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IMMERSIONS OF MODULE VARIETIES

BY

GRZEGORZ ZWARA (TORUŃ)

Abstract. We show that a homomorphism of algebras is a categorical epimorphism
if and only if all induced morphisms of the associated module varieties are immersions.
This enables us to classify all minimal singularities in the subvarieties of modules from
homogeneous standard tubes.

1. Introduction and main results. Throughout the paper k will be a
fixed algebraically closed field and all the algebras considered are associative
k-algebras with identities. For any algebra A and d ≥ 1 we denote byMd(A)
the algebra of square matrices of degree d with coefficients in A.

Let A be a finitely generated algebra, that is, A is isomorphic to the quo-
tient of a finitely generated free (non-commutative) algebra k〈X1, . . . ,Xn〉
by a two-sided ideal I. For any natural number d we define an affine variety
modA(d) of (left) A-module structures on kd as follows:

modA(d) = {m = (m1, . . . ,mn) ∈ (Md(k))
n : ̺(m1, . . . ,mn) = 0, ̺ ∈ I}.

The general linear group Gld(k) acts on modA(d) by conjugation and the
orbits of this action correspond to the isomorphism classes of d-dimensional
left A-modules. The variety modA(d) depends on the choice of the represen-
tation k〈X1, . . . ,Xn〉/I of A only up to a Gld(k)-equivariant isomorphism.

Let ϕ : A → B be a homomorphism of finitely generated algebras. Then
there are induced regular Gld(k)-equivariant morphisms of affine varieties
ϕ(d) : modB(d) → modA(d) for all d ≥ 1. An interesting problem is to find
homomorphisms of algebras inducing regular morphisms of affine varieties
with nice properties.

Examples of nice regular morphisms are immersions. Recall some defini-
tions from [9]. By a variety we mean a quasi-affine variety, that is, a locally
closed subset of an affine variety. We say that a regular morphism µ : X → Y
of varieties is an immersion (respectively, closed immersion) if µ gives an
isomorphism of X with a locally closed subset of Y (respectively, a closed
subset of Y ).

1991Mathematics Subject Classification: 14B05, 14E25, 14L30, 16B50, 16G10, 16G70.

[287]



288 G. ZWARA

On the other hand, well-known examples of homomorphisms of algebras
are categorical epimorphisms. A homomorphism ϕ : A → B of rings with
identity is called an epimorphism in the category of rings, or briefly a cat-

egorical epimorphism, if for given homomorphisms of rings β1, β2 : B → C
such that β1ϕ = β2ϕ, we have β1 = β2 (see [14]). Our first main result
explains connections between categorical epimorphisms of algebras and im-
mersions of module varieties.

Theorem 1. Let ϕ : A → B be a homomorphism of algebras. As-

sume that the algebra A is finitely generated and the algebra B is finite-

dimensional. Then the following conditions are equivalent :

(i) ϕ is a categorical epimorphism.

(ii) ϕ(d) : modB(d) → modA(d) is an injective morphism for all d ≥ 1.
(iii) ϕ(d) is an immersion for all d ≥ 1.

This theorem is useful for problems concerning the geometry of module
varieties like the types of singularities in closures of orbits. Following Hes-
selink (see (1.7) in [10], (8.1) in [1] and (2.1) in [12]) we call two pointed
varieties (X , x0) and (Y, y0) smoothly equivalent if there are smooth mor-
phisms f : Z → X , g : Z → Y and a point z0 ∈ Z with f(z0) = x0,
g(z0) = y0. This is an equivalence relation and equivalence classes will be
denoted by Sing(X , x0). If Sing(X , x0) = Sing(Y, y0) then the variety X is
regular or normal at x0 if and only if the same is true for the variety Y at
y0 (see Section 17 in [8] for more information about smooth morphisms).

