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GRASSMANNIANS VIA TRIPLE INTERSECTIONS
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Abstract. We give an elementary proof of the Pieri-type formula in the cohomology
ring of a Grassmannian of maximal isotropic subspaces of an orthogonal or symplectic
vector space. This proof proceeds by explicitly computing a triple intersection of Schubert
varieties. The multiplicities (which are powers of 2) in the Pieri-type formula are seen to
arise from the intersection of a collection of quadrics with a linear space.

Introduction.We give an elementary geometric proof of Pieri-type
formulas in the cohomology rings of Grassmannians of maximal isotropic
subspaces of orthogonal or symplectic vector spaces. For this, we explicitly
compute a triple intersection of Schubert varieties, where one is a special
Schubert variety. Previously, Sertöz [16] had studied such triple intersections
in orthogonal Grassmannians, but was unable to determine the intersection
multiplicities.

The multiplicities here (0 or powers of 2) arise as the intersection mul-
tiplicity of a linear subspace (defining the special Schubert variety) with a
collection of quadrics and linear subspaces (determined by the other two
Schubert varieties). This is similar to the triple intersection proof of the
classical Pieri formula (cf. [9]) where the multiplicities (0 or 1) count the
points in the intersection of linear subspaces.

These Pieri-type formulas are due to Hiller and Boe [8], who used the
Chevalley formula [2]. Another proof, using the Leibniz formula for divi-
ded differences, was given by Pragacz and Ratajski [13]. These formulas
have important geometric applications. Using them Pragacz [12] established
Giambelli-type formulas for the above Grassmanians. This led to a solu-
tion of some classical enumerative problems (see [6] for a summary of this
activity).

In Section 1, we give the basic definitions, state the Pieri-type formulas,
and give an outline of the proof. In Section 2, we describe the intersection
of two Schubert varieties, which we use in Section 3 to complete the proof.
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While we work in the cohomology ring of a complex variety, our arguments
hold for the Chow ring [4] of the same variety defined over any algebraically
closed field not of characteristic 2.

1. The Grassmannian of maximal isotropic subspaces. For more
details on the geometry and cohomology of these spaces, see [6]. Let U
be a complex vector space equipped with a non-degenerate bilinear form
β, either symmetric or alternating. A subspace H of U is isotropic if the
restriction of β to H is identically zero. Isotropic subspaces have dimension
at most half that of U . The Grassmannian of maximal isotropic subspaces
of U is the set of all isotropic subspaces of U of maximal dimension. These
spaces are quite different in the three cases of β alternating, β symmetric
and dimension U odd, or β symmetric and dimension U even. In this third
case, the Grassmannian has two connected components, each isomorphic to
the Grassmannian of maximal isotropic subspaces in a generic hyperplane
of U . Indeed, the quadric hypersurface in P2n+1 contains two families of
n-planes [7]—each a component of the isotropic Grassmannian—and either
family restricts to the family of (n − 1)-planes on the quadric in a generic
hyperplane section.

We thus consider two cases: Either β is symmetric on a vector space V of
dimension 2n+1 or else β is alternating on a vector space W of dimension 2n.
Write Bn or B(V ) for the Grassmannian of maximal isotropic subspaces
of V , and Cn or C(W ) for the Grassmannian of maximal isotropic subspaces
of W . The orthogonal group SO2n+1C = Aut(V, β) acts transitively on Bn
with the stabilizer P0 of a point a maximal parabolic subgroup associated
with the short root, hence Bn = SO2n+1C/P0. Similarly, Cn = Sp2nC/P0,
the quotient of the symplectic group by a maximal parabolic subgroup P0

associated with the long root.

Both Bn and Cn are smooth complex manifolds of dimension
(
n+1
2

)
.

While not isomorphic if n > 1, they have identical decompositions into
Schubert cells. For an integer j, let  denote −j. Choose bases {en, . . . , en}
of V and {fn, . . . , fn} of W for which

β(ei, ej) =

{
1 if i = ,
0 otherwise,

and β(fi, fj) =
{
j/|j| if i = ,
0 otherwise.

Thus β(e1, e0) = β(f2, f1) = 0 and β(e0, e0) = β(f1, f1) = −β(f1, f1) = 1.

Schubert varieties are determined by sequences

µ : n ≥ µ1 > . . . > µn ≥ n

whose set of absolute values {|µ1|, . . . , |µn|} equals {1, . . . , n}. Let SYn de-
note this set of sequences. The Schubert variety Xµ of Bn is

{H ∈ Bn | dim(H ∩ 〈eµj
, . . . , en〉) ≥ j for 1 ≤ j ≤ n}
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and the Schubert variety Yµ of Cn is

{H ∈ Cn | dim(H ∩ 〈fµj , . . . , fn〉) ≥ j for 1 ≤ j ≤ n}.

