~'U is open. For any g € G, there
exists g; € G such that gh™' = h~1g; and so h~'U is G-invariant. As there
exists a good quotient U//G, so does h™1U//G. Tt follows from Theorem C
of [4] that there exists a good quotient H - U — H - U//G, completing the
proof.

THEOREM 2.2. Let X be an algebraic normal variety and H, G be al-
gebraic subgroups of Aut(X). Assume that H is connected, G is reductive
and for any h € H and g € G, hgh™' = g (i.e. H centralizes G in Aut(X)).
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Let U be an open, G-invariant subset of X such that there exists a good

quotient U — U//G. Then U is G-saturated in H - U.

Proof. By Proposition 2.6 of [2] it is enough to prove that U is Tp-
saturated in H - U for any one-dimensional subtorus Ty of G. Let « be a
one-parameter subgroup of G with «o(C*) = T,. Assume that x € U and
lim; g a(t)z =y € H - U. We show that y € U. The point y is fixed under
the action of Ty. Let X, be the irreducible component of X70 containing y.
It follows from the definition that x € U N (Xo)*. The group H acts on X710
(as the action of H commutes with the action of Tp). Since H is connected,
irreducible components of X7 are H-invariant. It follows that H acts on
Xo and on X,

Since y € H - U, there exists h € H such that hy € U and therefore
hy € UN Xy. In particular UN Xg # @ and he € (U N Xo)™ C U N (Xo)™.
The point y is in the closure of H-hz and therefore in the closure of (UNX,)™*
in U. Since there exists a good quotient U — U//G, the Reduction Theorem
3] implies that so does qo : U — U//Tp. Then F = g5 (qo(Xo NT)) is a
closed subset in U. In particular (Xo N U)" is closed in U. It follows that
x € (UN Xo)T, hence y € U N Xy and therefore U is saturated in H - U,
completing the proof.

COROLLARY 2.3. Let X, H and G be as in Theorem 2.2. Let U be any
G-mazximal set in X. Then U is H-invariant.

Proof. This follows immediately from Theorems 2.1 and 2.2.

COROLLARY 2.4. Let X be a toric variety with respect to an action of the
torus S and let T' be a subtorus of S. Assume that U C X is a T-mazimal
subset of X. Then U is a toric variety with respect to the action of S.

Proof. Since U is open and S-invariant by the previous corollary, it
contains the open orbit of S in X.

COROLLARY 2.5. Under the conditions of Corollary 2.4 the quotient U //T
is a toric variety with respect to the action of some quotient of the torus S.

Proof. According to Corollary 2.4, S has an open orbit in U. Therefore
a quotient of S (in fact a quotient of S/T) has a dense orbit in U//T and
U//T is a normal variety.

3. Affine case. First assume that X is an affine toric variety (with re-
spect to an action of S). Then X is defined by a strictly convex cone o:
Ymax = {0} (in E(S) = N(S) ®z R). Since X is affine, there exists a good
quotient ¢ : X — X//T. The quotient X//T is also affine. We shall describe
the cone of the toric variety X//T.

As before, let E(T) = N(T) ® R be the linear subspace of the linear space
E(S) spanned by all one-parameter subgroups of T. Let E’ be the vector
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space spanned by F(T) and the elements from the face of o of smallest di-
mension containing o NE(T'). Moreover let T’ be the subtorus in S generated
by all one-parameter subgroups in E’ (i.e. T’ is generated by all elements
te{a(C*):ae E'NN(S)}). Let p: S — S/T' be the quotient morphism.
Then E(S)/E’ ~ E(S/T') and if «’ : E(S) — E(S)/E' ~ E(S/T") is the
quotient map then for any o € X, 7’(0) is a (strictly) convex (rational) cone
in E(S/T").

PROPOSITION 3.1. Let X be an affine toric variety with an action of S
defined by a (strictly) convex cone o in E(S). Assume that T' and 7' are as
above. Then T’ acts trivially on X//T, X//T is a toric variety with respect
to the action of S/T' and this toric variety is defined in E(S/T") by the cone
7' (o).

Proof. Since the orbit S - ¢(z) is dense in X//T and X//T is normal, it
is enough to show that there exists a point y € ¢~ 1(q(x)) = Tx( such that
the isotropy group of ¢(y) equals 7.

Let y € Tz be a point with a closed T-orbit. Then E(T)No(y)° # 0. The
isotropy group S, is generated by one-parameter subgroups a € lin(o(y))
and it follows that S, - T = T" acts trivially on X//T. On the other hand, if
s € S acts trivially on X//T then sTy C Ty hence s € T- S, = T'. Therefore
X//T is a toric variety with respect to the action of S/T’. Moreover X//T
is affine, because X is affine.

Let 7 C E(S/T') be the strictly convex cone defining the toric variety
X//T'. We prove that 7 = 7/ (o).