In the case of module varieties we wish to investigate the types of
singularities Sing(Gld(k)m,n) of closures of orbits, where n ∈ Gld(k)m.
Especially, it is of interest to classify the types of minimal singularities,
that is, Sing(Gld(k)m,n), where n ∈ Gld(k)m \ Gld(k)m and there is no
point p ∈ modA(d) such that Gld(k)n  Gld(k)p  Gld(k)m. In case
A = k[X]/(Xn) all types of minimal singularities in modA(d) are known
and we list them in Section 4.3. For some results concerning minimal singu-
larities we refer to [15], [1], [12] and [5].

For any finite-dimensional algebra A one defines the Auslander–Reiten

quiver ΓA of A, that is, a translation quiver whose vertices are the isomor-
phism classes of indecomposable finite-dimensional left A-modules and the
arrows correspond to irreducible maps (see [3] for more details). It will cause
no confusion if we identify the isomorphism classes of modules with their
representatives. A connected component Γ of the Auslander–Reiten quiver
ΓA of A is said to be a homogeneous tube if it is isomorphic to the translation
quiver (V0, V1, τ) with the set of vertices V0 = {vi : i ≥ 1}, the set of arrows
V1 = {αi : vi → vi+1, βi : vi+1 → vi : i ≥ 1} and the translation τ : V0 → V0

given by τ(vi) = vi for all i ≥ 1 (cf. Section 3.1 in [13]).
An A-module in Γ corresponding to v1 is said to be quasi-simple.
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Homogeneous tubes are important components of the Auslander–Reiten

quivers of tame algebras. A finite-dimensional algebra A is called tame if for
any d ≥ 1 there is a finite number of A-k[X]-bimodules M1, . . . ,Mn(d) which
are free of rank d as right k[X]-modules and such that every indecomposable
left A-module of dimension d is isomorphic toMi⊗k[X]k[X]/(X−λ) for some
1 ≤ i ≤ n(d) and λ ∈ k. Crawley-Boevey proved in [6] that if the algebra A is
tame, then all but finitely many isomorphism classes of indecomposable left
A-modules of any dimension d lie in homogeneous tubes of ΓA. Furthermore,
if A is a tame hereditary algebra, then all connected components of ΓA are
standard and all but finitely many of them are homogeneous tubes. A
connected component Γ of the Auslander–Reiten quiver ΓA of A is called
standard if the category of A-modules from Γ is equivalent to the mesh
category of Γ (see [13] for details).

Let modΓ (d) denote the sum of orbits in modA(d) corresponding to the
modules from add(Γ ), for any component Γ of ΓA. Our second main result
enables us to classify all minimal singularities in modΓ (d), where Γ is a
standard homogeneous tube.

Theorem 2. Let Γ be a standard homogeneous tube in the Auslander–

Reiten quiver of a finite-dimensional algebra A. Let d = d′e, where d′ ≥ 1,
e = dimk T1 and T1 is a quasi simple module in Γ . Then:

(i) modΓ (d) is a locally closed subset of modA(d).

(ii) The types of singularities (respectively , minimal singularities) in the

varieties modΓ (d) and modk[X]/(Xr)(d
′) coincide provided r ≥ d′.

Observe that modΓ (d) is an empty set if d is not divisible by e = dimk T1.

The rest of the paper is organized as follows. In Section 2 we consider al-
gebraic conditions for ring homomorphisms to be categorical epimorphisms.
Section 3 is devoted to the proof of Theorem 1. In Section 4 we show some
applications of Theorem 1, in particular, we prove Theorem 2.
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For background on the representation theory of algebras we refer to [3],
[13] and for algebraic geometry to [9].

The author wishes to express his thanks to D. Simson for helpful com-
ments concerning categorical epimorphisms.

2. Categorical epimorphisms. For any ring R (with an identity)
we denote by ModR the category of left R-modules and by HomR(−,−)
the functor of R-homomorphisms of left R-modules. Furthermore, any ring
homomorphism ϕ : A → B induces a faithful functor ϕ∗ : ModB → ModA
and we may consider any left B-module as a left A-module. In that way,
HomB(X,Y ) becomes a subset of HomA(X,Y ) for any X,Y ∈ ModB.
Lemma 3 collects some equivalent conditions for epimorphisms in the cate-
gory of rings (see Section 1 in [11]).

