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FEJÉR MEANS OF TWO-DIMENSIONAL

FOURIER TRANSFORMS ON Hp(R× R)

BY

FERENC WEI SZ (BUDAPEST)

Abstract. The two-dimensional classical Hardy spaces Hp(R×R) are introduced and
it is shown that the maximal operator of the Fejér means of a tempered distribution is

bounded fromHp(R×R) to Lp(R
2) (1/2 < p ≤ ∞) and is of weak type (H♯1(R×R), L1(R

2))

where the Hardy space H
♯
1(R × R) is defined by the hybrid maximal function. As a con-

sequence we deduce that the Fejér means of a function f ∈ H♯1(R × R) ⊃ L logL(R2)
converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on
Hp(R×R) whenever 1/2 < p <∞. Thus, in case f ∈ Hp(R×R), the Fejér means converge
to f in Hp(R × R) norm (1/2 < p < ∞). The same results are proved for the conjugate
Fejér means.

1. Introduction. The Hardy–Lorentz spaces Hp,q(R×R) of tempered
distributions are endowed with the Lp,q(R

2) Lorentz norms of the non-
tangential maximal function. Clearly, Hp(R × R) = Hp,p(R × R) are the
usual Hardy spaces (0 < p ≤ ∞).

In Zygmund [22] (Vol. II, p. 246) it is shown that the Fejér means σT f
of a one-dimensional function f ∈ L1(R) converge to f a.e. as T → ∞.
Moreover, the maximal operator of the Fejér means, σ∗ := supT>0 |σT |, is
of weak type (1, 1), i.e.

sup
γ>0

γλ(σ∗f > γ) ≤ C‖f‖1 (f ∈ L1(R))

(see Zygmund [22], Vol. I, p. 154 and Móricz [14]). Móricz [14] also verified
that σ∗ is bounded from H1(R) to L1(R). The author [19] proved that σ∗ is
also bounded from Hp,q(R) to Lp,q(R) whenever 1/2 < p < ∞, 0 < q ≤ ∞.

In [16] we investigated the Fejér means of two-parameter Fourier series
and proved that σ∗ := supn,m∈N |σn,m| is bounded from Hp,q(T × T) to
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Lp,q(T
2) (3/4 < p ≤ ∞, 0 < q ≤ ∞) and is of weak type (H♯

1(T × T),
L1(T

2)), i.e.

sup
γ>0

γλ(σ∗f | > γ) ≤ C‖f‖H♯
1
(T×T) (f ∈ H♯

1(T× T)).

Moreover, the Fejér means σn,mf converge to f a.e. as n,m → ∞ whenever

f ∈ H♯
1(T × T) ⊃ L logL(T2) (see Weisz [15], [16] and Zygmund [22] for

L logL(T2)).

In this paper we sharpen and generalize these results for the Fejér means
of two-dimensional Fourier transforms.

We show that the maximal operator σ∗ is bounded from Hp,q(R×R) to

Lp,q(R
2) whenever 1/2<p<∞, 0<q≤∞, and is of weak type (H♯

1(R× R),

L1(R
2)). We introduce the conjugate distributions f̃ (i,j), the conjugate Fejér

means σ̃
(i,j)
T,U and the conjugate maximal operators σ̃

(i,j)
∗ (i, j = 0, 1). We

prove that the operator σ̃
(i,j)
∗ is also of type (Hp,q(R×R), Lp,q(R

2)) (1/2 <

p < ∞, 0 < q ≤ ∞) and of weak type (H♯
1(R× R), L1(R

2)).

A usual density argument then implies that the Fejér means σT,Uf con-

verge to f a.e. and the conjugate Fejér means σ̃
(i,j)
T,U f converge to f̃ (i,j)

(i, j = 0, 1) a.e. as T,U → ∞ provided that f ∈ H♯
1(R×R). Note that f̃ (i,j)

is not necessarily in H♯
1(R ×R) whenever f is.

We also prove that the operators σT,U and σ̃
(i,j)
T,U (T,U ∈ R) are uniformly

bounded from Hp,q(R×R) to Hp,q(R×R) if 1/2 < p < ∞, 0 < q ≤ ∞. From

this it follows that σT,Uf → f and σ̃
(i,j)
T,U f → f̃ (i, j = 0, 1) in Hp,q(R × R)

norm as T,U → ∞ whenever f ∈ Hp,q(R×R) and 1/2 < p < ∞, 0 < q ≤ ∞.