Both Xµ and Yµ have codimension |µ| := µ1 + . . .+µk, where µk > 0 > µk+1.
Given λ, µ ∈ SYn, we see that

Xµ ⊃ Xλ ⇔ Yµ ⊃ Yλ ⇔ µj ≤ λj for 1 ≤ j ≤ n.

Define the Bruhat order on SYn by µ ≤ λ if µj ≤ λj for 1 ≤ j ≤ n. Note
that µ ≤ λ if and only if µj ≤ λj for those j with 0 < µj .

Example 1.1. Suppose n = 4. Then X3 2 1 4 consists of those H ∈ B4

such that

dim(H∩〈e3, e4〉) ≥ 1, dim(H∩〈e2, e3, e4〉) ≥ 2, dim(H∩〈e1, . . . , e4〉) ≥ 3.

We also have 3 2 1 4 < 3 2 1 4 < 4 3 1 2 while 3 2 1 4 and 4 1 2 3 are incompara-
ble.

Define Pλ := [Xλ], the cohomology class Poincaré dual to the funda-
mental cycle of Xλ in the homology of Bn. Likewise set Qλ := [Yλ]. Since
Schubert varieties are closures of cells from a decomposition into (real) even-
dimensional cells, these Schubert classes {Pλ}, {Qλ} form bases for integral
cohomology:

H∗Bn =
⊕
λ

Pλ · Z and H∗Cn =
⊕
λ

Qλ · Z.

Each λ ∈ SYn determines and is determined by its diagram, also denoted
by λ. The diagram of λ is a left-justified array of |λ| boxes with λj boxes in
the jth row, for λj > 0. Thus

3 2 1 4↔ and 4 2 1 3↔

The Bruhat order corresponds to inclusion of diagrams. Given µ ≤ λ, let λ/µ
be their set-theoretic difference. For instance,

4 2 1 3/3 2 1 4↔ and 4 3 1 2/3 2 1 4↔

Two boxes are connected if they share a vertex or an edge; this defines
components of λ/µ. We say λ/µ is a skew row if λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ µn, or
equivalently, if λ/µ has at most one box in each column. Thus 4 2 1 3/3 2 1 4
is a skew row, but 3 2 1 4/1 2 3 4 is not.

The special Schubert class pm ∈ H∗Bn (qm ∈ H∗Cn) is the class whose
diagram consists of a single row of length m. Hence, p2 = P2 1 3 4. A special
Schubert variety XK (YK) is the collection of all maximal isotropic subspaces
which meet a fixed isotropic subspace K non-trivially. If dimK = n+ 1−m,
then [XK ] = pm and [YK ] = qm. When λ/µ is a skew row, let δ(λ/µ) count
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the components of the diagram λ/µ and ε(λ/µ) count the components of
λ/µ which do not meet the first column.

Theorem 1.2 (Pieri-type Formula). For any µ ∈ SYn and 1 ≤ m ≤ n,

(1) Pµ · pm =
∑

2δ(λ/µ)−1Pλ,
(2) Qµ · qm =

∑
2ε(λ/µ)Qλ,

both sums over all λ with |λ| − |µ| = m and λ/µ a skew row.

Example 1.3. For instance,

P3 2 1 4 · p2 = 2 · P4 2 1 3 + P4 3 1 2,

Q3 2 1 4 · q2 = 2 ·Q4 2 1 3 + 2 ·Q4 3 1 2,

as 4 2 1 3/3 2 1 4 has two components, one meeting the first column, and
4 3 1 2/3 2 1 4 has one component, which does not meet the first column.

Define λc by λcj := λn+1−j . Let [pt] be the class dual to a point. The
Schubert basis is self-dual with respect to the intersection pairing: If |λ| = |µ|,
then

Pµ · Pλc = Qµ ·Qλc =
{

[pt] if λ = µ,
0 otherwise.

(1)

Define the Schubert variety X ′λc to be

{H ∈ Bn | dim(H ∩ 〈en, . . . , eλj 〉) ≥ n+ 1− j for 1 ≤ j ≤ n}.

This is a translate of Xλc by an element of SO2n+1C. We similarly define Y ′λc .
For any λ, µ, Xµ ∩X ′λc is a (dimensionally) proper intersection [11]. This is
because if Xµ and X ′λc are any Schubert varieties in general position, then
there is a basis for V such that these varieties and the form β are as given.
The analogous facts hold for the varieties Y ′λc .

To establish Theorem 1.2, it suffices to compute the degrees of the zero-
dimensional schemes

Xµ ∩X ′λc ∩XK and Yµ ∩ Y ′λc ∩ YK ,

where K is a general isotropic (n+ 1−m)-plane and |λ| = |µ|+m.