Lemma 3. Let ϕ : A → B be a homomorphism of unitary rings. Then

the following conditions are equivalent :

(i) ϕ is a categorical epimorphism.

(ii) HomA(X,Y ) = HomB(X,Y ) for all X,Y ∈ ModB, that is, the

functor ϕ∗ : ModB → ModA induced by ϕ is full.

(iii) The canonical surjective homomorphism of B-bimodules B ⊗A B
→ B, b⊗ b′ 7→ bb′, is an isomorphism.

We now consider the category of algebras (over k). For an algebra A we
have the canonical functorD = Homk(−, k) : ModA → ModAop, whereAop

denotes the opposite algebra of A, or equivalently, ModAop denotes the cat-
egory of right A-modules. Since any algebra B is a left and a right B-module,
the k-space HomB(B,DB) is defined. Furthermore, for any homomorphism
ϕ : A → B we may treat HomA(B,DB) as a k-space containing the subspace
HomB(B,DB). We shall need the following fact.

Lemma 4. Let ϕ : A → B be a homomorphism of algebras. Then ϕ is a

categorical epimorphism if and only if HomA(B,DB) = HomB(B,DB).

P r o o f. The homomorphism η : B ⊗A B → B, b⊗ b′ 7→ bb′, is bijective
if and only if so is the homomorphism D(η) : DB → D(B ⊗A B). Since the
functor B ⊗A (−) is left adjoint to the functor Homk(BA,−), we have the
following isomorphisms:

D(B⊗AB) = Homk(B⊗AB, k) ≃ HomA(B,Homk(B, k)) = HomA(B,DB),

and similarly,
DB ≃ D(B ⊗B B) ≃ HomB(B,DB).

Observe that, applying the above isomorphisms, D(η) corresponds to the
inclusion HomB(B,DB) ⊆ HomA(B,DB). Hence, η is an isomorphism of
B-bimodules if and only if HomA(B,DB) = HomB(B,DB). Lemma 3 now
completes the proof.
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3. Proof of Theorem 1. Throughout this section we fix a homomor-
phism ϕ : A → B, where A is a finitely generated algebra and B is a
finite-dimensional algebra. The implication (iii)⇒(ii) is obvious.

(ii)⇒(i). Let d = dimk(B ⊕ DB) < ∞. Take a point x ∈ modB(d)
such that its orbit Gld(k)x corresponds to the isomorphism class of the left
B-module B ⊕DB. We set y = ϕ(d)(x), where ϕ(d) : modB(d) → modA(d)
is the induced regular morphism. Then the orbit Gld(k)y corresponds to
the isomorphism class of the left A-module B ⊕ DB. Since the morphism
ϕ(d) is injective we get a bijection Gld(k)x → Gld(k)y, and consequently,
equality of the isotropy groups: Gld(k)x = Gld(k)y . Observe that the affine
algebraic group Gld(k)x is isomorphic to the group AutB(B ⊕ DB) of B-
module automorphisms of B ⊕ DB. Furthermore, AutB(B ⊕ DB) is a
non-empty open subset of the space EndB(B ⊕ DB) of B-endomorphisms
of B ⊕DB. This implies that dimAutB(B ⊕DB) = dimk EndB(B ⊕DB).
Hence, dimGld(k)x = dimk EndB(B ⊕ DB), and similarly, dimGld(k)y =
dimk EndA(B ⊕ DB). Consequently, EndB(B ⊕ DB) = EndA(B ⊕ DB).
Since HomB(X,Y ) ⊆ HomA(X,Y ) for any B-modules X, Y and

HomB(B,B)⊕HomB(B,DB)⊕HomB(DB,B)⊕HomB(DB,DB)

= EndB(B ⊕DB) = EndA(B ⊕DB)

= HomA(B,B)⊕HomA(B,DB)⊕HomA(DB,B)⊕HomA(DB,DB),

we get HomB(B,DB) = HomA(B,DB). Hence ϕ is a categorical epimor-
phism by Lemma 4.