2. Hardy spaces and conjugate functions. Let R denote the real
numbers, R+ the positive real numbers and let λ be the 2-dimensional
Lebesgue measure. We also use the notation |I| for the Lebesgue measure
of the set I. We briefly write Lp for the real Lp(R

2, λ) space; the norm (or
quasinorm) in this space is defined by ‖f‖p := (

T
R2 |f |p dλ)1/p (0 < p ≤ ∞).

The distribution function of a Lebesgue-measurable function f is defined
by

λ({|f | > ̺}) := λ({x : |f(x)| > ̺}) (̺ ≥ 0).

The weak Lp space L∗
p (0 < p < ∞) consists of all measurable functions f

for which

‖f‖L∗

p
:= sup

̺>0
̺λ({|f | > ̺})1/p < ∞

and we set L∗
∞ = L∞.
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The spaces L∗
p are special cases of the more general, Lorentz spaces Lp,q .

In their definition another concept is used. For a measurable function f the
non-increasing rearrangement is defined by

f̃(t) := inf{̺ : λ({|f | > ̺}) ≤ t}.
The Lorentz space Lp,q is defined as follows: for 0 < p < ∞, 0 < q < ∞,

‖f‖p,q :=

(∞\
0

f̃(t)qtq/p
dt

t

)1/q

,

while for 0 < p ≤ ∞,

‖f‖p,∞ := sup
t>0

t1/pf̃(t).

Let

Lp,q := Lp,q(R
2, λ) := {f : ‖f‖p,q < ∞}.

One can show the following equalities:

Lp,p = Lp, Lp,∞ = L∗
p (0 < p ≤ ∞)

(see e.g. Bennett–Sharpley [1] or Bergh–Löfström [2]).
Let f be a tempered distribution on C∞(R2) (briefly f ∈ S ′(R2) = S ′).

The Fourier transform of f is denoted by f̂ . In the special case when f is
an integrable function,

f̂(t, u) =
1

2π

\
R

\
R

f(x, y)e−ıtxe−ıuy dx dy (t, u ∈ R)

where ı =
√
−1.

For f ∈ S ′ and t, u > 0 let

F (x, y; t, u) := (f ∗ Pt × Pu)(x, y)

where ∗ denotes convolution and

Pt(x) :=
ct

t2 + x2
(x ∈ R)

is the Poisson kernel.
For α > 0 let

Γα := {(x, t) : |x| < αt},
a cone with vertex at the origin. We denote by Γα(x) (x ∈ R) the translate
of Γα with vertex at x. The non-tangential maximal function is defined by

F ∗
α,β(x, y) := sup

(x′,t)∈Γα(x), (y′,u)∈Γβ(y)

|F (x′, y′; t, u)| (α, β > 0).

For 0 < p, q ≤ ∞ the Hardy–Lorentz space Hp,q(R × R) = Hp,q consists
of all tempered distributions f for which F ∗

α,β ∈ Lp,q ; we set

‖f‖Hp,q
:= ‖F ∗

1,1‖p,q .
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For 0 < p < ∞, 0 < q ≤ ∞ Chang and Fefferman [3] and Lin [12] proved
the equivalence ‖F ∗

α,β‖p,q ∼ ‖F ∗
1,1‖p,q (α, β > 0). It is known that if f ∈ Hp

(0 < p < ∞) then f(x, y) = limt,u→0 F (x, y; t, u) in the sense of distributions
(see Gundy–Stein [11], Chang–Fefferman [3]).

Let us introduce the hybrid Hardy spaces. For f ∈ L1 and t > 0 let

G(x, y; t) :=
1√
2π

\
R

f(v, y)Pt(x− v) dv

and

G+
α (x, y) := sup

(x′,t)∈Γα(x)

|G(x′, y; t)| (0 < α < 1).

We say that f ∈ L1 is in the hybrid Hardy–Lorentz space H♯
p,q(R×R) = H♯

p,q

if

‖f‖H♯
p,q

:= ‖G+
1/2‖p,q < ∞.

