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DISSIDENT ALGEBRAS

BY

ERNST D I E T E R I C H (UPPSALA)

Abstract. Given a euclidean vector space V = (V, 〈 〉) and a linear map η : V ∧V →
V , the anti-commutative algebra (V, η) is called dissident in case η(v ∧w) 6∈ Rv ⊕Rw for
each pair of non-proportional vectors (v, w) ∈ V 2. For any dissident algebra (V, η) and
any linear form ξ : V ∧ V → R, the vector space R× V , endowed with the multiplication

(α, v)(β,w) = (αβ − 〈v, w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)),

is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra
arises in this way.

Vector product algebras are classical special cases of dissident algebras. Via compo-
sition with definite endomorphisms they produce new dissident algebras, thus initiating
a construction of dissident algebras in all possible dimensions m∈{0, 1, 3, 7} and of real
quadratic division algebras in all possible dimensions n∈{1, 2, 4, 8}. For m≤3 and n≤4,
this construction yields complete classifications. For m = 7 it produces a 28-parameter
family of pairwise non-isomorphic dissident algebras. For n = 8 it produces a 49-parameter
family of pairwise non-isomorphic real quadratic division algebras.

0.Terminology. Let k be a field of characteristic not two. By an algebra
we mean any finite-dimensional vector space A over k endowed with a k-
bilinear multiplication A×A→ A, (x, y) 7→ xy. Quadratic algebras, division
algebras and weak division algebras are non-zero algebras with the following
respective properties. The “quadratic property” states thatAhas an identity
element 1 and each x ∈ A satisfies the equation x2 = αx+β1 with α, β ∈ k;
the “division property” states that xy = 0 always implies x = 0 or y = 0;
the “weak division property” states that for each x ∈ A\{0}, the subalgebra
k〈x〉 generated by x is a division algebra.

1.Quadratic algebras. Given any quadratic algebra A, we denote by
V = {v ∈ A | v2 ∈ k1}\(k1\{0}) its set of purely imaginary elements. Frobe-
nius’ lemma (cf. [7]) states that V is a linear subspace of A which is sup-
plementary to k1. Hence Frobenius’ decomposition A = k1⊕ V determines
projections λ : A→ k and ι : A→ V such that x = λ(x)1+ι(x) for all x ∈ A.
Further, λ determines the symmetric bilinear form 〈 〉 : A×A→ k, 〈x, y〉 =
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2λ(x)λ(y) − 1
2λ(xy + yx), with associated quadratic forms q, ω : A → k,

q(x) = 〈x, x〉 = 2λ(x)2 − λ(x2) and ω(x) = q(x)− λ(x)2 = λ(x)2 − λ(x2).

Lemma 1. In each quadratic algebra A, the following identities hold for
all x, y ∈ A:

(i) 〈x, 1〉 = λ(x),

(ii) ι(x)2 = −ω(x)1,

(iii) x2 = 2λ(x)x− q(x)1,

(iv) xy + yx = 2λ(x)y + 2λ(y)x− 2〈x, y〉1.

P r o o f (see also [8]). (i) follows directly from the definition of 〈 〉. The
identity

λ(ι(x)2) = λ((x− λ(x)1)2)

= λ(x2 − 2λ(x)x+ λ(x)21) = λ(x2)− λ(x)2 = −ω(x)

implies (ii). Therefore −ω(x)1 = ι(x)2 = x2 − 2λ(x)x + λ(x)21, whence
(iii) follows. Application of (iii) to each of x + y, x and y in xy + yx =
(x+ y)2 − x2 − y2 yields (iv).

We denote by Q the category of all quadratic algebras, where morphisms
ϕ : A → A′ in Q are algebra morphisms such that ϕ(1) = 1′. We also
consider the category E whose objects are exterior triples (V, ξ, η) consisting
of a finite-dimensional vector space V over k endowed with a symmetric
bilinear form 〈 〉, and of linear maps ξ : V ∧ V → k and η : V ∧ V → V .
Morphisms σ : (V, ξ, η) → (V ′, ξ′, η′) in E are orthogonal linear maps σ :
V → V ′ satisfying ξ = ξ′(σ ∧ σ) and ση = η′(σ ∧ σ). The categories Q
and E are related by the functor G : E → Q which is defined on objects by
G(V, ξ, η) = k × V , with multiplication

(α, v)(β,w) = (αβ − 〈v, w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)),

and on morphisms by G(σ) = Ik × σ.