(i)⇒(iii). Let d ≥ 1. We divide the proof into several steps.

Step (a). If the homomorphism ϕ : A → B is surjective, then the induced

regular morphism ϕ(d) : modB(d) → modA(d) is a closed immersion.

P r o o f. The algebra A is finitely generated, hence A ≃ k〈X1, . . . ,Xn〉/I.
Observe that B ≃ k〈X1, . . . ,Xn〉/J for some two-sided ideal J containing I.
By definition, the affine varieties modB(d) and modA(d) are the sets of
points in (Md(k))

n satisfying polynomial equations induced by J and I,
respectively. Since J ⊇ I, modB(d) becomes a closed subset of modA(d),
and ϕ(d) is an inclusion.

Step (b). We may assume that A is a subalgebra of B and ϕ is an

inclusion.

P r o o f. By our assumptions and Lemma 3, the canonical homomorphism
B ⊗A B → B is injective. Let A = A/ kerϕ. Then the homomorphism
ϕ : A → B factorizes through A and we get the induced regular morphisms
of affine varieties:

modB(d) → modA(d) → modA(d).
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By (a), the latter is a closed immersion. Since the B-bimodules B⊗AB and
B ⊗A B are isomorphic to each other, we may assume that A = A, A ⊆ B
and ϕ : A → B is an inclusion.

We choose a linear basis 1 = b0, b1, . . . , bs of B, where s = dimk B − 1,
such that 1 = b0, b1, . . . , bt form a basis of A and t = dimk A − 1. We also
choose the following representations of the algebras A and B:

A ≃ k〈X1, . . . ,Xs〉/I and B ≃ k〈X1, . . . ,Xt〉/J

for some two-sided ideals I and J , where the generator Xi corresponds to
bi for all 1 ≤ i ≤ s. Then ϕ(d)(x1, . . . , xs) = (x1, . . . , xt) for any point
x = (x1, . . . , xs) ∈ modB(d).

Let Mα×β(C) denote the space of all matrices with α rows, β columns
and coefficients in an algebra C.

Step (c). There are matrices Y ′ ∈ Mα×1(A), Y ′′ ∈ Mα×s(A), Z ∈
Ms×α(B), for some α ≥ 1, such that

Z · Y ′′ = 1s, Y ′′ · [b1, . . . , bs]
T = Y ′,(3.1)

Y ′ = [b1, . . . , bt|∗]
T, Y ′′ =

[
1t 0
∗ ∗

]
, Z =

[
1t 0
0 ∗

]
(3.2)

where MT means the matrix transpose to M .

P r o o f. We quote Lemma 6.4 in [7] formulated for commutative rings.
This useful lemma remains true in the non-commutative case.

Lemma 5. Let M be a right A-module and N be a left A-module gen-

erated by a family of elements {nl}l∈L. Then an element
∑

l∈L ml ⊗ nl ∈
M ⊗A N equals zero if and only if there exist elements {m′

j}j∈J of M and

elements {aj,l ∈ R : j ∈ J, l ∈ L} such that

∑

j∈J

m′
jaj,l = ml for all l ∈ L and

∑

l∈L

aj,lnl = 0 for all j ∈ J.

Since the canonical homomorphism B ⊗A B → B is injective, it follows
that bi ⊗ 1 = 1 ⊗ bi for all 1 ≤ i ≤ s. Applying Lemma 5 to the right
A-module B, the left A-module B generated by elements {1, b1, . . . , bs},
and to the elements (−bi)⊗ 1 + 1⊗ bi = 0 ∈ B ⊗A B, 1 ≤ i ≤ s, we get, for
all 1 ≤ i ≤ s, a matrix Yi with s + 1 columns and coefficients in A and a
matrix Zi with one row and coefficients in B such that

Zi · Yi = [−bi, 0, . . . , 0, 1, 0, . . . , 0] and Yi · [1, b1, . . . , bs]
T = 0.