The equivalences ‖G+
α ‖p,q ∼ ‖G+

1 ‖p,q (α > 0, 0 < p < ∞, 0 < q ≤ ∞) and

Hp,q ∼ H♯
p,q ∼ Lp,q (1 < p < ∞, 0 < q ≤ ∞)

were proved in Fefferman–Stein [7], Gundy–Stein [11] and Lin [12]. Note
that for p = q the usual definitions of the Hardy spaces Hp,p = Hp and
H♯

p,p = H♯
p are obtained.

The following interpolation result concerning Hardy–Lorentz spaces will
be used several times in this paper (see Lin [12] and also Weisz [17]).

Theorem A. If a sublinear (resp. linear) operator V is bounded from

Hp0
to Lp0

(resp. to Hp0
) and from Lp1

to Lp1
(p0 ≤ 1 < p1 < ∞) then

it is also bounded from Hp,q to Lp,q (resp. to Hp,q) if p0 < p < p1 and

0 < q ≤ ∞.

In this paper the constants C are absolute, while Cp (resp. Cp,q) depend
only on p (resp. p and q) and may be different in different contexts.

One can prove similarly to the discrete case (see Weisz [16]) that L logL

:= L logL(R2) ⊂ H♯
1 ⊂ H1,∞, more exactly,

(1) ‖f‖H1,∞
= sup

̺>0
̺λ(F ∗

1,1 > ̺) ≤ C‖f‖H♯
1

(f ∈ H♯
1)

and

‖f‖H♯
1

≤ C +C‖|f | log+ |f |‖1 (f ∈ L logL)

where log+ u = 1{u>1} log u.
For a tempered distribution f ∈ Hp (0 < p < ∞) the Hilbert transforms

or conjugate distributions f̃ (1,0), f̃ (0,1) and f̃ (1,1) are defined by

(f̃ (1,0))∧(t, u) := (−ı sign t)f̂(t, u) (t, u ∈ R)

(conjugate with respect to the first variable),
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(f̃ (0,1))∧(t, u) := (−ı sign u)f̂(t, u) (t, u ∈ R)

(conjugate with respect to the second variable) and

(f̃ (1,1))∧(t, u) := (− sign(tu))f̂(t, u) (t, u ∈ R)

(conjugate with respect to both variables). We use the notation f̃ (0,0) := f .
Gundy and Stein [10], [11] verified that if f ∈ Hp (0 < p < ∞) then all

conjugate distributions are also in Hp and

(2) ‖f‖Hp
= ‖f̃ (i,j)‖Hp

(i, j = 0, 1).

Furthermore (see also Chang and Fefferman [3], Frazier [9], Duren [5]),

(3) ‖f‖Hp
∼ ‖f‖p + ‖f̃ (1,0)‖p + ‖f̃ (0,1)‖p + ‖f̃ (1,1)‖p.

As is well known, if f is an integrable function then

f̃ (1,0)(x, y) = p.v.
1

π

\
R

f(x− t, y)

t
dt := lim

ε→0

1

π

\
ε<|t|

f(x− t, y)

t
dt,

f̃ (0,1)(x, y) = p.v.
1

π

\
R

f(x, y − u)

u
du,

f̃ (1,1)(x, y) = p.v.
1

π2

\
R

\
R

f(x− t, y − u)

tu
dt du.

Moreover, the conjugate functions f̃ (1,0), f̃ (0,1) and f̃ (1,1) exist almost
everywhere, but they are not integrable in general. Similarly, if f ∈ H♯

1

then f̃ (0,1) and f̃ (1,1) are not necessarily in H♯
1.

3. Fejér means. Suppose first that f ∈ Lp for some 1 ≤ p ≤ 2. It is
known that under certain conditions

f(x, y) =
1

2π

\
R

\
R

f̂(t, u)eıxteıyu dt du (x, y ∈ R).

This motivates the definition of the Dirichlet integral st,uf :

st,uf(x, y) :=
1

2π

t\
−t

u\
−u

f̂(v,w)eıxveıyw dv dw (t, u > 0).

