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ADDITIVE PROPERTIES AND UNIFORMLY
COMPLETELY RAMSEY SETS

BY

ANDRZEJ N O W I K (GDAŃSK)

Abstract. We prove some properties of uniformly completely Ramsey null sets (for
example, every hereditarily Menger set is uniformly completely Ramsey null).

1. Introduction. The notion of UCR0 sets was considered in [Da] where
it was proved that every UCR0 set has the Marczewski s0 property. The main
problem concerning these sets is whether one can prove the existence of such
a set of size continuum without any extra axioms (see [Da], Question 1). We
are still unable to give a complete answer to this problem. However, in
Section 4 we will show that every hereditarily Menger set belongs to the
class of UCR0 sets.

2. Notation. ∃∞n and ∀∞n stand for “there exists infinitely many n” and
“for all but finitely many n” respectively. We use ωω↑ to denote the family
of all strictly increasing functions from ωω. In ωω↑ we define the order ≺ in
the standard way:

x ≺ y ⇔ ∃n<ω∀k>nx(k) ≤ y(k).

Using the characteristic function, we can view [ω]ω as a subset of 2ω. So
we will look at 2ω as the union [ω]ω ∪ [ω]<ω. Sometimes we identify [ω]ω

with the space ωω↑ via the standard homeomorphism.

If U ∈ [ω]ω, F ∈ [ω]<ω and max(F ) < min(U) then [F,U ] denotes
{A ∈ [ω]ω : F ⊆ A ⊆ F ∪ U}. We call such a set an Ellentuck set.

3. Definitions. Let us define the main notions of this article.

A set X ⊆ [ω]ω is Ramsey iff there exists A ∈ [ω]ω such that either
[A]ω ⊆ X or [A]ω ∩X = ∅.
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We say that a set X ⊆ [ω]ω is Ramsey null (or for short X is CR0) iff
for every Ellentuck set [F, V ] there exists an Ellentuck set [F,U ] ⊆ [F, V ]
such that [F,U ] ∩X = ∅.

A set X ⊆ 2ω is uniformly completely Ramsey null iff for every contin-
uous function F : 2ω → 2ω and every Y ⊆ X, F−1(Y ) is Ramsey. We then
write X ∈ UCR0.

We say that a sequence of functions fk : X → R converges quasinormally

to f (fk
QN−→ 0) if there is a sequence εn → 0 such that for each x there is k0

such that |f(x)− fk(x)| < εk for all k > k0.
A subset X ⊂ 2ω is a QN set if for each sequence of continuous functions

fk : X → R, (fk → 0)⇒ (fk
QN−→0); and X is a wQN set if for each sequence

of continuous functions fk : X → R with fk → 0 there is a subsequence kl

such that fkl
QN−→ 0. The last two notions were introduced in [BRR].

We say that X ⊆ 2ω has the Menger property iff every continuous image
f(X) of X in ωω is a nondominating family , which means that there exists
g ∈ ωω such that ∀x∈X∀n∃m>ng(m) > f(x)(m). We say that X is a heredi-
tarily Menger set iff every subspace of X has the Menger property. We say
that X ⊆ 2ω has the Hurewicz property iff every continuous image of X in
ωω is a bounded family. It is evident that if X has the Hurewicz property
then it has the Menger property.

A tree S⊆ω<ω↑ is superperfect iff ∀t∈S∃s⊇t∃∞n<ωs_〈n〉 ∈ S. If T ⊆ω<ω↑
is a tree then we define [T ] = {x ∈ ωω↑ : ∀nx|n ∈ T}; moreover, stem(T ) is
the unique s ∈ T with ∀t∈T s ⊆ t ∨ t ⊆ s and |{n ∈ ω : s_〈n〉 ∈ T}| ≥ 2.

A tree S ⊆ ω<ω↑ is called a Laver tree iff ∀s∈S if stem(S) ⊆ s then
∃∞n s_〈n〉 ∈ S.

We say that X ⊆ ωω↑ is an m0 set iff for every superperfect tree T ⊆
ω<ω↑ one can find a superperfect tree S ⊆ T such that [S] ∩ X = ∅; and
X is an l0 set iff for every Laver tree T ⊆ ω<ω↑ one can find a Laver tree
S ⊆ T such that [S] ∩X = ∅.