We may assume that Yi = [−bi, 0, . . . , 0, 1, 0, . . . , 0] and Zi = [1] for all
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1 ≤ i ≤ t. We collect together the matrices Yi and Zi as follows:

Y =




Y1

Y2

. . .
Ys


 and Z =




Z1 0 . . . 0
0 Z2 . . . 0
. . . . . . . . . . . . . . . .
0 0 . . . Zs


 .

Then Y ∈Mα×(s+1)(A) and Z ∈Ms×α(B) for some α ≥ 1. Moreover,

Z · Y =




−b1 1 0 . . . 0
−b2 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
−bs 0 0 . . . 1


 and Y ·




1
b1
. . .
bs


 = 0.

Let Y = [−Y ′, Y ′′], where Y ′ ∈ Mα×1(A) and Y ′′ ∈ Mα×s(A). Then we
obtain the formulas (3.1). Since Yi = [−bi, 0, . . . , 0, 1, 0, . . . , 0] and Zi = [1]
for all 1 ≤ i ≤ t, the matrices Y ′, Y ′′ and Z have the form (3.2).

Any point m of modA(d) determines a homomorphism of algebras m :
A → Md(k), for simplicity of notation denoted by the same letter. Fur-
thermore, for any u, v ≥ 1, we may extend m to a map m̂ = m̂(u, v) :
Mu×v(A) →Mud×vd(k) such that

m̂





a1,1 . . . a1,v
. . . . . . . . . . . . . .
au,1 . . . au,v




 =



m(a1,1) . . . m(a1,v)
. . . . . . . . . . . . . . . . . . . . . .
m(au,1) . . . m(au,v)


 .

Step (d). The set

C = {m ∈ modA(d) : rank(m̂(Y ′′)) = rank[m̂(Y ′′), m̂(Y ′)] = sd}

is locally closed in modA(d) and imϕ(d) ⊆ C.

P r o o f. Indeed, the condition rank(m̂(Y ′′)) = rank[m̂(Y ′′), m̂(Y ′)] = sd
is equivalent to the vanishing and non-vanishing of some minors of the matrix
[m̂(Y ′′), m̂(Y ′)]. This defines a locally closed subset of modA(d).

Let n ∈ modB(d) and m = ϕ(d)(n) ∈ modA(d). The equalities (3.1)
imply that n̂(Z) · n̂(Y ′′) = n̂(1s) = 1sd ∈Msd(k). Therefore rank(n̂(Y ′′)) =
sd. Since Y ′′ is a matrix with coefficients in A ⊆ B, we have m̂(Y ′′) =
n̂(Y ′′), and hence rank(m̂(Y ′′)) = sd. The equalities (3.1) also imply that

n̂(Y ′′) · n̂([b1, . . . , bs]
T) = n̂(Y ′) ∈Mαd×d(k).

It follows that rank(n̂(Y ′′)) = rank[n̂(Y ′′), n̂(Y ′)], by classical linear algebra.
Since Y ′ and Y ′′ have coefficients in A ⊆ B, we see that m̂(Y ′) = n̂(Y ′),
m̂(Y ′′) = n̂(Y ′′), hence rank(m̂(Y ′′)) = rank[m̂(Y ′′), m̂(Y ′)], and finally
m ∈ C.
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Step (e). There is an injective regular morphism η : C → (Md(k))
s such

that η(m) = (x1, . . . , xs) for all m ∈ C, where

(3.3) m̂(Y ′′) · [x1, . . . , xs]
T = m̂(Y ′).

P r o o f. The existence of a regular map η : C → (Md(k))
s is a con-

sequence of elementary linear algebra and the fact that rank(m̂(Y ′′)) =
rank[m̂(Y ′′), m̂(Y ′)] equals the number of columns of m̂(Y ′′) ∈Mαd×sd(k).