The conjugate Dirichlet integrals are introduced by

s̃
(1,0)
t,u f(x, y) :=

1

2π

t\
−t

u\
−u

(−ı sign v)f̂(v,w)eıxveıyw dv dw (t, u > 0),

s̃
(0,1)
t,u f(x, y) :=

1

2π

t\
−t

u\
−u

(−ı signw)f̂(v,w)eıxveıyw dv dw (t, u > 0)
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and

s̃
(1,1)
t,u f(x, y) :=

1

2π

t\
−t

u\
−u

(− sign(vw))f̂ (v,w)eıxveıyw dv dw (t, u > 0).

The Fejér and conjugate Fejér means are defined by

σ̃
(i,j)
T,U f(x, y) :=

1

TU

T\
0

U\
0

s̃
(i,j)
t,u f(x, y) dt du (T,U > 0; i, j = 0, 1).

We write st,uf =: s̃
(0,0)
t,u f and σT,Uf := σ̃

(0,0)
T,U f . It is easy to see that

st,uf(x, y) :=
\
R

\
R

f(x− v, y − w)
sin tv

πv
· sinuw

πw
dv dw

and

σT,Uf(x, y) :=
\
R

\
R

f(x− t, y − u)KT (t)KU (u) dt du

where

KT (t) :=
2

π
· sin

2 (T t/2)

T t2

is the Fejér kernel. Note that

(4)
\
R

KT (t) dt = 1 (T > 0)

(see Zygmund [22], Vol. II, pp. 250–251).
We extend the definition of the Fejér means and conjugate Fejér means

to tempered distributions as follows:

σ̃
(i,j)
T,U f := f̃ (i,j) ∗ (KT ×KU ) (T,U > 0; i, j = 0, 1).

One can show that σ̃
(i,j)
T,U f is well defined for all tempered distributions

f ∈ Hp (0 < p ≤ ∞) and for all functions f ∈ Lp (1 ≤ p ≤ ∞) (cf.
Fefferman–Stein [7]).

The maximal and maximal conjugate Fejér operators are defined by

σ̃
(i,j)
∗ f := sup

T,U>0
|σ̃(i,j)

T,U f | (i, j = 0, 1).

We again write σ∗f := σ̃
(0,0)
∗ f .

4. The boundedness of the maximal Fejér operator. A function
a ∈ L2 is called a rectangle p-atom if there exists a rectangle R ⊂ R

2 such
that

(i) supp a ⊂ R,
(ii) ‖a‖2 ≤ |R|1/2−1/p,
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(iii) for all x, y ∈ R and all N ≤ [2/p − 3/2],\
R

a(x, y)xN dx =
\
R

a(x, y)yN dy = 0.

If I is an interval then let rI be the interval with the same center as I
and with length r|I| (r ∈ N). For a rectangle R = I × J let rR = rI × rJ .

An operator V which maps the set of tempered distributions into the
collection of measurable functions will be called p-quasi-local if there exist a
constant Cp > 0 and η > 0 such that for every rectangle p-atom a supported
on the rectangle R and for every r ≥ 2 one has\

R2\2rR

|Ta|p dλ ≤ Cp2
−ηr.

Although Hp cannot be decomposed into rectangle p-atoms, in the next
theorem it is enough to take such atoms (see Weisz [16], Fefferman [8]).

Theorem B. Suppose that the operator V is sublinear and p-quasi-local
for some 0 < p ≤ 1. If V is bounded from L2 to L2 then

‖V f‖p ≤ Cp‖f‖Hp
(f ∈ Hp).

Since the Fejér kernel is positive, we can prove the following inequality
in the same way as in the discrete case (see Weisz [18]):

(5) ‖σ∗f‖p ≤ Cp‖f‖p (1 < p ≤ ∞).

Now we can formulate our main result.

Theorem 1. We have

(6) ‖σ∗f‖p,q ≤ Cp,q‖f‖Hp,q
(f ∈ Hp,q)

for every 1/2 < p < ∞ and 0 < q ≤ ∞. In particular , if f ∈ H♯
1 then

(7) λ(σ∗f > ̺) ≤ C

̺
‖f‖H♯

1

(̺ > 0).

P r o o f. First we will show that the operator σ∗ is p-quasi-local for each
1/2 < p ≤ 1. To this end let a be an arbitrary rectangle p-atom with support
R = I × J and

2K−1 < |I| ≤ 2K , 2L−1 < |J | ≤ 2L (K,L ∈ Z).