Notice that 7/(c) C 7 since we have a morphism of the S-toric variety
X into the S/T’-toric variety relative to the morphism of tori. Assume that
v e (rt\7n'(c)) N N(S/T"). This element v corresponds to a one-dimensional
subtorus T,, C S/T" such that the orbit T, - g(zo) is not closed in X//T".
Consider now the action of the torus T3 = p~*(7,) on X. We claim that
the T’-invariant set Z = Tixg is closed. This follows from the fact that
(')~ Y(lin(v)) N = E(T1) N o = {0}. The quotient morphism ¢ is closed
and therefore the set ¢(Z) = T, - g(xo) is closed, contrary to the choice of v.
This completes the proof.

In Section 5 we shall need the following easy lemma:

LEMMA 3.2. Let U(o) be an affine S-toric variety, T C S, o1 a face
of o and let m: E(S) — E(S)/E(T) be the quotient map. The set U(oy) is
T-saturated in U(c) if and only if for any o9 < o,

(4) m(o3)Nm(o1) #0 = 02 < 01.

Proof. Assume first that U(oy) is T-saturated in X and o3 < 0. Sup-
pose that 7(o9) N m(o1) # 0 and o2 is not a face of o;. Let o3 < o be
the face of smallest dimension such that o; < o3 for ¢ = 1,2. It follows that
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w(0§) N w(o1) # 0. Then there exist @« € E(T) and 8 € oy such that
a+ 8 € o5. It follows that the limits lim;_,o(a + 8)(¢)zo and lims—o B(¢)xo
exist in X. Let y = limy—o(a + 8)(t)xo and z = limy— 5(t)xo. Let Ty be
the subtorus of S generated by «, 8. It follows that y € U(os), z € U(o1)
and Tpy is the only closed Tp-orbit in Toxg, hence y € Tyz. Since S(C*) € S,
we infer that lim_,o a(t)z € Toy C U(os) — U(o1). But this contradicts the
assumption that U(oy) is saturated in U(c) hence o2 < 071.

Assume now that for any face o9 of o condition (4) is satisfied. We have
to show that U(oy) is T-saturated in U(c). It is enough to show that for
any z € U(oy) and any one-parameter subgroup o € E(T) if the limit
lim; g a(t)z exists in U(o) then y = limy_oa(t)z € U(oy). This follows
from 1.4.

REMARK 3.3. Condition (4) of Lemma 3.2 is equivalent to

(5) 7 (o) N o] = ay.

4. Quotients of toric varieties. In this section we generalize the result
of Section 3 to the case of any toric variety. In particular in Theorem 4.1
we give a necessary and sufficient condition for existence of a good quotient
of a toric variety and a description of the fan of the quotient toric variety
U(Z)//T.

Let X be a toric variety with respect to an action of the torus S. Assume
that X is defined by a fan X and Xax = {01,...,0,} and consider the
induced action of T' on X. We define the vector space Ep 5 C E(S) to be
generated by E(T) and by all ¢ € ¥ such that ¢° N E(T) # 0, and T' to
be the subtorus of S generated by all (images of) one-parameter subgroups
in Er xy N N(S). Then Ery = E(T"). Let m : E(S) — E(S)/E(T) and
7' E(S) = E(S)/E(T’) be the quotient maps.

We shall prove the following

THEOREM 4.1. Let X, S, X, T, T', ® and 7" be as above. There exists
a good quotient ¢ : X — X//T if and only if for any 0; € Xax,

(6) (7o) N|Z| = 0.

Moreover if (6) is satisfied then X//T is a toric variety with respect to the
action of S/T' corresponding to the fan T in E(S)/E(T") with Vimax =
{7'(0;) : 04 € Xnax }-

Proof. Assume first that there exists a good quotient ¢ : X — X//T.
Then X//T is a toric variety with respect to the action of a quotient of
torus S. We shall show that (6) is satisfied.

Let V' C X//T be any open, affine subvariety invariant with respect to the
induced action of S. The set ¢=!(V) is an open S-invariant affine subvariety
in X and therefore corresponds to a strictly convex cone o € Y. Obviously
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q: U(o) = V is a good quotient of this affine toric variety and therefore
we can use Proposition 3.1. It follows that U(o)//T is a toric variety with
respect to an action of the quotient of S by the subtorus 7" generated by
T and all one-parameter subgroups contained in the maximal face ¢’ < o
such that E(T) N (¢”)° # 0. As X//G is a good quotient and V is an open
subset of X//T, it follows that T acts trivially and S/T" acts effectively
on X//T. Therefore T" =T’ and E(T") = E(T'). Let T be the fan defining
X//T in E(T).