The set C is a finite union of open subsets defined by the condition that
fixed sd rows in m̂(Y ′′) are linearly independent. From Cramer’s rule, η is
a regular morphism on each of these open subsets. Therefore, η is a regular
morphism.

Let m = (m1, . . . ,mt) ∈ C and η(m) = (x1, . . . , xs). The combination of
the formulas (3.2) and (3.3) yields

m̂

([
1t 0
∗ ∗

])
· [x1, . . . , xs]

T = m̂([b1, . . . , bt|∗]
T)

and hence m̂([1t, 0]) · [x1, . . . , xs]
T = m̂([b1, . . . , bt]

T). This implies that
[1td, 0] · [x1, . . . , xs]

T = [m(b1), . . . ,m(bt)]
T, hence that [x1, . . . , xt]

T =
[m1, . . . ,mt]

T. Thus the map η is injective.

Step (f). For any n ∈ modB(d) we have η(ϕd(n)) = n.

P r o o f. Let n = (n1, . . . , ns) ∈ modB(d), m = ϕ(d)(n) = (n1, . . . , nt) ∈
modA(d) and η(m) = (x1, . . . , xs) ∈ modB(d). Since

m̂(Y ′′) · [n1, . . . , ns]
T = m̂(Y ′) = m̂(Y ′′) · [x1, . . . , xs]

T

and the rank of m̂(Y ′′) equals the number of its columns, we find that
ni = xi for all 1 ≤ i ≤ s. This implies that η(m) = n.

Step (g). The set D = η−1(modB(d)) is locally closed in modA(d) and

the morphisms ϕ(d) and η induce mutually inverse isomorphisms of modB(d)
and D.

P r o o f. The set D is closed in C. Hence D is a locally closed subset of
modA(d), by (d). Moreover, imϕ(d) is contained in D, by (f). It remains
to show that ϕ(d)(η(m)) = m for all m ∈ D. Indeed, this follows from the
equality ηϕ(d)η(m) = η(m) and since the map η is injective, by (e) and (f).

The final step shows that ϕ(d) is an immersion, which completes the
proof of Theorem 1.

4. Geometry of modules from standard homogeneous tubes

4.1. Finite tubes. Let A be an algebra and r ≥ 2. A finite tube over

A of height r is a sequence T = (Ti, αj , βj : 1 ≤ i ≤ r, 1 ≤ j < r) such
that Ti is a finite-dimensional A-module for any 1 ≤ i ≤ r, αj : Tj → Tj+1,
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βj : Tj+1 → Tj are A-homomorphisms for any 1 ≤ j < r, and the short
sequences

0 → T1
α1−−→T2

β1

−−→ T1 → 0,(4.1)

0 → Ti
(αi,βi−1)

T

−−−−−−−→ Ti+1 ⊕ Ti−1
(βi,−αi−1)
−−−−−−−→Ti → 0, 1 < i < r,(4.2)

are exact.

The Auslander–Reiten quiver of the algebra k[X]/(Xr) is a finite tube of
height r. The same conclusion holds for the algebras Me(k[X]/(Xr)), e ≥ 1,
which are Morita equivalent to k[X]/(Xr).

Lemma 6. Let A = k〈X1, . . . ,Xn〉/I be a finitely generated algebra. Let

T = (Ti, αj , βj) be a finite tube over A of height r and e = dimk T1. Then

there are y1, . . . , yr ∈ (Me(k))
n such that the A-module Ti corresponds to

the point

ti =




y1 y2 y3 . . . yi
0 y1 y2 . . . yi−1

0 0 y1 . . . yi−2

. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . y1




of modA(ei) for all 1 ≤ i ≤ r.