We can suppose that the center of R is zero. In this case

[−2K−2, 2K−2] ⊂ I ⊂ [−2K−1, 2K−1]

and

[−2L−2, 2L−2] ⊂ J ⊂ [−2L−1, 2L−1].
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To prove the p-quasi-locality of the operator σ∗ we have to integrate |σ∗a|p
over

R
2 \ 2rR = (R \ 2rI)× J ∪ (R \ 2rI)× (R \ J)

∪ I × (R \ 2rJ) ∪ (R \ I)× (R \ 2rJ)
where r ≥ 2 is an arbitrary integer.

First we integrate over (R \ 2rI)× J . Obviously,\
R\2rI

\
J

|σ∗a(x, y)|p dx dy ≤
∞∑

|i|=2r−2

(i+1)2K\
i2K

\
J

|σ∗a(x, y)|p dx dy.

For x, y ∈ R let

A1,0(x, y) :=

x\
−∞

a(t, y) dt, A0,1(x, y) :=

y\
−∞

a(x, u) du

and

A1,1(x, y) :=

x\
−∞

y\
−∞

a(t, y) dt du.

By (iii) of the definition of the rectangle atom we can show that suppAk,l

⊂ R and Ak,l is zero at the vertices of R (k, l = 0, 1). Moreover, using (ii)
we can compute that

(8) ‖Ak,l‖2 ≤ |I|k|J |l(|I| · |J |)1/2−1/p (k, l = 0, 1).

Integrating by parts we can see that

|σT,Ua(x, y)| =
∣∣∣
\
I

\
J

A1,0(t, u)K
′
T (x− t)KU (y − u) dt du

∣∣∣

≤
\
I

∣∣∣
\
J

A1,0(t, u)KU (y − u) du
∣∣∣|K ′

T (x− t)| dt.

Using the inequality

|K ′
T (t)| ≤ C/t2 (T ∈ R+)

we get

|σT,Ua(x, y)| ≤
\
I

∣∣∣
\
J

A1,0(t, u)KU (y − u) du
∣∣∣ C

|x− t|2 dt

≤ C2−2K

i2

\
I

∣∣∣
\
J

A1,0(t, u)KU (y − u) du
∣∣∣ dt

for x ∈ [i2K , (i+ 1)2K ). Hölder’s inequality, the one-dimensional version of
(5) and (8) imply
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J

|σ∗a(x, y)|p dy

≤ Cp2
−2Kp

i2p
|J |1−p

(\
I

\
J

sup
U∈R+

∣∣∣
\
J

A1,0(t, u)KU (y − u) du
∣∣∣ dy dt

)p

≤ Cp2
−2Kp|J |1−p/2

i2p

(\
I

(\
R

sup
U∈R+

∣∣∣
\
J

A1,0(t, u)KU (y − u) du
∣∣∣
2

dy
)1/2

dt
)p

≤ Cp2
−2Kp|J |1−p/2

i2p

(\
I

(\
J

|A1,0(t, y)|2 dy
)1/2

dt
)p

≤ Cp2
−2Kp|I|p/2|J |1−p/2

i2p

(\
I

\
J

|A1,0(t, y)|2 dy dt
)p/2

≤ Cp2
−2Kp|I|2p−1

i2p
.

Hence \
R\2rI

\
J

|σ∗a(x, y)|p dx dy ≤ Cp

∞∑

i=2r−2

2K
2−K

i2p
≤ Cp2

−r(2p−1).

Next we integrate over (R \ 2rI)× (R \ J):\
R\2rI

\
R\J

|σ∗a(x, y)|p dx dy ≤
∞∑

|i|=2r−2

∞∑

|j|=1

(i+1)2K\
i2K

(j+1)2L\
j2L

|σ∗a(x, y)|p dx dy.

Integrating by parts we obtain, for x∈ [i2K , (i+1)2K ) and y∈ [i2L, (i+1)2L),

|σT,Ua(x, y)| =
∣∣∣
\
I

\
J

A1,1(t, u)K
′
T (x− t)K ′

U (y − u) dt du
∣∣∣

≤ C2−2K2−2L

i2j2

\
I

\
J

|A1,1(t, u)| dt du

≤ C2−2K2−2L|I|2−1/p|J |2−1/p

i2j2
.