4. Results. We start this section with the following simple but useful
characterization of UCR0 sets:

Theorem 1. Let X ⊆ 2ω. Then X is UCR0 iff for every continuous
function F : 2ω → 2ω there exists A ∈ [ω]ω such that

|F (P (A)) ∩X| ≤ ω.
P r o o f. ⇒ Let X ⊆ 2ω be UCR0 and let F : 2ω → 2ω be a continuous

function. By the definition of UCR0 one can find A ∈ [ω]ω such that [A]ω ⊆
F−1(X) ∨ [A]ω ∩ F−1(X) = ∅. Consider the following two cases:

Case 1: [A]ω ⊆ F−1(X). By [Da], Theorem 3, X is (s0). Thus there
is no uncountable analytic subset of X. As F ([A]ω) is an analytic set this
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implies that |F ([A]ω)| ≤ ω. So we have shown that |F (P (A))| ≤ ω and
finally |F (P (A)) ∩X| ≤ ω.

Case 2: [A]ω ∩ F−1(X) = ∅. First note that F (P (A)) ⊆ F ([A]ω) ∪
F ([ω]<ω) and X ∩ F ([A]ω) = ∅. This implies that

X ∩ F (P (A)) ⊆ X ∩ (F ([A]ω) ∪ F ([ω]<ω)) ⊆ F ([ω]<ω).

Thus |X ∩ F (P (A))| ≤ ω.

⇐ Suppose that F : 2ω → 2ω is a continuous function and Y ⊆ X.
By assumption, there exists A ∈ [ω]ω such that |F (P (A)) ∩X| ≤ ω. Note
first that Y ∩ F (P (A)) is a Borel set, since it is countable. Then, by the
classical Galvin–Prikry Theorem (see [Ke], Theorem 19.11) applied to the
set Y ∩ F [P (A)] and the space P (A) which is homeomorphic to 2ω, there
exists B ∈ [A]ω such that either

F ([B]ω) ⊆ Y ∩ F (P (A)) or F ([B]ω) ∩ Y ∩ F (P (A)) = ∅.

If F ([B]ω) ⊆ Y ∩F (P (A)) then we are done. If F ([B]ω)∩Y ∩F (P (A)) = ∅
then F ([B]ω) ∩ Y = ∅, and the assertion is also proved in this case.

In addition to Theorem 1 we record the following simple but useful ob-
servation:

Observation 1. Suppose that X ∈ UCR0, A ∈ [ω]ω and F : P (A)→ 2ω

is a continuous function. Then there exists B ∈ [A]ω such that |F (P (B))
∩X| ≤ ω.

P r o o f. Fix any bijection g : ω → A. For Z ⊆ ω define G(Z) := g(Z). It
is clear that G : 2ω → 2A. It is also easy to see that G is a homeomorphism.
Applying Theorem 1 to the function F ◦G shows that there exists C ∈ [ω]ω

such that |(F ◦G)(P (C))∩X| ≤ ω. But G(P (C)) = P (B), where B = g(C)
and B ∈ [A]ω, so we have |F (P (B)) ∩X| ≤ ω.

Theorem 2. Let X ⊆ 2ω. Then X is UCR0 iff for every continuous
function h : [ω]<ω → 2ω there exists B ∈ [ω]ω such that |h([B]<ω)∩X| ≤ ω.

P r o o f. ⇒ Take any continuous function h : [ω]<ω → 2ω. One can find a
Gδ set, say G, and a continuous function h∗ : G→ 2ω such that [ω]<ω ⊆ G
and h∗|[ω]<ω = h.

We will frequently use the following well-known lemma:

Lemma 1. Given a Gδ set H ′ ⊇ [ω]<ω, H ′ ⊆ 2ω one can find A ∈ [ω]ω

such that P (A) ⊆ H ′.

Applying this lemma to G yields a set A ∈ [ω]ω such that P (A) ⊆ G.
Applying Observation 1 to the set A and to the function h∗ : P (A)→ 2ω we
obtain B ∈ [A]ω such that |h∗(P (B))∩X| ≤ ω. Obviously, P (B) is compact.
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Thus h∗(P (B)) is closed and of course

h∗(P (B)) ⊇ h([B]<ω).

Hence

h([B]<ω) ⊆ h∗(P (B)).

From this it easily follows that |h([B]<ω) ∩X| ≤ ω.
⇐ Let F : 2ω → 2ω be continuous. By Theorem 1 it is sufficient to find

B ∈ [ω]ω such that F (P (B))∩X is countable. Take the restriction F |[ω]<ω

for h. Then there exists B ∈ [ω]ω such that

|h([B]<ω) ∩X| ≤ ω.
However, h([B]<ω) is dense in F (P (B)), so h([B]<ω) ⊇ F (P (B)). Thus
F (P (B)) ∩X is countable.