P r o o f. By (4.1), α1 is a monomorphism. If αi−1 is a monomorphism
then so is αi for all 1 < i < r, by (4.2). Therefore, αi is a monomorphism,
and similarly, βi is an epimorphism for all 1 ≤ i < r. Moreover, the exactness
of the sequences (4.1) and (4.2) leads to

(4.4) β1α1 = 0, βiαi = αi−1βi−1, 1 < i < r.

Let γ = αr−1βr−1 ∈ EndA(Tr). Applying the formulas (4.4) several times
we get

γi = (αr−1βr−1)
i = αr−1 . . . αr−iβr−i . . . βr−1

for all 1 ≤ i < r and γr = 0. Observe that the short sequence

0 → Ti
αr−1...αi

−−−−−−−→Tr
βr−i...βr−1

−−−−−−−→Tr−i → 0

is exact for all 1 ≤ i < r. Then Ti is isomorphic to

ker γi = ker(βr−i . . . βr−1) = im(αr−1 . . . αi) = im γr−i.

Let ε1, . . . , εe be a basis of ker γ = im γr−1. We inductively choose εj
satisfying γ(εj) = εj−e for all e < j ≤ er. Observe that the residue classes
of the elements εj in ker γi/ker γi−1 = im γr−i/im γr−i+1, where e(i − 1) <
j ≤ ei and 1 ≤ i ≤ r, form a basis. Hence {εi : 1 ≤ i ≤ er} is a basis of Tr.
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Furthermore, γ in this basis has the form

γ̃ =




0 1e 0 . . . 0
0 0 1e . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1e
0 0 0 . . . 0


 .

Let tr be the point of modA(er) corresponding to Tr in the above basis.
We may consider tr as a homomorphism from A to Mer(k). The map γ is a
homomorphism of A-modules, thus the matrices γ̃, tr(a) ∈Mer(k) commute
for all a ∈ A. This implies that

tr =




y1 y2 . . . yr
0 y1 . . . yr−1

. . . . . . . . . . . . . . . . . .
0 0 . . . y1




for some yi ∈ (Me(k))
n, 1 ≤ i ≤ r. The epimorphism βi . . . βr−1 : Tr → Ti

maps the set {εj : e(r − i) < j ≤ er} into a basis Bi of Ti for all 1 ≤ i < r.
Let ti be the point of modA(ei) determined by Ti and the basis Bi for all
1 ≤ i < r. Then ti is obtained from tr by removing the first e(r − i) rows
and columns for all 1 ≤ i < r, which completes the proof.

The following proposition shows that finite tubes of height r are strongly
related to the algebras Me(k[X]/(Xr)), e ≥ 1.

Proposition 7. Let A be a finitely generated algebra and T = (Ti, αj , βj)
be a finite tube over A of height r. Let B = Me(k[X]/(Xr)) with e =
dimk T1. Then:

(i) There are, up to isomorphism, r indecomposable B-modules U1, . . . ,Ur

with dimk Ui = ei for all 1 ≤ i ≤ r.
(ii) There is a homomorphism of algebras ϕ : A → B such that the

A-module ϕ∗(Ui) is isomorphic to Ti, where ϕ∗ : ModB → ModA is the

functor induced by ϕ and 1 ≤ i ≤ r.

P r o o f. The first part is well known since the algebra B is Morita
equivalent to k[X]/(Xr). Take an epimorphism π : k〈X1, . . . ,Xe2+1〉 → B
such that x1 = π(X1), . . . , xe2 = π(Xe2 ) form a basis of Me(k) ⊆ B and
π(Xe2+1) = X ∈ B. Then B ≃ k〈X1, . . . ,Xe2+1〉/ker π and the point
ui = (v1, . . . , ve2+1) ∈ modB(ei) satisfying

vj =




xj 0 . . . 0
0 xj . . . 0
. . . . . . . . . . . . . . . .
0 0 . . . xj


, 1 ≤ j ≤ e2, ve2+1 =




0 1e 0 . . . 0
0 0 1e . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1e
0 0 0 . . . 0