Consider the following example. The exterior triple E = (k, o, o), with
symmetric bilinear form 〈v, w〉 = −vw, determines the quadratic algebra
A = GE = k × k ∼→ k[X]/(X2 − 1). The endomorphism monoids of E and
A are E(E,E) = {Ik,−Ik} and

Q(A,A) =

{(
Ik 0
0 Ik

)
,

(
Ik 0
0 −Ik

)
,

(
Ik Ik
0 0

)
,

(
Ik −Ik
0 0

)}
respectively. So the map of endomorphisms G(E,E) : E(E,E) → Q(A,A)
is not surjective, and hence the functor G : E → Q is not an equivalence of
categories. But still, it is “nearly an equivalence” in the following sense.
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Proposition 2. The functor G : E → Q has the following properties:

(i) It is faithful and dense. It detects and exhausts isomorphisms (1).
(ii) It induces a bijection G : Ob(E)/' ∼→ Ob(Q)/' between the sets of

isoclasses of the respective categories.
(iii) It induces an equivalence of full subcategories Ga : Ea ∼→Qa, where

Ea is formed by all exterior triples (V, ξ, η) such that the quadratic form
qV : k×V → k, qV (α, v) = α2+〈v, v〉, is anisotropic, and Qa is formed by all
quadratic algebras A whose quadratic form q : A→ k, q(x) = 2λ(x)2−λ(x2),
is anisotropic.

P r o o f. (i) The functor G is faithful and detects isomorphisms, by con-
struction. Given A ∈ Q with Frobenius decomposition A = k1 ⊕ V , define
the exterior triple Γ (A) = ((V, 〈 〉), ξ, η) by

〈v, w〉 = −1

2
λ(vw + wv), ξ(v ∧ w) =

1

2
λ(vw − wv), η(v ∧ w) = ι(vw).

Then the canonical linear isomorphism k×V ∼→ k1⊕V is in fact an isomor-
phism of quadratic algebras GΓ (A)

∼→A. Thus G is dense. Let E = (V, ξ, η)
and E′ = (V ′, ξ′, η′) be exterior triples, and let ϕ ∈ Q(GE,GE′) be an
isomorphism. Then

ϕ =

(
Ik ε
0 σ

)
,

where ε : V → k is a linear form and σ : V
∼→ V ′ is a linear isomorphism.

For each v ∈ V , the identities

ϕ(0, v) = (ε(v), σ(v)),

(ϕ(0, v))2 = ϕ((0, v)2) = ϕ(−〈v, v〉, 0) = (−〈v, v〉, 0)

imply that either ε(v) = 0 or σ(v) = 0. Since kerσ = 0 we conclude that
ε = 0. Now the algebra morphism property of ϕ implies that σ is orthogonal
and satisfies both ξ = ξ′(σ ∧ σ) and ση = η′(σ ∧ σ). Hence σ ∈ E(E,E′)
such that G(σ) = ϕ. Thus G exhausts isomorphisms.

(ii) follows immediately from (i).
(iii) By construction, if E ∈ Ea then GE ∈ Qa, and if A ∈ Qa then

Γ (A) ∈ Ea. So G induces a functor Ga : Ea → Qa which is faithful and
dense. To prove that Ga is full, let E = (V, ξ, η) and E′ = (V ′, ξ′, η′) be
exterior triples in Ea, and let

ϕ =

(
Ik ε
0 σ

)
∈ Q(GE,GE′).

(1) The functor G : E → Q is said to detect isomorphisms if for all E,E′ ∈ E and for
all σ ∈ E(E,E′), if G(σ) is an isomorphism then so is σ. We say that G : E → Q exhausts
isomorphisms if for all E,E′ ∈ E and for each isomorphism ϕ ∈ Q(GE,GE′) there exists
a morphism σ ∈ E(E,E′) such that G(σ) = ϕ.