We only do the (more difficult) orthogonal case of Theorem 1.2 in full,
and indicate the differences for the symplectic case. We first determine when
Xµ ∩ X ′λc is non-empty. Let µ, λ ∈ SYn. Then H ∈ Xµ ∩ X ′λc implies
dim(H ∩ 〈eµj , . . . , eλj 〉) ≥ 1 for every 1 ≤ j ≤ n. Hence µ ≤ λ is neces-
sary for Xµ ∩X ′λc to be non-empty. In fact, if |µ| = |λ|, then

Xµ ∩X ′λc =

{
〈eλ1 , . . . , eλn〉 if λ = µ,
∅ otherwise,

and the intersection is transverse (see Lemma 3.3), which establishes (1).
Suppose µ ≤ λ in SYn. For each component d of λ/µ, let col(d) be the

indices of the columns of d and of the column just to the left of d, which is 0
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if d meets the first column. For each component d of λ/µ, define a quadratic
form βd:

βd :=
∑

n≤j≤n
|j|∈col(d)

xjx,

where xn, . . . , xn are the coordinates for V dual to the basis en, . . . , en.
For each fixed point of λ/µ (j such that λj = µj), define the linear form
αj := xλj

. If no component meets the first column, then 0 is a fixed point of

λ/µ and we set α0 := x0. Let Zλ/µ be the common zero locus of these forms
αj and βd. In Section 2, we prove:

Lemma 1.4. Suppose µ ≤ λ and H ∈ Xµ ∩X ′λc . Then H ⊂ Zλ/µ.

For µ ≤ λ ∈ SYn, let δ(λ/µ) count the components of λ/µ.

Theorem 1.5. Let µ, λ ∈ SYn and suppose K is a general isotropic
(n + 1 −m)-plane with |µ| + m = |λ|. Then Xµ ∩ X ′λc ∩ XK is non-empty
only if λ/µ is a skew row. Moreover , if λ/µ is a skew row , then K ∩ Zλ/µ
consists of 2δ(λ/µ)−1 isotropic lines, counted with multiplicity.

P r o o f. If ϕ counts the fixed points of λ/µ and δ = δ(λ/µ), then we have
the following equation (Lemma 2.1):

n+ 1 = ϕ+ δ + #columns of λ/µ.(2)

Thus, if m = |λ| − |µ|, then ϕ+ δ ≥ n+ 1−m, with equality only when λ/µ
is a skew row.

For each 0 ≤ i ≤ n, there is a unique form among the αj , βd in which
one of the coordinates xi, xı appears. Thus Zλ/µ is defined in P(V ) by β,
the αj , and any δ − 1 of the βd. Hence Zλ/µ has codimension ϕ + δ − 1 in
the set of isotropic points, a SO2n+1C-orbit. We see that a general isotropic
(n + 1 −m)-plane K meets Zλ/µ non-trivially only if λ/µ is a skew row, as
this intersection is proper [11]. In that case, K ∩ Zλ/µ (in P(V )) is zero-

dimensional of degree 2δ−1, as it is defined on K by δ − 1 quadratic forms
and ϕ linear forms.

Proof of Theorem 1.2. Suppose λ, µ ∈ SYn with |λ| − |µ| = m > 0. Let
K be a general isotropic (n+ 1−m)-plane in V . We compute the degree of

Xµ ∩X ′λc ∩XK .(3)

By Theorem 1.5, this is non-empty only if λ/µ is a skew row. Suppose
that is the case. Theorem 3.1 asserts that a general isotropic line in Zλ/µ is

contained in a unique H ∈ Xµ ∩X ′λc . By Theorem 1.5, K ∩Zλ/µ is 2δ(λ/µ)−1

isotropic lines (counted with multiplicity), and we see that (3) has degree
2δ(λ/µ)−1. Theorem 1.2 follows.
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Example 1.6. Let n = 4 and m = 2, so that n+ 1−m = 3. The local
coordinates for X3 2 1 4 ∩X ′(4 2 1 3)c

described in Lemma 3.3 show that, for any

x, z ∈ C, the row span H of the matrix with rows gi and columns ej

e4 e3 e2 e1 e0 e1 e2 e3 e4

g1 · · · · · · · −x 1

g2 · · · · · · 1 · ·
g3 · · · 1 2z −2z2 · · ·
g4 x 1 · · · · · · ·

is a generic maximal isotropic subspace in X3 2 1 4 ∩X ′(4 2 1 3)c
. We write “·”

in place of the entries of 0. Suppose K is the row span of the matrix with
rows vi

e4 e3 e2 e1 e0 e1 e2 e3 e4

v1 · 1 · 1 · · 1 · 1

v2 1 1 · 1 2 −2 1 −1 1

v3 · · 1 · · −1 · · ·

Then K is an isotropic 3-plane, and the forms

β0 = 2x1x1 + x20, βd = x4x4 + x3x3, α2 = x2

define the 2 isotropic lines 〈v1〉 and 〈v2〉 in K. Lastly, for i = 1, 2, there is a
unique Hi ∈ X3 2 1 4 ∩X ′(4 2 1 3)c

with vi ∈ Hi. In these coordinates,

H1 : x = z = 0 and H2 : x = z = 1,

which shows

#(X3 2 1 4 ∩X
′
(4 2 1 3)c

∩XK) = 2,

the coefficient of P4 2 1 3 in the product P3 2 1 4 · p2 of Example 1.3.