The quotient morphism of toric varieties X — X//T induces a map of
the corresponding fans. Let 0; € Ynax. There exists 7; € Tinax such that
7'(0;) C 7j. Then by Lemma 1.3, (7/)'(7;) N |X] is a strictly convex cone
in Xpax containing ;. Since 0; € Yhax, we have o; = (7/)7(7;) N || and
7’'(0;) = 7;. But 7’ = my o7, where my : E(S)/E(T) — E(S)/E(T") is the
quotient map. Hence

oi = (n') "M (w'(03)) N | ] = 7~ (mg (' (03)) N | 2.

From this it follows easily that condition (6) is satisfied.
Assume now that the assumptions of Theorem 4.1 are satisfied. Then for
any o € X,

(7) ocNE(T)C ﬂ o; =: 0.

0 € Xmax

Then E(T") = Er x is the vector space generated by E(T) and the face o,
of oy of minimal dimension containing E(T) N |X|. It follows that for any
cone o; € X, 7'(0;) is a strictly convex cone in E(S)/E(T").

We show that

(8) Vi,j: w(oiNoy) =mn(o;) Nw(o;) < m(o;).

Let a € |X] be such that 7(a) € w(o;) N7w(o;). It follows from (6) that
a € 0; Noj;. This proves that w(o;) N w(o;) = m(o; N oj;). Assume now
that 7 < m(0;) is the face of minimal dimension containing 7(o;) N7 (o). Let
o' =771 (r)No; < 0;. Since ((0")°) = 7° we have 7((¢')°) N7 (0;) N7 (0;) #
0. It follows that (¢/)° No; # 0 and hence o/ < o;. This shows that
T C w(o;) N7(o;) and hence 7 = 7(0;) N w(o;). This proves (8).

It follows that there exists a fan 7" in E(S)/E(T") such that {m(c;) : o;
€ Ymax} = Tmax- Let Y = U(T). The corresponding morphism @ : X — Y
of toric varieties is affine (because condition (3) of Lemma 1.3 is satisfied).
For any o € X\,ax, the open subvariety U(o) is saturated in X with respect
to the action of T'. This follows from (6) because U(c) = ¢~ 1(U(7)), where
7 = (o). Then by Proposition 3.1, q|U (o) : U(o) — U(7) is a good quotient
with respect to the action of T, which proves that ¢ : X — U(T) is a good
quotient: U(Y) = X//T’. This ends the proof of Theorem 4.1.



QUOTIENTS OF TORIC VARIETIES 113

COROLLARY 4.2. Let x, S, X be as in Theorem 4.1. Let E’ be a linear
rational subspace in E(S) and let T be the subtorus of S generated by all
one-parameter subgroups o € E'. Assume that for any o’,0"” € X,

(9) {0+ E'YN(6")° £ 0= Fo; € Ypax : 0, 0" < 0;.
Then there exists a good quotient X — X//T.

Proof. Assume that (9) is satisfied. Let w : E(S) — E(S)/E’ be the
quotient map. For any o; € Y,.x and any o € X we have

n(c®)N7(o;) #0 =0 < 0;.

Therefore for any 0; € Zmax, 7 (7(0;))N| Y| C 0y. Hence 7~ (7(0;))N|X]| =
o; and condition (6) of Theorem 4.1 is satisfied. Hence there exists a good
quotient X — X//T.

THEOREM 4.3. Let S be an n-dimensional torus, T a subtorus of S and
X a toric variety defined by a fan X in E(S). Assume that there exists a
good quotient X — X//T. Then X//T is complete if and only if E(S) =
Uses{o+ E(T)}.

Proof. Notice that E(S) = |J,cx{o+E(T)} is equivalent to E(S)/E(T)
= U, ey m(o). Let, as before, T be the torus generated by all one-parameter
subgroups in Er s and let 7’ : E(S) — E(S)/E(T') be the quotient mor-
phism. Then by Corollary 2.5, X//T is a toric variety with respect to the
action of 7" and is defined in E(S)/E(T') by a fan Y such that Vipax =
{7'(0;) : 0 € Xnax}- A toric variety corresponding to a fan 7" in the vector
space E(S/T") is complete if and only if |J, .- 7 = E(S/T"). Obviously if

U #(0) = B(S)/E(T)
oceX

then
U #'(0) = E(S)/E(T).

cexy
Since |J,ex, 7' (0) = U, ey 7 it follows that X//T" = X//T is complete.
On the other hand, assume that

(10) U (o) = E(S)/E(T).
oceX
We have to prove that

U =(0) = E(S)/E(T).

oceXy
We have assumed that there exists a good quotient U(X) — U(X)//T, hence
according to Theorem 4.1 the condition (6) is satisfied for any o € X ax.
Let o, be a cone of minimal dimension containing E(T) N|X|. Then by (10),
E(T") = lin(og) + E(T') and lin(og) + E(T) = o + E(T). Let a € E(S).
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Then there exists o € X such that o € 0 + E(T") = 0 + o}, + E(T). Since
oy < o; for any o; € Eyax (see (7)), we get « € |X| 4+ E(T). This shows that
U,ex (o) = E(S)/E(T), and completes the proof.