16 E. DIETERICH

As above, we find that for each v∈V either ε(v)=0 or σ(v)=0. If σ(v) = 0,
then (ε(v)2, 0) = (ϕ(0, v))2 = (−〈v, v〉, 0) implies ε(v)2 + 〈v, v〉 = 0, hence
ε(v) = 0 and v = 0 since qV is anisotropic. We conclude that ε = 0, hence
σ ∈ E(E,E′) and G(σ) = ϕ. So Ga : Ea → Qa is full, faithful and dense, i.e.
an equivalence of categories.

2. Quadratic weak division algebras. Henceforth let k = R. Then
Qa coincides both with the category of all quadratic algebras A whose as-
sociated quadratic form q is positive-definite and with the category of all
quadratic weak division algebras. The first of these statements follows from
Sylvester’s inertia theorem, while the second is a consequence of the follow-
ing proposition.

Proposition 3. For each quadratic algebra A, the following assertions
are equivalent :

(i) A is a weak division algebra.

(ii) ω is positive-semidefinite with null space R1.

(iii) q|V is positive-definite.

(iv) q is positive-definite.

P r o o f. Since each quadratic algebra A is power-associative, the minimal
polynomial µx ∈ R[X] is well defined for all x ∈ A. Lemma 1 shows that
µx = X2 − 2λ(x)X + q(x) for all x ∈ A \ R1, in particular µx = X2 + ω(x)
for all x ∈ V \ {0}. Substitution X 7→ x induces the canonical isomorphism
R[X]/µx

∼→ R〈x, 1〉 (2).

Assuming (i), we conclude for any x ∈ A \ R1 that ω(x) 6= 0, by
Lemma 1(ii). So R〈ι(x)〉 = R〈ι(x), 1〉 ∼→ R[X]/µι(x) is a division algebra.
Thus µι(x) is irreducible and therefore ω(x) > 0. Since ω(x) = 0 for all
x ∈ R1, by definition of ω, this proves (ii).

The equivalence of (ii), (iii) and (iv) follows immediately from the identi-
ties q(x) = λ(x)2 +ω(x) and ω(x) = q(ι(x)), valid for all x ∈ A by definition
of ω resp. by Lemma 1, (ii) and (iii).

Assuming (ii), we conclude for any x ∈ A \R1 that µx is irreducible. So
R〈x〉 = R〈x, 1〉 ∼→R[X]/µx is a division algebra. Since R〈x〉 ∼→R is a division
algebra for all x ∈ R1 \ {0}, this proves (i).

Note that Proposition 3 generalizes the well known fact that q is positive-
definite for each quadratic division algebra (cf. [8]).

A basis b = (b0, b1, . . . , bm) of an algebra A with identity element 1 is

(2) By R〈a, b〉 we denote the subalgebra of A generated by a, b ∈ A.
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called unital if it satisfies the following system of equations:
b0 = 1,
b2i = −1 for all i ∈ {1, . . . ,m},
bibj + bjbi = 0 for all (i, j) ∈ {1, . . . ,m}2 with i 6= j.

Proposition 4. For each algebra A with identity element 1, the following
assertions are equivalent :

(i) A is a quadratic weak division algebra.
(ii) A admits a unital basis.

P r o o f. If A is a quadratic weak division algebra, then A=(A, 〈 〉) is a
euclidean vector space (Proposition 3), thus admitting an orthonormal basis
with leading vector 1. But this is the same thing as a unital basis (Lemma 1).

Conversely, let b = (b0, b1, . . . , bm) be a unital basis of A. Then each
x ∈ A, with coordinate column % in b, satisfies the equation

(∗) x2 = 2%0x− (%T%)1.

So A is a quadratic algebra. Accordingly, a linear form λ : A → R and
quadratic forms q, ω : A → R are associated with A. Comparing (∗) with
Lemma 1(iii) we infer that λ(x) = %0 and q(x) = %T%. Hence q is positive-
definite. Equivalently, A is a quadratic weak division algebra (Proposi-
tion 3).

