COLLOQUIUM MATHEMATICUM

VOL. 82

1999

NO. 2

A LIMIT INVOLVING FUNCTIONS IN $W_0^{1,p}(\Omega)$

BY

BIAGIO RICCERI (CATANIA)

Abstract. We point out the following fact: if $\Omega \subset \mathbb{R}^n$ is a bounded open set, $\delta > 0$, and p > 1, then

$$\lim_{\varepsilon \to 0^+} \inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p \, dx = \infty,$$

where $V_{\varepsilon} = \{ u \in W_0^{1,p}(\Omega) : \max(\{ x \in \Omega : |u(x)| < \delta \}) < \varepsilon \}.$

Here and in the sequel, $\Omega \subset \mathbb{R}^n$ is a (non-empty) bounded open set, m denotes the Lebesgue measure in \mathbb{R}^n , $\delta > 0$, p > 1, and $W_0^{1,p}(\Omega)$ is the usual Sobolev space, equipped with the norm $||u|| = (\int_{\Omega} |\nabla u(x)|^p dx)^{1/p}$.

The aim of this paper is to prove the following result which could be useful in certain cases:

THEOREM 1. For each $\varepsilon > 0$, put

$$V_{\varepsilon} = \{ u \in W_0^{1,p}(\Omega) : m(\{ x \in \Omega : |u(x)| < \delta \}) < \varepsilon \}$$

Then

$$\lim_{\varepsilon \to 0^+} \inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p \, dx = \infty.$$

Before giving the proof of Theorem 1, we establish the following proposition:

PROPOSITION 1. For each $u \in W_0^{1,p}(\Omega)$,

$$m(\{x \in \Omega : |u(x)| < \delta\}) > 0.$$

Proof. For simplicity, let us introduce some notation. We first put

$$\Gamma = \{ x \in \Omega : |u(x)| < \delta \}.$$

We think of Ω as a subset of $\mathbb{R} \times \mathbb{R}^{n-1}$. If $x \in \mathbb{R}^n$, we set $x = (t, \xi)$, where $t \in \mathbb{R}$ and $\xi \in \mathbb{R}^{n-1}$. We also denote by A (resp. B) the projection of Ω on \mathbb{R} (resp. \mathbb{R}^{n-1}), and by m_1 (resp. m_{n-1}) the Lebesgue measure on \mathbb{R} (resp.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E35.

^[219]

 \mathbb{R}^{n-1}). So, A and B are (non-empty) open sets, and hence $m_1(A) > 0$ and $m_{n-1}(B) > 0$. Finally, for a generic set $S \subseteq \Omega$ and for each $\xi \in B$, put

$$S_{\xi} = \{t \in A : (t,\xi) \in S\}$$

By well-known results ([1], [2]), we can assume that, for almost every $\xi \in B$, the function $u(\cdot, \xi)$ belongs to $W_0^{1,p}(\Omega_{\xi})$, and so it is almost everywhere equal to a function which is continuous in $\overline{\Omega}_{\xi}$ and zero on $\partial \Omega_{\xi}$. Consequently, we have $m_1(\Gamma_{\xi}) > 0$ a.e. in *B*. Now, if χ_{Γ} denotes the characteristic function of Γ , then Fubini's theorem yields

$$m(\Gamma) = \int_{A \times B} \chi_{\Gamma}(t,\xi) \, dt \, d\xi = \int_{B} \left(\int_{\Gamma_{\xi}} dt \right) d\xi = \int_{B} m_1(\Gamma_{\xi}) \, d\xi > 0,$$

as claimed. \blacksquare

Proof of Theorem 1. Clearly, the function $\varepsilon \mapsto \inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p dx$ is non-increasing. Consequently,

$$\lim_{\varepsilon \to 0^+} \inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p \, dx = \sup_{\varepsilon > 0} \inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p \, dx$$

Arguing by contradiction, assume that there is M > 0 such that

$$\inf_{u \in V_{\varepsilon}} \int_{\Omega} |\nabla u(x)|^p dx < M$$

for all $\varepsilon > 0$. Consider the function $g : \mathbb{R} \to \mathbb{R}$ defined by

$$g(t) = \begin{cases} \delta - |t| & \text{if } |t| < \delta, \\ 0 & \text{if } |t| \ge \delta. \end{cases}$$