In the sequel we will show that every hereditarily Menger set is UCR0.
We start with the following lemma:

Lemma 2. Let F : 2ω → 2ω be a continuous function and B : 2ω → 2ω a
Borel function. Then there exists A ∈ [ω]ω such that the restriction of B to
F ([A]ω) \ F ([ω]<ω) is continuous.

P r o o f. We use the following classical result (see [Ke], Exercise 19.19):

Lemma 3. If D : 2ω → 2ω is a Borel function then there exists A ∈ [ω]ω

such that D|[A]ω is continuous.

From this lemma, there exists A ∈ [ω]ω such that (B ◦F )|[A]ω is contin-
uous on [A]ω. We now show that this A works. Fix any closed set K ⊆ 2ω.
Then F−1(B−1(K)) ∩ [A]ω is closed in [A]ω. Pick a closed L ⊆ P (A) such
that

L ∩ [A]ω = F−1(B−1(K)) ∩ [A]ω.

Let us verify that

F (L) ∩ (F ([A]ω) \ F ([ω]<ω)) = B−1(K) ∩ (F ([A]ω) \ F ([ω]<ω)),

which will prove that B is continuous after restriction to F ([A]ω)\F ([ω]<ω).
Let a ∈ F (L)∩ (F ([A]ω)\F ([ω]<ω). Then F (l) = a for some l ∈ L. Note

that B(a) = B(F (l)) and l 6∈ [ω]<ω, since a = F (l) 6∈ F ([ω]<ω). Thus l ∈
L\[ω]<ω ⊆ [A]ω. But l ∈ L∩[A]ω ⊆ F−1(B−1(K)) so B(a) = B(F (l)) ∈ K.

Conversely, if a ∈ B−1(K)∩F ([A]ω)\F ([ω]<ω) then there exists l ∈ [A]ω

such that F (l) = a. Since clearly B(a) ∈ K we see that B(F (l)) = B(a) ∈
K. Observe that

l ∈ F−1(B−1(K)) ∩ [A]ω ⊆ L,
which implies a = F (l) ∈ F (L).

This proves that B|F ([A]ω) \ F ([ω]<ω) is continuous.
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Theorem 3. If X ⊆ 2ω is a hereditarily Menger set then X is UCR0.

P r o o f. Suppose F : 2ω → 2ω is continuous. First we define a Borel
function B : 2ω → 2ω by

B(x) =

{
Ω(F−1(x)) if F−1(x) 6= ∅ ∧ F−1(x) ⊆ [ω]ω,
0 if F−1(x) = ∅ ∨ F−1(x) 6⊆ [ω]ω,

where ∀k 0(k) = 0 and Ω(K)(k) denotes max{x(k) : x ∈ K} for every
nonempty compact K ⊆ [ω]ω (recall that we treat K as a subset of ωω↑).

Since the graph of F is compact, the definition of B shows that B is
Borel. Also note that D ≺ B(F (D)) provided F (D) 6∈ F [[ω]<ω].

Apply Lemma 2 with the functions F and B to find A ∈ [ω]ω such that
B|Z is continuous, where Z = F ([A]ω) \ F ([ω]<ω).

Since X ∩ Z has the Menger property, we conclude that B[X ∩ Z] is a
nondominating family in [ω]ω (where [ω]ω is treated as ωω↑). Fix f ∈ ωω↑
such that f ∈ [A]ω and

(†) ∀g∈B(X∩Z)f 6≺ g.
We will show that F ([f ]ω) ∩X ⊆ F ([ω]<ω).

Assume that for some D ∈ [f ]ω,

F (D) ∈ X \ F ([ω]<ω).

Since we know that D ∈ [f ]ω we conclude that f ≺ D. Moreover, D ≺
B(F (D)), so f ≺ B(F (D)). Hence

F (D) ∈ Z = F ([A]ω) \ F ([ω]<ω)

and F (D) ∈ X, so

B(F (D)) ∈ B(X ∩ Z),

which contradicts (†). We have thus proved that

F ([f ]ω) ∩X ⊆ F ([ω]<ω),

which ends the proof of Theorem 3.

For the next conclusion we will introduce the notion of D‡ set (see [PR]).
We say a subset X of 2ω is D‡ iff every Borel image of X in ωω is a non-
dominating family.