3. Quadratic division algebras. Given any finite-dimensional real
vector space V , we denote by P(V ) the set of all 2-dimensional subspaces
of V . Each linear map η : V ∧ V → V induces a map η : P(V ) → P(V ) ∪
{0}, Rv⊕Rw 7→ Rη(v∧w). We call η dissident if η(P ) 6⊂ P for all P ∈ P(V ),
and incident otherwise.

Proposition 5. Let A be a real quadratic algebra. Then A is a division
algebra if and only if the following two conditions are satisfied :

(a) The quadratic form q|V : V → R, v 7→ −λ(v2), is positive-definite.
(b) The linear map η : V ∧ V → V, v ∧ w 7→ ι(vw) is dissident.

P r o o f. The condition (a)∧(b) is sufficient. Let x=α1+v and y=β1+w
be elements of A \ {0}, with α, β ∈ R and v, w ∈ V . We first consider the
case where v and w are proportional, say w = γv with γ ∈ R. If w = 0, then
xy 6= 0 follows immediately. If w 6= 0, then we obtain

1

γ
xy = (α1 + v)

(
β

γ
1 + v

)
=

(
αβ

γ
− q(v)

)
1 +

(
α+

β

γ

)
v,

and q(v) > 0 due to (a). Hence Frobenius’ lemma implies xy 6= 0. In case v
and w are not proportional, (b) implies

xy = (αβ − 〈v, w〉+ ξ(v ∧ w))1 + βv + αw + η(v ∧ w) 6= 0.
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The condition (a)∧(b) is necessary. Condition (a) is necessary by Propo-
sition 3. If η is incident, then we may choose α, β ∈ R and orthonormal
vectors v, w ∈ V such that βv + αw + η(v ∧ w) = 0. Set x = α1 + v and
yt = βt1 + wt where, for any parameter t ∈ [−π/2, π/2],

βt = α sin t+ β cos t and wt = −(sin t)v + (cos t)w.

Then

xyt = (αβt − 〈v, wt〉+ ξ(v ∧ wt))1 + βtv + αwt + η(v ∧ wt) = f(t)1,

where f(t) = (1 + α2) sin t+ (αβ + ξ(v ∧ w)) cos t. Choosing t to be a zero
for the continuous function f : [−π/2, π/2]→ R we obtain xyt = 0, whence
A is not a division algebra.

4. Dissident algebras. Anti-commutative euclidean algebras V are
identified with pairs (V, η) consisting of a euclidean vector space V = (V, 〈 〉)
and a linear map η : V ∧ V → V , via vw = η(v ∧ w). Accordingly, mor-
phisms σ : (V, η) → (V ′, η′) between anti-commutative euclidean algebras
are orthogonal linear maps σ : V → V ′ satisfying ση = η′(σ ∧σ). We define
a dissident (resp. incident) algebra to be any anti-commutative euclidean
algebra (V, η) such that η is dissident (resp. incident).

Dissident algebras generalize the classical notion of a vector product
algebra (3). Vector product algebras are known to constitute 4 isoclasses
which are represented by those (V, π) which arise from one of the alternative
division algebras R,C,H,O. Conversely, each alternative division algebra is
isomorphic to G(V, o, π), for some vector product algebra (V, π) ([5], [9]).
More generally, Proposition 2(iii) and Proposition 5 explain the importance
of dissident algebras for the investigation of quadratic division algebras:
the functor (V, η) 7→ G(V, o, η) is an equivalence between the category of
dissident algebras and the category formed by all quadratic division algebras
satisfying ξ = o.

This raises the interesting question of how to construct dissident alge-
bras. In fact, it turns out that vector product morphisms not only provide
the simplest examples of dissident algebras, but also produce new dissident
algebras when composed with definite endomorphisms (4). In low dimensions
we can prove that this construction of dissident algebras is complete.

Lemma 6. Let π : V ∧ V → V be a vector product.

(3) Recall that a vector product algebra is an anti-commutative euclidean algebra (V, π)
satisfying 〈π(u∧v), w〉 = 〈u, π(v∧w)〉 and |π(u∧v)|2 = |u|2|v|2−〈u, v〉2 for all u, v, w ∈ V
(cf. [9]).