Thus\
R\2rI

\
R\J

|σ∗a(x, y)|p dx dy ≤ Cp

∞∑

|i|=2r−2

∞∑

|j|=1

2K+L 2−K2−L

i2pj2p
≤ Cp2

−r(2p−1).

The integrations over I × (R \ 2rJ) and over (R \ I) × (R \ 2rJ) are
similar. Hence σ∗ is p-quasi-local. Theorem B implies (6) for p=q. Applying
Theorem A and (5) we obtain (6).
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Let us single out this result for p = 1 and q = ∞. If f ∈ H♯
1 then (1)

implies

‖σ∗f‖1,∞ = sup
̺>0

γλ(σ∗f > ̺) ≤ C‖f‖H1,∞
≤ C‖f‖H♯

1

,

which shows (7). The proof of the theorem is complete.

Note that Theorem 1 was proved for Fourier series and for 3/4 < p < ∞
by the author [16] with another method.

We can state the same for the maximal conjugate Fejér operator.

Theorem 2. For i, j = 0, 1 we have

‖σ̃(i,j)
∗ f‖p,q ≤ Cp,q‖f‖Hp,q

(f ∈ Hp,q)

for every 1/2 < p < ∞ and 0 < q ≤ ∞. In particular , if f ∈ H♯
1 then

λ(σ̃
(i,j)
∗ f > ̺) ≤ C

̺
‖f‖H♯

1

(̺ > 0).

P r o o f. By Theorem 1 for p = q and (2) we obtain

‖σ̃(i,j)
∗ f‖p = ‖σ∗f̃

(i,j)‖p ≤ Cp‖f̃ (i,j)‖Hp
= Cp‖f‖Hp

(f ∈ Hp)

for every 1/2 < p < ∞. Now Theorem 2 follows from Theorem A and (1).

Since the set of those functions f ∈ L1 whose Fourier transform has a
compact support is dense in H♯

1 (see Wiener [20]), the weak type inequalities
of Theorems 1 and 2 and the usual density argument (see Marcinkiewicz–
Zygmund [13]) imply

Corollary 1. If f ∈ H♯
1 (⊃ L logL) and i, j = 0, 1 then

σ̃
(i,j)
T,U f → f̃ (i,j) a.e. as T,U → ∞.

Note that f̃ (i,j) is not necessarily in H♯
1 whenever f is.

Now we consider the norm convergence of σT,Uf . It follows from (5) that
σT,Uf → f in Lp norm as T,U → ∞ if f ∈ Lp (1 < p < ∞). We are going
to generalize this result.

Theorem 3. Assume that T,U ∈ R+ and i, j = 0, 1. Then

‖σ̃(i,j)
T,U f‖Hp,q

≤ Cp,q‖f‖Hp,q
(f ∈ Hp,q)

for every 1/2 < p < ∞ and 0 < q ≤ ∞.

P r o o f. Since (σT,Uf)
∼(i,j) = σ̃

(i,j)
T,U f , by Theorem 2 we have

‖(σT,Uf)
∼(i,j)‖p ≤ Cp‖f‖Hp

(f ∈ Hp)

for all T,U ∈ R+ and i, j = 0, 1. (3) implies that

‖σT,Uf‖Hp
≤ Cp‖f‖Hp

(f ∈ Hp; T,U ∈ R+).
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Hence, for i, j = 0, 1,

‖σ̃(i,j)
T,U f‖Hp

≤ Cp‖f‖Hp
(f ∈ Hp; T,U ∈ R+).

which together with Theorem A implies Theorem 3.

Corollary 2. Suppose that 1/2 < p < ∞, 0 < q ≤ ∞ and i, j = 0, 1. If

f ∈ Hp,q then

σ̃
(i,j)
T,U f → f̃ (i,j) in Hp,q norm as T,U → ∞.

We suspect that Theorems 1, 2 and 3 are not true for p ≤ 1/2 though
we could not find any counterexample.
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H-1117 Budapest, Hungary
E-mail: weisz@ludens.elte.hu

Received 17 June 1998