Conclusion 1. Every D‡ set is UCR0.

Conclusion 2. non(UCR0) ≥ d.

Theorem 4. Every QN set is UCR0.

P r o o f. By Theorem 3 it is sufficient to show that every QN set has the
hereditary Hurewicz property.

Let X ⊆ 2ω be a QN set, Y ⊆ X and let f : Y → ωω be continuous.
Note that we can extend the domain of f to a Gδ subset of X. Thus the
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proof will be completed if we show that every continuous function f defined
on a Gδ subset of X with values in ωω is bounded.

Since every QN set is a σ set (see [Rec]) we see that every Gδ subset
of X is also an Fσ subset. From the results of [BRR] it follows that every
Fσ subset of X is a QN set and every QN set has the Hurewicz property.
Therefore f is bounded.

It is natural to formulate the following problem:

Problem 1. Is every wQN set UCR0?

Note that every wQN set X ⊆ [ω]ω is bounded in the space ωω↑ (recall
from the preliminary section that we identify [ω]ω with the space ωω↑ via the
standard homeomorphism). It follows that every such set is Ramsey null.
However, it is not clear whether every wQN set X ⊆ 2ω is Ramsey null. We
can also state a weak form of Problem 1:

Problem 2. Is every wQN set X ⊆ 2ω Ramsey null?

It is known (see [Br]) that not every Ramsey null set is an m0 set, and
not every m0 set is Ramsey null. However, we will prove that every UCR0

set is both an m0 set and an l0 set.

Theorem 5. Every UCR0 set is an m0 set.

P r o o f. Suppose X ⊆ [ω]ω ⊆ 2ω is UCR0. Let T ⊆ ω<ω↑ be a superper-
fect tree. For every s ∈ T we fix ts ⊇ s, ts ∈ T such that ∃∞n ts_〈n〉 ∈ T .

Fix k
(s)
0 < k

(s)
1 < k

(s)
2 < . . . such that

∀i∈ωts_〈k(s)i 〉 ∈ T.
We define by induction the function F : ω<ω↑ → ω<ω↑ in the following

way:

1. F (∅) = s, where s is any fixed member of stem(T ).
2. If we have already defined F (s) for |s| = n, then for i > max ran(s)

we put

F (s_〈i〉) = tF (s)
_k

(F (s))
i−max ranF (s)−1.

It is clear that F is strictly monotonic, which means that if s ⊂ t then
F (s) ⊂ F (t).

Observation 2. The function F extends to a continuous F ∗ : 2ω → 2ω.

To see this, simply define

F ∗(x) =

{
F (x) iff x ∈ ω<ω↑,⋃
n<ω F (x|n) iff x ∈ ωω↑.

Since X is UCR0, we can find (by Theorem 1) a set A ∈ [ω]ω such that

|F ∗(P (A)) ∩X| ≤ ω.
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It is easy to see that F ∗(P (A))∩ [ω]ω is equal to [SA] for some superperfect
tree SA ⊆ T . But |[SA]∩X| ≤ ω so we can find a superperfect tree S ⊆ SA
such that [S] ∩X = ∅. The proof of Theorem 5 is therefore complete.

Conclusion 3. If X is hereditarily Menger then X is an m0 set.

Note that the same argument as in Theorem 5 yields the following result:

Theorem 6. Every UCR0 set is an l0 set.

Theorem 7. Let F : 2ω → 2ω be a continuous function and X ⊆ 2ω a
UCR0 set. Assume also that to every x ∈ X we have assigned a set Zx ⊆
F−1({x}) which is also UCR0. Then

Z =
⋃
x∈X

Zx

is a UCR0 set.

P r o o f. Let G : 2ω → 2ω be continuous. By Theorem 1 the proof of our
theorem will be completed if we show that ∃B∈[ω]ω |G(P (B)) ∩ Z| ≤ ω.

Since X is a UCR0 set, we conclude from Theorem 1 that there exists
A ∈ [ω]ω such that

|F (G(P (A))) ∩X| ≤ ω.
Then

W =
⋃

x∈F (G(P (A)))∩X

Zx ∈ UCR0,

hence (again from Theorem 1) there exists B ∈ [A]ω such that

|G(P (B)) ∩W | ≤ ω.
It follows that

G(P (B)) ∩ Z = G(P (B)) ∩
⋃
x∈X

Zx = G(P (B)) ∩
⋃

x∈F (G(P (A)))∩X

Zx

= G(P (B)) ∩W.
Hence |G(P (B)) ∩ Z| ≤ ω, which shows that Z ∈ UCR0.