In the symplectic case, β is not a form, α0 = x0 does not arise, only
components d which do not meet the first column give quadratic forms βd,
and the analysis of Lemma 3.2(2) in Section 3 is simpler.

2. The intersection of two Schubert varieties. We study the in-
tersection of two Schubert varieties. Theorem 2.3 expresses Xµ ∩ X ′λc as a
product whose factors correspond to components of λ/µ, and each factor is
itself an intersection of two Schubert varieties. These factors are described
in Lemmas 2.4 and 2.5, and in Corollary 2.7.

The first step towards Theorem 2.3 is the following combinatorial lemma.

Lemma 2.1. Let ϕ count the fixed points and δ the components of λ/µ.
Then we have
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(2) n+ 1 = ϕ+ δ + #columns of λ/µ,

and λj+1 < µj precisely when |µj | is an empty column of λ/µ.

P r o o f. Let 0 ≤ l ≤ n. We claim that either l indexes a column of λ/µ
or else it does not, and in that case, either l + 1 indexes a column of λ/µ or
else l is a fixed point of λ/µ. This proves (2) as the numbers l which do not
index a column but l + 1 does are in bijection with the components of λ/µ.

The case when l = 0 is our definition of a fixed point.

Suppose l > 0 is an empty column of λ/µ. Then there is no i with µi<
l ≤ λi. Let µj be the part of µ with |µj | = l. If µj = l, then µj+1 < µj = l
and so λj+1 < µj = l as well. Then either µj < λj so l + 1 is a column of
λ/µ, or else µj = λj is a fixed point of λ/µ.

Suppose now that µj = −l. We show that λj = −l, which will complete
the proof. First, if a part λi of λ equals l, then we must have µi < l =
λi, contradicting l being an empty column of λ/µ. Let a be the largest
index with l < µa. The above shows λa+1 < l and also that there is a
part λi of λ with λi = −l. Since λ, µ ∈ SYn, we must have {1, . . . , l} =
{|µa+1|, . . . , |µj |} = {|λa+1|, . . . , |λi|}. This shows that j = a+ l = i.

Let d0 be the component of λ/µ meeting the first column (if any). Define
mutually orthogonal subspaces Vϕ, V0, and Vd, for each component d of λ/µ
not meeting the first column (d 6= d0), as follows:

Vϕ := 〈eµj
, eµj

| µj = λj〉,
V0 := 〈e0, el, el | l ∈ col(d0)〉,
V −d := 〈el | l ∈ col(d)〉,
V +
d := 〈el | l ∈ col(d)〉,

and set Vd := V −d ⊕ V
+
d . Then

V = Vϕ ⊕ V0 ⊕
⊕
d6=d0

Vd.

For each fixed point µj = λj of λ/µ, define the linear form αj := xµj
. For

each component d of λ/µ, let the quadratic form βd be the restriction of the
form β to Vd. Composing with the projection of V to Vd gives a quadratic
form (also written βd) on V . If there is no component meeting the first
column, define α0 := x0 and call 0 a fixed point of λ/µ. If d 6= d0, then
the form βd identifies V +

d and V −d as dual vector spaces. For H ⊂ V −d , let
H⊥ ⊂ V +

d be its annihilator.

Lemma 2.2. Let H ∈ Xµ ∩X ′λc . Then

1. H ∩ Vϕ = 〈eµj
| µj = λj〉.

2. dim(H ∩ V0) = #columns of d0 − 1.
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3. For all components d of λ/µ which do not meet the first column,

dim(H ∩ V +
d ) = #rows of d,

dim(H ∩ V −d ) = #columns of d−#rows of d,

and (H ∩ V −d )⊥ = H ∩ V +
d .

P r o o f. Let H ∈ Xµ ∩X ′λc . Suppose λj+1 < µj so that |µj | is an empty
column of λ/µ. Then the definition of Schubert variety implies

H = H ∩ 〈en, . . . , eλj+1
〉 ⊕H ∩ 〈eµj

, . . . , en〉.

Suppose d 6= d0. If the rows of d are j, . . . , k, then

H ∩ V +
d = H ∩ 〈eµk

, . . . , eλj 〉 = H ∩ 〈en, . . . , eλj 〉 ∩ 〈eµk
, . . . , en〉,

and so has dimension at least k − j + 1.
Similarly, if l, . . . ,m are the indices i with λj ≤ µi, λi ≤ µk, then H ∩V −d

has dimension at least m − l + 1. Hence 1
2 dimVd = #columns of d = k +

m− l − j + 2, as λj , . . . , λk, λl, . . . , λm are the columns of d.
Since H is isotropic, dimH+

d + dimH−d ≤ #columns of d, which proves
the first part of (3). Moreover, H ∩ V +

d ⊂ (H ∩ V −d )⊥ as H is isotropic, and
equality follows by counting dimensions.

