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A LIMIT INVOLVING FUNCTIONS IN Wol’p(Q)

BY

BIAGIO RICCERI (CATANIA)
Abstract. We point out the following fact: if 2 C R" is a bounded open set, § > 0,
and p > 1, then

lim inf S |Vu(z)|P do = oo,
e—0t ueVe

where Ve = {u € Wol’p(()) :meas({z € 2: |u(z)| < §}) < e}

Here and in the sequel, 2 C R™ is a (non-empty) bounded open set, m
denotes the Lebesgue measure in R™, § > 0, p > 1, and VVO1 P(£2) is the usual
Sobolev space, equipped with the norm ||ul| = ({, |[Vu(z)|P dz)'/?.

The aim of this paper is to prove the following result which could be
useful in certain cases:

THEOREM 1. For each € > 0, put
Vo ={ueWy?(2): m({z e 2:|u(z) <d}) <e}.
Then

lim inf S |Vu(x)?P de = oo.
e—0t ueVe 0

Before giving the proof of Theorem 1, we establish the following propo-
sition:

PROPOSITION 1. For each u € Wy (£2),
m({z € 2 :|u(x)] < d}) > 0.
Proof. For simplicity, let us introduce some notation. We first put
I'={ze€ 2:|u(x)| <d}.
We think of 2 as a subset of R x R"™1. If x € R", we set x = (¢, &), where
t € R and £ € R"~!. We also denote by A (resp. B) the projection of {2 on
R (resp. R"™1), and by m; (resp. m,,_1) the Lebesgue measure on R (resp.
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R"~1). So, A and B are (non-empty) open sets, and hence my(A4) > 0 and
my—1(B) > 0. Finally, for a generic set S C (2 and for each £ € B, put

Se={teA:(t¢) €S}

By well-known results ([1], [2]), we can assume that, for almost every ¢ € B,
the function u(-, £) belongs to W, *(£2¢), and so it is almost everywhere equal
to a function which is continuous in ﬁg and zero on 0f2. Consequently, we
have mi(I¢) > 0 a.e. in B. Now, if x denotes the characteristic function
of I, then Fubini’s theorem yields

m(N) = | xr(t)deds = § (§at)dg = {m(Ie)dg >0,

AxB B I

as claimed. m

Proof of Theorem 1. Clearly, the function € — inf,ev, |, [Vu(z)[? dz is
non-increasing. Consequently,

lim inf ||V Pdx = inf \ |V Pdz.
€_1>1(1]1+u1é1V8§2| u(zx)|P dz i;llo)ulg‘/s(y u(x)|P dz

Arguing by contradiction, assume that there is M > 0 such that

inf | |Vu(z)|Pde < M
u€e Ve o

for all € > 0. Consider the function g : R — R defined by

C(S— it <o,
9(t) = {0 it |¢] > 6.

Consider also the functional ¥ : W, *(£2) — R defined by putting

(u) = | g(u(x)) dz
0}

for all u € W, P(£2). Using the Rellich-Kondrashov theorem, one sees that ¥
is sequentially weakly continuous in WO1 P(£2). Now, for each h € N, choose
up € Vi/(ns) in such a way that

S |Vup(x)|P de < M.
Q

So, the sequence {uy} is bounded in WO1 P(£2). Consequently, since p > 1,
there is a subsequence {uy,, } weakly converging to some ug € Wy ?(£2). For
each k£ € N, we have

¥ (up,) = S (6 — |up, (z)]) dz < L5 - 1

hed | Ry
{2€ i uny (2)| <5} F ¥
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Passing to the limit as k — oo, we then get ¥(up) = 0. This implies that
m({z € 2 :|up(z)| < d}) =0, contrary to Proposition 1. m

For p = 1, we have the following result:
THEOREM 2. Let n = 1. For each € > 0, put
U.={uec Wy (2):m({z € 2 |Ju(z)| < §}) < e}
If k denotes the number (possibly infinite) of connected components of 2,
then
lim inf X |u'(x)] dx = 2k6.

—0+ uel,
N Q

Proof. First, assume that k is finite. Let Ja;, b;[ (¢ = 1,..., k) denote the
connected components of 2. Suppose that e <minj<;<x(b; —a;). Let veUs..
We can assume that v is absolutely continuous in each interval [a;, b;]. Fix i.
Since v(a;) = v(b;) = 0, due to the choice of ¢, there is z; € ]a;, b;[ such that
|v(z;)| = 6. Assume, for instance, that v(x;) = 0. Then

5= S v'(z)dx < S |v' ()| dx
and
bi bi
0=— S v'(z) dx < S [v' ()| dx
Hence,
b;
26 < S |v'(z)| dx.
With obvious changes, one gets this inequality also if v(x;) = —d. Conse-
quently,
k b
2k6 <>\ [V (@) dw = | [v/(2)| dz.
1=1 a; 2
We then infer that
< i ! .
(1) 2k < ulené (Sl |u'(x)| dz

Now, consider the function w : {2 — R defined by
4ké(x — a;) /e if x € Ja;, a; + €/(4k)],
w(r)=14 0 if z € )a; +¢/(4k),b; — e/(4k)],
4ké(b; — x) /e if x € [b; — /(4k), b;.
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Clearly, w € U.. Moreover, a simple calculation gives |, [w'(2)| dz = 2kd.
This and (1) then show that

. /

ulélga }2 |u'(z)| dx = 2kd.
Therefore, our conclusion is proved when k is finite.

Now, assume that (2 has infinitely many connected components. Let

r € N. Let Jay, B;[ (¢ = 1,...,7) be r distinct connected components of (2.
Fix ¢ <minj<;<,(f; — «;), and let v € U.. Then, from the first part of the
proof, we know that

r Bi
2r5 <> | [/ (@) dx < | |V (2)] da.
=1 a; 2

Hence,

< i ! .
2rd < ulené é |u'(z)| dz

This, of course, implies that

lim inf S |u'(z)| dz = oo,
e—0t uel. 0

and the proof is complete. m
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