As an easy consequence we obtain the following corollary:

Corollary 1. Let X ⊆ 2ω and let Y ⊆ 2ω be a UCR0 set. Then the set
X × Y (contained in the space 2ω × 2ω homeomorphic to 2ω) is also UCR0.

Conclusion 4. Assuming MA there exists a UCR0 set X ⊆ 2ω and a
continuous function F : 2ω → 2ω such that F (X) = 2ω.

P r o o f. Take a generalized Luzin set L ⊆ 2ω such that L+L = 2ω. From
[Da], Theorem 12, we know that under MA every generalized Luzin set is
UCR0. Put X = L × L and define F : 2ω × 2ω → 2ω by F (x, y) = x + y.
Clearly, these X and F work.
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It is well known (see [Da], Theorem 9) that every Sierpiński and every
Luzin set is UCR0. We will prove the following intriguing fact:

Theorem 8. Let L ⊆ 2ω be a Luzin set and S ⊆ 2ω a Sierpiński set.
Assume that F : 2ω × 2ω → 2ω is a continuous function such that for every
y ∈ 2ω, F−1({y}) is of measure zero. Then F (L× S) is UCR0.

P r o o f. Fix a continuous G : 2ω → 2ω.

Lemma 4. There exists A ∈ [ω]ω such that F−1(G(P (A))) has measure
zero.

P r o o f. One can easily find a Gδ set, say H, such that the (countable)
set G([ω]<ω) is included in H and F−1(H) has measure zero. Applying
Lemma 1 to the Gδ set G−1(H) yields A ∈ [ω]ω such that P (A) ⊆ G−1(H).
ThenG(P (A)) ⊆ H and so F−1(G(P (A))) ⊆ F−1(H). Thus F−1(G(P (A)))
has measure zero.

In the next part of our proof of Theorem 8 we use the following interesting
fact observed by J. Pawlikowski (private communication):

Lemma 5. Let A ⊆ 2ω × 2ω be a co-null Gδ set. Then there exists a
co-meager set B ⊆ 2ω and co-null set C ⊆ 2ω such that B × C ⊆ A.

We leave it to the reader to verify this lemma.
It is easy to see that the set (2ω × 2ω) \ F−1(G(P (A))) satisfies the

assumption of Lemma 5. Indeed, from our previous results we know that
F−1(G(P (A))) has measure zero. Also F−1(G(P (A))) is closed (because
P (A) ⊆ 2ω is compact). Consequently, let B ⊆ 2ω be a co-meager set and
C ⊆ 2ω be a co-null set such that

B × C ⊆ (2ω × 2ω) \ F−1(G(P (A))).

This can be written as

(1) (B × C) ∩ F−1(G(P (A))) = ∅.
Then we have

(L× S) \ (B × C) ⊆ [(L \B)× S] ∪ [L× (S \ C)],

where L1 = L \B and S1 = S \ C are countable. Thus

F (L× S) = F ((L× S) \ (B × C)) ∪ F (B × C)

⊆ F (L1 × S) ∪ F (L× S1) ∪ F (B × C).

From (1) we know that F (B × C) ∩G(P (A)) = ∅. Thus

F (L× S) ∩G(P (A)) ⊆ [F (L1 × S) ∪ F (L× S1)] ∩G(P (A)).

However, F (L1×S)∪F (L×S1) has the UCR0 property. Indeed, L1×S as
a countable sum of Sierpiński sets is also a Sierpiński set, so F (L1 × S) is
UCR0. Analogously, F (L× S1) is also UCR0.
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Choose B ∈ [A]ω such that

|G(P (B)) ∩ [F (L1 × S) ∪ F (L× S1)]| ≤ ω.
Since

F (L× S) ∩G(P (B)) ⊆ [F (L1 × S) ∪ F (L× S1)] ∩G(P (B)),

we finally obtain

|F (L× S) ∩G(P (B))| ≤ ω,
which shows that F (L× S) is UCR0.

As an immediate consequence of Theorem 8 we obtain:

Corollary 2. If L ⊆ 2ω is a Luzin set and S ⊆ 2ω is a Sierpiński set
then the algebraic sum

L+ S = {x+ y : x ∈ L, y ∈ S}
has the UCR0 property.
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