Similar arguments prove the other statements.

ForH ∈ Xµ∩X ′λc , defineHϕ := H∩Vϕ, H0 := H∩V0, andH±d := H∩V ±d .

Proof of Lemma 1.4. Note that Hϕ ⊂ Vϕ is the zero locus of the linear
forms αj , H0 is isotropic in V0, and, for each component d of λ/µ not meeting
the first column, Hd := H+

d ⊕H
−
d is isotropic in Vd. It follows from Lemma 2.2

that the forms αj , βd vanish on Hϕ ⊕H0 ⊕
⊕

d6=d0 Hd. Dimension-counting
shows that this sum equals H.

As the spaces Vϕ, V0, and the Vd are mutually orthogonal, the decompo-
sition H = Hϕ⊕H0⊕

⊕
d 6=d0 Hd is an orthogonal direct sum. Also, Xµ∩X ′λc

is an irreducible variety, as it has an algebraic stratification with a unique
stratum of largest dimension [3].

Theorem 2.3. Suppose λ/µ is a skew row. With the definitions given
above, the map

{H0 | H ∈ Xµ ∩X ′λc} ×
∏
d 6=d0

{Hd | H ∈ Xµ ∩X ′λc} → Xµ ∩X ′λc

defined by
(H0, . . . ,Hd, . . .) 7→ 〈Hϕ, H0, . . . ,Hd, . . .〉

is an isomorphism of algebraic varieties.

P r o o f. By the previous discussion, this map is an injection. For surjec-
tivity, note that both sides are irreducible and have the same dimension.
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Indeed, dim(Xµ ∩X ′λc) = |λ| − |µ|, the number of boxes in λ/µ. Lemmas 2.4
and 2.5 show that each factor has dimension equal to the number of boxes in
the corresponding component.

Suppose there is a component d0 meeting the first column. Let l be the
largest column in d0, and define λ(0), µ(0) ∈ SYl as follows: Let j be the
first row of d0 so that l = λj . Then, since d0 is a component, for each
j ≤ i < j + l − 1, we have λi+1 ≥ µi and l = µj+l−1. Set

µ(0) := µj > . . . > µj+l−1, λ(0) := λj > . . . > λj+l−1

Define λ(0)c by λ(0)cp = λ(0)l+1−p. The following lemma is straightforward.

Lemma 2.4. With the above definitions,

{H0 | H ∈ Xµ ∩X ′λc} ' Xµ(0) ∩X ′λ(0)c

as subvarieties of Bl ' B(V0), and λ(0)/µ(0) has a unique component meeting
the first column and no fixed points.

We similarly identify {Hd | H ∈ Xµ ∩ X ′λc} as an intersection Xµ(d) ∩
X ′λ(d)c of Schubert varieties in B#columns of d ' B(〈e0, Vd〉). Let j, . . . , k be

the rows of d and l, . . . ,m be the indices i with λj ≤ µi, λi ≤ µk, as in the
proof of Lemma 2.2. Let p = #columns of d and define λ(d), µ(d) ∈ SYp as
follows. Set a = µk, and define

µ(d) := µj − a+ 1 > . . . > 1 > µl + a− 1 > . . . > µm + a− 1,

λ(d) := λj − a+ 1 > . . . > λk − a+ 1 > λl + a− 1 > . . . > λm + a− 1.

Define λ(d)c by λ(d)cj = λ(d)p+1−j . The following lemma is straightforward.

Lemma 2.5. With these definitions,

{Hd | H ∈ Xµ ∩X ′λc} ' Xµ(d) ∩X ′λ(d)c

as subvarieties of Bp ' B(〈e0, Vd〉) and λ(d)/µ(d) has a unique component
not meeting the first column and no non-zero fixed points.

Suppose now that µ, λ ∈ SYn where λ/µ has a unique component d not
meeting the first column and no non-zero fixed points. Suppose λ has k rows.

A consequence of Lemma 2.2 is that the map H+
d 7→ 〈H

+
d ,
(
H+
d

)⊥〉 gives an
isomorphism

{H+
d | H ∈ Xµ ∩X ′λc} ∼−→ Xµ ∩X ′λc .(4)

We identify the domain of this map, a subvariety of the (classical) Grass-
mannian Gk(V +) of k-planes in V + := 〈e1, . . . , en〉. See [10, 7, 5] for ba-
sics on the Grassmannian. Schubert subvarieties Ωσ, Ω

′
σc of Gk(V +) are in-

dexed by partitions σ ∈ Yk, that is, integer sequences σ = (σ1, . . . , σk) with
n−k ≥ σ1 ≥ . . . ≥ σk ≥ 0. For σ ∈ Yk define σc ∈ Yk by σc

j = n−k−σk+1−j .
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For σ, τ ∈ Yk, define

Ωτ := {H ∈ Gk(V +) | dim(H ∩ 〈ek+1−j+τj , . . . , en〉) ≥ j, 1 ≤ j ≤ k},
Ω′σc := {H ∈ Gk(V +) | dim(H ∩ 〈e1, . . . , ej+σk+1−j

〉) ≥ j, 1 ≤ j ≤ k}.