(4) A linear endomorphism ε : V → V of a euclidean vector space V is said to be
definite if the quadratic form qε : V → R, v 7→ 〈v, ε(v)〉, is positive-definite or negative-
definite.
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(i) If ε : V → V is a definite endomorphism, then επ : V ∧ V → V is
a dissident linear map.

(ii) If η : V ∧ V → V is a dissident linear map and dimV ≤ 3, then
there exists a definite endomorphism ε : V → V such that επ = η.

(iii) If dimV = 3, then the assignment ε 7→ επ is a bijection between the
set of all definite endomorphisms of V and the set of all dissident algebra
structures on V .

P r o o f. (i) Let v, w ∈ V be orthonormal vectors. The vector product
property of π implies Rv⊕Rw ⊂ π(v∧w)⊥ and |π(v∧w)| = 1. Definiteness
of ε further implies επ(v ∧ w) 6∈ π(v ∧ w)⊥. Hence επ(v ∧ w) 6∈ Rv ⊕ Rw.

(ii) In case dimV ≤ 2, the assertion is true for trivial reasons. If dimV =
3, then π : V ∧ V → V is an isomorphism. Given u ∈ V \ {0}, choose
v, w ∈ u⊥ such that u = π(v ∧ w). Then η(v ∧ w) 6∈ Rv ⊕ Rw = u⊥, and
therefore 〈u, ηπ−1(u)〉 = 〈u, η(v ∧ w)〉 6= 0. Hence ε = ηπ−1 is definite and
επ = η.

(iii) The assignment ε 7→ επ defines a map from the set of all definite
endomorphisms of V to the set of all dissident algebra structures on V , by
(i). This map is surjective by (ii), and injective as π is an isomorphism.

Proposition 7. Dissident algebras exist in dimensions 0, 1, 3 and 7
only.

P r o o f. Given any dissident algebra (V, η), the quadratic algebra A =
G(V, o, η) is a division algebra, by Proposition 5. Application of the cele-
brated “(1, 2, 4, 8)-theorem” ([6], [10], [2], [1]) to A yields the assertion.

Let (V, η) be a dissident algebra. For each v ∈ V \{0}, the endomorphism
v · : V → V induces an epimorphism v⊥ → vv⊥ which (by dissidence) is in
fact an isomorphism. Thus vv⊥ is a hyperplane in V . Hence η determines
a selfmap ηP : P(V ) → P(V ), defined by ηP(Rv) = (vv⊥)⊥. Observe that
πP = IP(V ) for each vector product π : V ∧ V → V .

The adjoint of an endomorphism ε : V →V will be denoted by ε∗ :V →V .
If ε is invertible then so is ε∗, and (ε∗)−1 =(ε−1)∗ will be denoted by ε−∗.

Lemma 8. Let η = επ, where ε : V → V is a definite endomorphism and
π : V ∧ V → V is a vector product. Then ηP = P(ε−∗).

P r o o f. Let v, v ∈ V \ {0} be such that ηP(Rv) = Rv. Then 〈ε∗(v),
π(v ∧ x)〉 = 〈v, επ(v ∧ x)〉 = 〈v, vx〉 = 0 for all x ∈ v⊥. Thus Rε∗(v) =
πP(Rv) = Rv, whence ηP(Rv) = Rv = P(ε−∗)(Rv).

Proposition 9. Let η = επ = ε′π′, where ε, ε′ : V → V are definite
endomorphisms and π, π′ : V ∧ V → V are vector products. Then either
(ε, π) = (ε′, π′) or (ε, π) = (−ε′,−π′).
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P r o o f. The hypothesis implies by Lemma 8 that ηP = P(ε−∗) =
P(ε′−∗). In view of the short exact sequence

1→ GL(R)→ GL(V )→ PGL(V )→ 1

we conclude that ε = rε′ for some r ∈ R\{0}. Hence we obtain rε′π = ε′π′,
whence rπ = π′. Since both π and π′ are vector products, we infer that
r = 1 or r = −1.