THEOREM 4.4. Assume that X is a toric variety with respect to an action
of a torus S and T is a subtorus of S. There exists a good quotient q: X —
X//T if and only if for any one-parameter group o € N(T') there exists a
good quotient qo, : X — X //T,, with respect to the action of T, = a(C*).

Proof. Assume first that there exists a good quotient ¢ : X — X//T,
a : C* — T is a one-parameter subgroup of T' and T, is the corresponding
subtorus in T. Consider the line E(T,), the subspace E, = Er, s and the
linear maps 7, : E(S) — E(S)/Ea, 7, : E(S)/Ey, — E(S)/E(T"), where
as before T C S is the subtorus generated by all one-parameter subgro-
ups contained in Ep 5. By Theorem 4.1, the homomorphism 7 : E(S) —
E(S)/E(T) satisfies condition (6). But m = 7/, o 7, hence m, also satis-
fies (6). Again by Theorem 4.1 we infer that there exists a good quotient
q: X — X//T,.

Assume now that for any one-parameter subgroup « of T' there exists a
good quotient ¢, : X — X//T,. It follows from Theorem 4.1 that the qu-
otient morphism 7, satisfies condition (6), i.e. for any o; € Y ax, and 0 € X,

o (Ma(03)) N 2] = 0

or equivalently
(11) o Cay (Tal(0y)) = 0 < 0.

Consider now o; € Yyax and let ¢ C 7 1(m(0;)) for some o € X. Then
o0 C {o; + E(T)}. There exists a one-parameter subgroup « of T such that
0° N {o; + lin(a)} # 0. Consider, as before, the morphism m, : E(S) —
E(S)/E(T,). Since g, : X — X//T, is a good quotient, it follows that
0 < 0y, and this ends the proof.

REMARK 4.5. Theorem 4.4 is also a special case of the Reduction The-
orem [3], but the proof in the general situation (the action of a reductive
group on a normal algebraic variety) uses much stronger methods.

5. T-maximal subsets of toric varieties. In the previous section we
have described the fans X in E(S) such that there exists a good quotient
X — X//T where X is the toric variety corresponding to X and T is a
subtorus of S. Now for a given toric variety Y corresponding to a fan Xy we
shall describe all T-maximal subsets of Y. It follows from Corollary 2.4 that
any T-maximal subset of Y is a toric subvariety and therefore corresponds
to a subfan X' C Xy. Let, as before, E(T) C E(S) be the subspace generated
by the one-parameter subgroups of 7', and let 7 : E(S) — E(S/T) denote
the linear map induced by the quotient morphism of tori. We shall need
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LEMMA 5.1. Let X, X be fans in E(S) and ¥ C Xy. Then U(XY) is
T-saturated in U(X4) if and only if for any o € X,

(12) oc<T1eX =1 tn(o)NT=0.
Proof. The proof is an immediate consequence of Remark 3.3.

THEOREM 5.2. Let X be an S-toric variety corresponding to the fan
X and let T be a subtorus of S. An open, T-invariant subvariety U is
T-mazimal if and only if U =U(X) for a subfan X of X7 such that for any
(S Ema)u

(13) T in(o)N| X =0

and for any T € Xy — X there exists 0 € Xax such that either
(14) ain(o)NT ¢ o

or

(15) min(r)No ¢ 7.

Proof. Assume first that X C Xy, U = U(X) and X satisfies condi-
tions (13)—(15). Then according to Theorem 4.1 there exists a good quotient
UX) - U(X)//T. Consider any Yy C X which satisfies (13) and such
that X' C Xy. We have to prove that if X' # Xy then U(X) is not satu-
rated in U(Xy). Assume that 7 € Xy — ¥ and 7 € (XZy)max. For this 7
there exists 0 € Xpax satisfying (14) or (15). By the assumption we have
77 in(r) N |Xo| = 7. It follows that o satisfies (14). The condition (13) for
o and T respectively implies that 0 < 7. We now use Lemma 5.1 to see that
U(X) is not saturated in U(Xp).

Assume now that U C X is T-maximal. According to 2.4 and 4.1 there
exists a subfan X' C Xy such that U = U(X) and X satisfies (13). Suppose
that there exists a cone 7 € X7 — X such that for any o € X ax,

mir(e)NTCo and 7 'm(r)NoCT.
Then it is easy to see that a fan Xy = Y U {r; : 7; < 7} satisfies (13)
and U(X)y) is saturated in U(Xy). But this contradicts the assumption that
U =U(X) is T-maximal in U(Xy). This ends the proof.
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