,

corresponds to the B-module Ui for all 1 ≤ i ≤ r.
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Applying Lemma 6 we deduce that the A-module Tr determines in some
basis a point tr of the form (4.3), for some y1, . . . , yr ∈ (Me(k))

n and n ≥ 1.
We may consider y1, . . . , yr as linear maps from A to Me(k). Then the map
ϕ : A → B given by

ϕ(a) = y1(a) + y2(a) ·X + . . .+ yr(a) ·X
r−1, a ∈ A,

is easily seen to be a homomorphism of algebras. Furthermore, ϕ(ei)(ui) = ti
for all 1 ≤ i ≤ r. This implies that ϕ∗(Ui) is isomorphic to Ti for all
1 ≤ i ≤ r, and the proposition follows.

Corollary 8. Let A be a finitely generated algebra and T = (Ti, αj , βj)
be a finite tube over A of height r. Let B=Me(k[X]/(Xr)). If dimk EndA(Tr)
= r then the morphisms ϕ(d) : modB(d) → modA(d) are immersions for all

d ≥ 1.

P r o o f. There is a B-module isomorphism B≃(Ur)
e. Moreover, Ur is an

indecomposable projective and injective B-module. Thus the left B-modules
B and DB are isomorphic to each other. Furthermore, ϕ∗(Ur) ≃ Tr, by
Proposition 7. This implies that

dimk HomA(B,DB) = dimk EndA((Tr)
e)

= e2 dimk EndA(Tr) = e2r = e2 dimk EndB(Ur)

= dimk EndB((Ur)
e) = dimk HomB(B,DB).

Our claim follows from Lemma 4 and Theorem 1.

4.2. Proof of Theorem 2. Let Γ = (Ti, αi, βi)i≥1 be a standard homoge-
neous tube of the Auslander–Reiten quiver of A. Fix natural numbers r, d′

satisfying r ≥ d′. Then the sequence T = (Ti, αj , βj : 1 ≤ i ≤ r, 1 ≤ j < r)
is a finite tube over A of height r. Let B=Me(k[X]/(Xr)). Applying Propo-
sition 7 we get a homomorphism ϕ : A → B of algebras such that imϕ(d)

is the union of orbits corresponding to modules from add(T1, . . . , Tr). Since
dimk Ti = ei > d for any i > r, we get modΓ (d) = imϕ(d).

Since Γ is a standard tube, dimk EndA(Tr) = r, and consequently, ϕ(d)

is an immersion, by Corollary 8. This implies that modΓ (d) is isomorphic
to modB(d) and is a locally closed subset of modA(d).

The algebra B is Morita equivalent to the algebra C = k[X]/(Xr).
In particular, there is an equivalence F : ModC → ModB of additive
categories. Bongartz proved in [4] that there is a closed immersion µ :
modC(d

′) → modB(d) which induces a bijection between the set of Gld′(k)-
orbits in modC(d

′) and the set of Gld(k)-orbits in modB(d). This bijection
is compatible with F and preserves and reflects closures, inclusions and the
types of singularities occurring in orbit closures (see also Section 4.2 in [5]).
Therefore, modΓ (d) and modC(d

′) have the same types of singularities and
minimal singularities.
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4.3. List of minimal singularities. We present here all types of minimal
singularities in the module varieties over the algebra k[X]/(Xr). They were
investigated in [12] (for a field k of characteristic zero) and in [5] (in the
general case). These types form two series:

• an = Sing({nilpotent matrices in M(n+1)×(n+1)(k) of rank ≤ 1}, 0),

• An = Sing({nilpotent matrices in M(n+1)×(n+1)(k)}, Ln),

where 1 ≤ n < r and

Ln =




0 0 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0




is a nilpotent matrix of rank n − 1. In the above list all types are pairwise
different except A1 = a1.

Note that An = Sing({Xn+1 + Y Z = 0}, 0) is the type of one of the
Kleinian (or simple) singularities. This can be obtained using transverse
slices (see Section 5.1 in [15] and [2]).
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