5. Summary. Let m ∈ {0, 1, 3, 7} and n = m + 1. Choose a vector
product π : Rm ∧ Rm → Rm with respect to the natural scalar product
v • w = vTw. The orthogonal group O(Rm) acts canonically on the set of
all vector products in Rm via σ ·π′ = σπ′(σ−1∧σ−1). Denote by Oπ(Rm) =
{σ∈O(Rm) |σ · π=π} the isotropy group of π. Moreover, denote by Rm×mant

(resp. Rm×mpos ) the set of all anti-symmetric (resp. positive-definite) matrices

in Rm×m, and set Pm = Rm×mant × Rm×mpos . Then the map

Φπ : Pm → Q, (X,Y ) 7→ G(Rm, ξ, η),

where ξ(v ∧ w) = vTXw and η(v ∧ w) = Y π(v ∧ w), has the following
properties.

Theorem 10. (i) For each matrix pair (X,Y ) ∈ Pm the quadratic algebra
Φπ(X,Y ) is a division algebra of dimension n.

(ii) For each quadratic division algebra D of dimension n ≤ 4 there
exists a matrix pair (X,Y ) ∈ Pm such that Φπ(X,Y )

∼→D.
(iii) For all matrix pairs (X,Y ), (X ′, Y ′) ∈ Pm, the quadratic division

algebras Φπ(X,Y ) and Φπ(X ′, Y ′) are isomorphic if and only if (X ′, Y ′) =
(SXST, SY ST) for some S ∈ Oπ(Rm).

P r o o f. (i) follows from Proposition 5 and Lemma 6(i).
(ii) follows from Propositions 2 and 5, Lemma 6(ii) and the fact that

−IV : (V, ξ, η)
∼→(V, ξ,−η) is an isomorphism for each exterior triple (V, ξ, η).

(iii) Let (X,Y ), (X ′, Y ′) ∈ Pm be given. If (SXST, SY ST) = (X ′, Y ′)
for some S ∈ Oπ(Rm), then the linear automorphism σ : Rm ∼→ Rm cor-
responding to S is an isomorphism σ : (Rm, ξ, η)

∼→ (Rm, ξ′, η′) of exterior
triples. Accordingly, IR × σ : Φπ(X,Y )

∼→ Φπ(X ′, Y ′) is an isomorphism
of quadratic algebras. Conversely, if ϕ : Φπ(X,Y )

∼→ Φπ(X ′, Y ′) is an iso-
morphism of quadratic algebras, then ϕ = IR × σ for some isomorphism
σ : (Rm, ξ, η)

∼→ (Rm, ξ′, η′) of exterior triples. Hence the matrix S ∈ O(Rm)
corresponding to σ satisfies SXST = X ′ and, due to Proposition 9, both
SY ST = Y ′ and S ∈ Oπ(Rm).

Keeping the above setting, denote by Dq
n the category of all quadratic

division algebras of dimension n. If n ≤ 2, then Dq
n constitutes one isomor-

phism class, represented by R and C respectively.
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In case n = 4, the chosen vector product π : V ∧ V → V is bijective.
Identifying V ∧ V with V via π, definite endomorphisms ε : V → V are
identified with dissident linear maps η : V ∧ V → V , by Lemma 6(iii).
Thus Proposition 5 specializes to [4], Proposition 2. From Theorem 10 we
infer that Φπ : P3 → Q induces a bijection Φπ : P3/SO3(R)

∼→Dq
4/' (5).

Thus the classification of all 4-dimensional quadratic division algebras up to
isomorphism is equivalent to the classification of all matrix pairs (X,Y ) ∈ P3

up to simultaneous conjugation by matrices S ∈ SO3(R).
The latter problem admits a complete solution by application of classical

theory! Namely, set K3 = R3 × R3 × T3 where T3 = {δ ∈ R3 | 0 < δ1 ≤ δ2
≤ δ3}, and define Ψ : K3 → P3 by Ψ(x, y, δ) = (Ax, Ay + ∆δ) where

Ax =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 and ∆δ =

 δ1 0 0
0 δ2 0
0 0 δ3

 .

Given (X,Y ) ∈ P3, decompose Y = Y a + Y s into its anti-symmetric sum-
mand Y a and its symmetric summand Y s and transform Y s to the diagonal
form ∆δ, applying Jacobi’s spectral theorem.