Let λ, µ ∈ SYn with µ ≤ λ, and suppose µk > 0 > µk+1. Define partitions
σ and τ in Yk (which depend upon λ and µ) by

τ := µ1−k ≥ . . . ≥ µk−1 ≥ 0, σ := λ1−k ≥ . . . ≥ λk−1 ≥ 0.

Lemma 2.6. Let µ ≤ λ ∈ SYn, and define σ, τ ∈ Yk, and k as above. If
H ∈ Xµ ∩X ′λc , then H ∩V + = 〈e1, . . . , en〉 contains a k-plane L ∈ Ωτ ∩Ω′σc .

P r o o f. Suppose first that H ∈ Xµ satisfies dim(H ∩ 〈e1+µk+1
, . . . , en〉)

= k. Since µk > 0 > µk+1, it must be the case that L := H ∩ V + has
dimension k as L lies between two spaces,

H ∩ 〈eµk
, . . . , en〉 ⊂ L ⊂ H ∩ 〈e1+µk+1

, . . . , en〉,

each of dimension k. Moreover, L ∈ Ωτ since for 1 ≤ j ≤ k, we have
k+1−j+τj = µj and L ∩ 〈eµj

, . . . , en〉 = H ∩ 〈eµj
, . . . , en〉, which has di-

mension at least j. If H ∈ X ′λc , then similar arguments show L ∈ Ω′σc . The
lemma follows as such H are dense in Xµ ∩X ′λc .

Corollary 2.7. Suppose λ/µ has a unique component not meeting the
first column and no non-zero fixed points and let σ, τ , and k be defined as
in Lemma 2.6. We have

{H+
d | H ∈ Xµ ∩X ′λc} = Ωτ ∩Ω′σc

as subvarieties of Gk(V +).

Remark 2.8. The symplectic analogs of Lemma 2.5 and Corollary 2.7,
which are identical save for the necessary replacement of Y for X and
Cp for Bp, show an interesting connection between the geometry of C(W )
and B(V ). Namely, suppose λ/µ has no component meeting the first column.
Then the projection map V �W defined by

ei 7→
{

0 if i = 0,
fi otherwise,

and its left inverse W ↪→ V defined by fj 7→ ej induce isomorphisms

Xµ ∩X ′λc
∼←→ Yµ ∩ Y ′λc .

3. Pieri-type intersections of Schubert varieties. Let λ/µ be a
skew row and let Zλ/µ be the zero locus of the forms αj and βd of Section 2.
In Section 1, we deduced Theorem 1.2 from the following theorem.

Theorem 3.1. Let λ/µ be a skew row , Zλ/µ be as above, and 〈v〉 a
general line in Zλ/µ. Then Xµ ∩X ′λc ∩X〈v〉 is a singleton.
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P r o o f. Let Q0 be the cone of isotropic points in V0 and Qd the cone of
isotropic points in Vd for d 6= d0. These are the zero loci of the forms β0 and
βd, respectively. Thus

Zλ/µ = Hϕ ⊕Q0 ⊕
⊕
d 6=d0

Qd

and so a general non-zero vector v in Zλ/µ has the form

v =
∑
µj=λj

ajeµj
+ v0 +

∑
d6=d0

vd,

where aj ∈ C× and v0 ∈ Q0, vd ∈ Qd are general vectors.
Thus, if H ∈ Xµ∩X ′λc∩X〈v〉, then v0 ∈ H0 and vd ∈ Hd. By Theorem 2.3,

H is determined by H0 and the Hd, thus it suffices to prove that H0 and the
Hd are uniquely determined by the vectors v0, vd. By Lemmas 2.4 and 2.5,
this is just the case of the theorem when λ/µ has a single component, which
in turn is Lemma 3.2 below.

Lemma 3.2. Suppose λ, µ ∈ SYn where λ/µ is a skew row with a unique
component and no non-zero fixed points. Then Zλ/µ = Q, the set of isotropic
points in V , and

(1) If λ/µ does not meet the first column and v ∈ Q is a general vector ,
then Xµ ∩X ′λc ∩X〈v〉 is a singleton.

(2) If λ/µ meets the first column and v ∈ Q is general , then Xµ ∩X ′λc

∩X〈v〉 is a singleton.