Consider also the functional $\Psi: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by putting

$$\Psi(u) = \int_{\Omega} g(u(x)) \, dx$$

for all $u \in W_0^{1,p}(\Omega)$. Using the Rellich–Kondrashov theorem, one sees that Ψ is sequentially weakly continuous in $W_0^{1,p}(\Omega)$. Now, for each $h \in \mathbb{N}$, choose $u_h \in V_{1/(h\delta)}$ in such a way that

$$\int_{\Omega} |\nabla u_h(x)|^p \, dx < M$$

So, the sequence $\{u_h\}$ is bounded in $W_0^{1,p}(\Omega)$. Consequently, since p > 1, there is a subsequence $\{u_{h_k}\}$ weakly converging to some $u_0 \in W_0^{1,p}(\Omega)$. For each $k \in \mathbb{N}$, we have

$$\Psi(u_{h_k}) = \int_{\{x \in \Omega: |u_{h_k}(x)| < \delta\}} (\delta - |u_{h_k}(x)|) \, dx < \frac{1}{h_k \delta} \delta = \frac{1}{h_k}.$$

Passing to the limit as $k \to \infty$, we then get $\Psi(u_0) = 0$. This implies that $m(\{x \in \Omega : |u_0(x)| < \delta\}) = 0$, contrary to Proposition 1.

For p = 1, we have the following result:

THEOREM 2. Let n = 1. For each $\varepsilon > 0$, put

$$U_{\varepsilon} = \{ u \in W_0^{1,1}(\Omega) : m(\{ x \in \Omega : |u(x)| < \delta \}) < \varepsilon \}$$

If k denotes the number (possibly infinite) of connected components of Ω , then

$$\lim_{\varepsilon \to 0^+} \inf_{u \in U_{\varepsilon}} \int_{\Omega} |u'(x)| \, dx = 2k\delta.$$

Proof. First, assume that k is finite. Let $]a_i, b_i[(i = 1, ..., k)]$ denote the connected components of Ω . Suppose that $\varepsilon \leq \min_{1 \leq i \leq k} (b_i - a_i)$. Let $v \in U_{\varepsilon}$. We can assume that v is absolutely continuous in each interval $[a_i, b_i]$. Fix i. Since $v(a_i) = v(b_i) = 0$, due to the choice of ε , there is $x_i \in]a_i, b_i[$ such that $|v(x_i)| = \delta$. Assume, for instance, that $v(x_i) = \delta$. Then

$$\delta = \int_{a_i}^{x_i} v'(x) \, dx \le \int_{a_i}^{x_i} |v'(x)| \, dx$$

and

$$\delta = -\int_{x_i}^{b_i} v'(x) \, dx \le \int_{x_i}^{b_i} |v'(x)| \, dx.$$

Hence,

$$2\delta \le \int_{a_i}^{b_i} |v'(x)| \, dx.$$

With obvious changes, one gets this inequality also if $v(x_i) = -\delta$. Consequently,

$$2k\delta \le \sum_{i=1}^{k} \int_{a_i}^{b_i} |v'(x)| \, dx = \int_{\Omega} |v'(x)| \, dx.$$

We then infer that

(1)
$$2k\delta \le \inf_{u \in U_{\varepsilon}} \int_{\Omega} |u'(x)| \, dx.$$

Now, consider the function $w: \Omega \to \mathbb{R}$ defined by

$$w(x) = \begin{cases} 4k\delta(x-a_i)/\varepsilon & \text{if } x \in]a_i, a_i + \varepsilon/(4k)], \\ \delta & \text{if } x \in]a_i + \varepsilon/(4k), b_i - \varepsilon/(4k)[, \\ 4k\delta(b_i - x)/\varepsilon & \text{if } x \in [b_i - \varepsilon/(4k), b_i[. \end{cases}$$

Clearly, $w \in U_{\varepsilon}$. Moreover, a simple calculation gives $\int_{\Omega} |w'(x)| dx = 2k\delta$. This and (1) then show that

$$\inf_{u \in U_{\varepsilon}} \int_{\Omega} |u'(x)| \, dx = 2k\delta.$$

Therefore, our conclusion is proved when k is finite.

Now, assume that Ω has infinitely many connected components. Let $r \in \mathbb{N}$. Let $]\alpha_i, \beta_i[$ (i = 1, ..., r) be r distinct connected components of Ω . Fix $\varepsilon \leq \min_{1 \leq i \leq r} (\beta_i - \alpha_i)$, and let $v \in U_{\varepsilon}$. Then, from the first part of the proof, we know that

$$2r\delta \leq \sum_{i=1}^{r} \int_{\alpha_i}^{\beta_i} |v'(x)| \, dx \leq \int_{\Omega} |v'(x)| \, dx.$$

Hence,

$$2r\delta \leq \inf_{u \in U_{\varepsilon}} \int_{\Omega} |u'(x)| \, dx.$$

This, of course, implies that

$$\lim_{\varepsilon \to 0^+} \inf_{u \in U_{\varepsilon}} \int_{\Omega} |u'(x)| \, dx = \infty,$$

and the proof is complete. \blacksquare

REFERENCES

[1] H. Brézis, Analyse fonctionnelle, Masson, 1983.

[2] V. G. Maz'ja, Sobolev Spaces, Springer, 1985.

Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy E-mail: ricceri@dipmat.unict.it

Received 21 June 1999