This reasoning shows that Ψ : K3 → P3 induces a bijection Ψ : K3/∼
∼→

P3/SO3(R), where (x, y, δ) ∼ (x′, y′, δ′) if and only if δ = δ′ and (Sx, Sy) =
(x′, y′) for some S ∈ SO3(R) such that ST∆δS = ∆δ. Interpreting (x, y, δ) ∈
K3 as a configuration in R3, formed by a pair of points (x, y) and an ellipsoid
Eδ = {z ∈ R3 | zT∆δz = 1}, the equivalence (x, y, δ) ∼ (x′, y′, δ′) means
geometrically that Eδ = Eδ′ and (x, y), (x′, y′) lie in the same orbit under the
action of the special orthogonal symmetry group of Eδ. Thus we recover the
classification of Dq

4 in terms of configurations in R3 consisting of an ellipsoid
and a pair of points, as presented in [3], [4]. Explicitly, the composed map
ΦπΨ : K → Dq

4 is given by ΦπΨ(x, y, δ) = R× R3, with multiplication

(α, v)(β,w) = (αβ − vTw + vTAxw,αw + βv +Ayπ(v ∧ w) +∆δπ(v ∧ w)).

Forgetting about X in (X,Y ) ∈ P3 and about x in (x, y, δ) ∈ K3, we
clearly obtain a classification of all 3-dimensional dissident algebras in terms
of configurations in R3 consisting of an ellipsoid and a single point, with
equivalence relation analogous to the above. Here, the dissident algebra
(R3, η) constructed from (y, δ) is given by η(v∧w) = Ayπ(v∧w)+∆δπ(v∧w).

In case n = 8, the question whether the image of Φπ : P7 → Dq
8 exhausts

all isoclasses of Dq
8 is still open. It is equivalent to the interesting question

whether any dissident linear map η : R7 ∧ R7 → R7 admits a factorization
η = επ into a vector product π : R7∧R7 → R7 and a definite endomorphism

(5) Recall that the euclidean vector space R3 admits two vector products π1 and
π2 = −π1 only, where π1 is characterized by the identity π1(v∧w) •x = det(v|w|x), valid
for all v, w, x ∈ R3. This implies Oπ(R3) = SO3(R).
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ε : V → V . However, irrespective of the answer to this question we may
use the map Φπ : P7 → Dq

8 to construct large families of 8-dimensional
quadratic division algebras.

Corollary 11. Let K<7 = {(X,Y, δ) ∈ R7×7
ant × R7×7

ant × T7 | 0 < Yij
for all 1 ≤ i < j ≤ 7 and 0 < δ1 < . . . < δ7}, and define Ψ : K<7 → P7

by Ψ(X,Y, δ) = (X,Y + ∆δ). Then ΦπΨ(K<7 ) is a 49-parameter family of
pairwise non-isomorphic objects in Dq

8 . The composed map ΦπΨ : K<7 → D
q
8

is given explicitly by ΦπΨ(X,Y, δ) = R× R7, with multiplication

(α, v)(β,w) = (αβ − vTw + vTXw,αw + βv + Y π(v ∧ w) +∆δπ(v ∧ w)).

P r o o f. Let (X,Y, δ), (X ′, Y ′, δ′) ∈ K<7 be such that

ΦπΨ(X,Y, δ)
∼→ ΦπΨ(X ′, Y ′, δ′).

Then (SXST, SY ST, S∆δS
T) = (X ′, Y ′, ∆δ′) for some S ∈ Oπ(R7), by

Theorem 10(iii). From S∆δS
T = ∆δ′ we infer that δ = δ′ and S = ∆ε

for some ε ∈ {1,−1}7. Entering this diagonal form of S into the equation
SY ST = Y ′, we deduce from the constraints 0 < Yij and 0 < Y ′ij for all
i < j that S = I7 or S = −I7. Hence (X,Y, δ) = (X ′, Y ′, δ′).

Finally, let us note that on forgetting about X in (X,Y, δ) ∈ K<7 we
obtain a 28-parameter family of pairwise non-isomorphic 7-dimensional dis-
sident algebras (R7, η), where η(v ∧ w) = Y π(v ∧ w) +∆δπ(v ∧ w).
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