P r o o f o f (1). Recall that V + = 〈e1, . . . , en〉 and V − = 〈en, . . . , e1〉.
Let v ∈ Q be a general vector. Since Q ⊂ V + ⊕ V −, v = v+ ⊕ v− with
v+ ∈ V + and v− ∈ V −. Suppose µk > 0 > µk+1. Consider the set

{H+ ∈ Gk(V +) | v ∈ H+ ⊕
(
H+
)⊥} = {H+ | v+ ∈ H+ ⊂ (v−)⊥}.

This is a Schubert variety Ω′′h(n−k,k) of GkV
+, where h(n − k, k) is the

partition of hook shape with a single row of length n − k and a single
column of length k.

Under the isomorphisms of (4) and Lemma 2.5, and with the identifica-
tion of Corollary 2.7, we see that

Xµ ∩X ′λc ∩X〈v〉 ' Ωτ ∩Ω′σc ∩Ω′′h(n−k,k),

where σ, τ are as defined in the paragraph preceding Lemma 2.6. For % ∈ Yk,
let S% := [Ω%] be the cohomology class Poincaré dual to the fundamental
cycle of Ω% in H∗GkV

+. The multiplicity we wish to compute is

deg(Sτ · Sσc · Sh(n−k,k)).(5)

By the classical Pieri formula (as Sh(n−k,k) = Sn−k · S1k−1), we see that (5)
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is 1 as σ/τ has exactly one box in each diagonal. To see this, note that the
transformation µ, λ 7→ τ, σ takes columns of λ/µ to diagonals of σ/τ .

Our proof of Lemma 3.2(2) uses an explicit system of local coordinates
for Xµ ∩ X ′λc in the special case where λ/µ is a skew row with a unique
component meeting the first column, and the further restriction that a com-
ponent λk+1 of λ is 1. We shall see that this is no restriction, as either λ
or µc must have a part equal to 1 for such λ, µ.

Let λ/µ be as in Lemma 3.2(2), and suppose λk+1 = 1. For x0, . . . , xn−1,
y2, . . . , yn ∈ C, define isotropic vectors gj ∈ V as follows:

gj :=



eλj
+

λj−1∑
i=µj

xiei, j ≤ k,

−2x20e1 + 2x0e0 + e1 +

2∑
i=µk+1

yıei, j = k + 1,

eλj
+

λj−1∑
i=µj

yıei, j > k + 1.

(6)

Lemma 3.3. Let λ, µ ∈ SYn where λ/µ is a skew row meeting the first
column with no fixed points and one part of λ is equal to 1, say λk+1 = 1.
This forces µk > 0 > µk+1. Define τ, σ ∈ Yk, and k as for Lemma 2.6 and
also g1, . . . , gn as in (6). Then

(1) For any x1, . . . , xn−1 ∈ C, we have 〈g1, . . . , gk〉 ∈ Ωτ ∩Ω′σc .

(2) For any x0, . . . , xn−1 ∈ C with xµk+1
, . . . , xµn−1

6= 0, the condition
that H := 〈g1, . . . , gn〉 is isotropic determines a unique H ∈ Xµ ∩X ′λc .

Moreover , these coordinates parameterize dense subsets of the intersec-
tions, and the intersections are transverse along these subsets.

P r o o f. Statement (1) is immediate from the definitions. For (2), note
that 〈g1, . . . , gn〉 is isotropic if and only if

β(gi, gj) = 0 for i ≤ k < j.

Observe that for i ≤ k < j,

β(gi, gj) 6≡ 0⇔ [µi, λi] ∩ [λj , µj ] 6= ∅.

Suppose β(gi, gj) 6≡ 0. If we order the variables x0 < . . . < xn−1 < y2 <
. . . < yn, then the lexicographically leading term of β(gi, gj) will be

yλi if λi ∈ [λj , µj ],

yµj
xµj

if λi 6∈ [λj , µj ], so µi < µj < λi, or

yn = yµn
if i = 1, j = n.
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Since {2, . . . , n} = {λ2, . . . , λk−1, µk, . . . , µn}, each yl appears in the lead-
ing term of a unique β(gi, gj) with i ≤ k < j, showing there are n − 1 non-
trivial equations β(gi, gj) = 0, and that these determine y2, . . . , yn uniquely
in terms of the xi when xµk+1

, . . . , xµn−1
6= 0.

These coordinates parameterize an n-dimensional subset of Xµ ∩ X ′λc .
Since Xµ ∩ X ′λc is irreducible of dimension n (cf. [3]), this subset is dense.
To complete the proof, observe that the equations β(gi, gj) = 0 define a
reduced scheme in the set of parameters x0, . . . , xn−1, y2, . . . , yn.

Example 3.4. Let λ = 6 5 3 1 2 4 and µ = 5 3 1 2 4 6 so k = 3. We display
the vectors gi in a matrix:

e6 e5 e4 e3 e2 e1 e0 e1 e2 e3 e4 e5 e6

g1 · · · · · · · · · · · x5 1

g2 · · · · · · · · · x3 x4 1 ·
g3 · · · · · · · x1 x2 1 · · ·
g4 · · · · y2 1 2x0 −2x20 · · · · ·
g5 · · y4 y3 1 · · · · · · · ·
g6 y6 y5 1 · · · · · · · · · ·

Then there are 5 non-zero equations β(gi, gj) = 0 with i ≤ 3 < j:

0 = β(g3, g4) = y2x2 + x1,

0 = β(g3, g5) = y3 + x2,

0 = β(g2, g5) = y4x4 + y3x3,

0 = β(g2, g6) = y5 + x4,

0 = β(g1, g6) = y6 + y5x5.

Solving, we obtain

y2 = −x1/x2, y3 = −x2, y4 = −y3x3/x4, y5 = −x4, y6 = −y5x5.

P r o o f o f L e m m a 3.2(2). Suppose λ, µ ∈ SYn where λ/µ is a skew
row with a single component meeting the first column and no fixed points.
Let v be a general isotropic vector and consider the condition that v ∈ H
for H ∈ Xµ ∩X ′λc . Let σ, τ ∈ Yk be defined as in the paragraph preceding
Lemma 2.6. We first show that there is a unique L ∈ Ωτ ∩Ωσc with L ⊂ H,
and then argue that H is unique.

The conditions on µ and λ imply that µn = n and µj = λj+1 for j < n.
We further suppose that λk+1 = 1, so that the last row of λ/µ has length 1.
This is no restriction, as the isomorphism of V defined by ej 7→ e sends
Xµ ∩X ′λc to Xλc ∩X ′(µc)c and one of λ/µ or µc/λc has last row of length 1.

Let v be a general isotropic vector. Scale v so that its e1-component
is 1. Let 2z be its e0-component; then necessarily its e1-component is −2z2.
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Let v− ∈ V − be the projection of v to V −. Similarly define v+ ∈ V +. Set
v′ := v+ + 2z2e1, so that β(v−, v′) = 0 and

v = v− + 2z(e0 − ze1) + v′.

Let H ∈ Xµ ∩X ′λc , and suppose that v ∈ H. In the notation of Lemma
2.6, let L ∈ Ωτ ∩Ωσc be a k-plane in H ∩ V +. If H is general, in that

dim(H ∩ 〈en, . . . , eλk+2
〉) = dim(H ∩ 〈en, . . . , e0〉) = n− k − 1,

then 〈L, e1〉 is the projection of H to V +. As v ∈ H, we have v+ ∈ 〈L, e1〉.
Since L ⊂ v⊥ ∩ V + = (v−)⊥, we see that v′ ∈ L, and hence

v′ ∈ L ⊂ (v−)⊥.

As in the proof of part (1), there is a (necessarily unique) such L ∈ Ωτ ∩Ωσc

if and only if σ/τ has a unique box in each diagonal. But this is the case,
as the transformation µ, λ → τ, σ takes columns of λ/µ (greater than 1) to
diagonals of σ/τ .

To complete the proof, we use the local coordinates for Xµ ∩ X ′λc and
Ωτ ∩ Ωσc of Lemma 3.3. Since v is general, we may assume that the k-
plane L ∈ Ωτ ∩ Ωσc determined by v′ ∈ L ⊂ (v−)⊥ has non-vanishing
coordinates xµk+1

, . . . , xµn−1
, so that there is an H ∈ Xµ ∩ X ′λc in this

system of coordinates with L = H ∩ V +.
Such an H is determined up to a choice of coordinate x0. The requirement

that v ∈ H forces the projection 〈e1 + 2x0e0〉 of H to 〈e1, e0〉 to contain
e1 + 2ze0, the projection of v to 〈e1, e0〉. Hence x0 = z, and it follows that
there is at most one H ∈ Xµ ∩ X ′λc with v ∈ H. Let g1, . . . , gn be the
vectors (6) determined by the coordinates x1, . . . , xn−1 for L with x0 = z.
We claim v ∈ H := 〈g1, . . . , gn〉.

Indeed, since v′ ∈ L and v− ∈ L⊥ = 〈gk+1 − 2z(e0 − ze1), gk+2, . . . , gn〉,
there exist α1, . . . , αn ∈ C with

v− + v′ = α1g1 + . . .+ αk+1(gk+1 − 2z(e0 − ze1)) + . . .+ αngn.

We must have αk+1 = 1, since the e1-component of both v and gk+1 is 1. It
follows that

v =
n∑
i=1

αigi ∈ H.

Remarks. It would be interesting to continue this program to give triple
intersection proofs of Pieri-type formulas in all Grassmannians of classical
groups. This would give new formulas and complement the work of Pragacz
and Ratajski [13, 14, 15]. In general, there are two distinct types of special
Schubert classes and our methods work best with one type. Pragacz and
Ratajski gave Pieri-type formulas in these Grassmannians for the other type.

These explicit methods are similar to those used to prove the Pieri-type
formula for classical flag varieties [17] and for isotropic flag varieties [1].
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